
A Short History of Equality

Thorsten Altenkirch

School of Computer Science
University of Nottingham

June 25, 2011

Thorsten Altenkirch (Nottingham) fita 11 June 25, 2011 1 / 30

Agda is cool!

data Vec (A : Set) : N→ Set where
[] : Vec A zero

:: _ : {n : N}→ A→ Vec A n→ Vec A (suc n)

data Fin : N→ Set where
zero : {n : N}→ Fin (suc n)
suc : {n : N}→ Fin n→ Fin (suc n)

!!_ : ∀ {A n}→ Vec A n→ Fin n→ A
[] !! ()
(x :: xs) !! zero = x
(x :: xs) !! (suc i) = xs !! i

Safe lookup in Agda.

Ulf Norell

Thorsten Altenkirch (Nottingham) fita 11 June 25, 2011 2 / 30

Theorem proving in Agda

+_ :N→ N→ N
zero + n = n
suc m + n = suc (m + n)

assoc : { i j k : N}→ i + (j + k) ≡ (i + j) + k
assoc zero j k = refl
assoc (suc i) j k = cong suc (assoc i j k)

Exploit Curry-Howard.
Think of proofs as programs.
Termination checker to achieve logical soundness.

Thorsten Altenkirch (Nottingham) fita 11 June 25, 2011 3 / 30

Basic ingredients of Type Theory
Per Martin-Löf

Π-types (x : A)→ B x or {x : A}→ B x

Generalize function types (A→ B).
Represent universal quantification
Alternative syntax: Π [x : A] B x

Σ-types Σ [x : A] B x

Generalize product types
Represent existential quantification
Usually curried away or replaced by datatypes

Equality types a ≡ b (for a b : A)

No simply typed correspondence
Represent propositional equality
Implicitly used in dependent datatypes
(like Vec or Fin)

Thorsten Altenkirch (Nottingham) fita 11 June 25, 2011 4 / 30

Equality to define inductive families

data Fin : N→ Set where
zero : {n : N}→ Fin (suc n)
suc : {n : N}→ Fin n→ Fin (suc n)

Fin is the initial algebra of the following functor:

TFin : (N→ Set)→ N→ Set
TFin X n = (Σ [m : N] (suc m ≡ n))

] (Σ [m : N] (suc m ≡ n)× X m)

Thorsten Altenkirch (Nottingham) fita 11 June 25, 2011 5 / 30

Equality types

data ≡ _ {A : Set } : A→ A→ Set where
refl : (a : A)→ a ≡ a

Proof: ≡ _ is an equivalence relation (using pattern matching):

sym : {A : Set } (a b : A)→ a ≡ b→ b ≡ a
sym a .a (refl .a) = refl a
trans : {A : Set } (a b c : A)→ a ≡ b→ b ≡ c→ a ≡ c
trans a .a b (refl .a) q = q

Thorsten Altenkirch (Nottingham) fita 11 June 25, 2011 6 / 30

J : the eliminator

J : {A : Set }
(M : (a b : A)→ a ≡ b→ Set)
→ ((a : A)→M a a (refl a))
→ (a b : A) (p : a ≡ b)→M a b p

J M m a .a (refl .a) = m a

Think of induction on equality proofs
Alternative to pattern matching
Combinator instead of a scheme.

Thorsten Altenkirch (Nottingham) fita 11 June 25, 2011 7 / 30

sym and trans from J

We can derive sym and trans from J alone:

sym : {A : Set } (a b : A)→ a ≡ b→ b ≡ a
sym = J (λ a′ b′ → b′ ≡ a′)

(λ a′→ refl a′)
trans : {A : Set } (a b c : A)→ a ≡ b→ b ≡ c→ a ≡ c
trans a b c = J (λ a′ b′ → b′ ≡ c→ a′ ≡ c)

(λ a′→ λ q′→ q′)
a b

Thorsten Altenkirch (Nottingham) fita 11 June 25, 2011 8 / 30

Uniqueness of Identity Proofs

Can all pattern matching programs derived using J?

uip : {A : Set } (a b : A) (p q : a ≡ b)→ p ≡ q
uip .b b (refl .b) (refl .b) = refl (refl b)

Attempts to prove uip fail.
We cannot use J to eliminate proofs of the type a ≡ a.

Thorsten Altenkirch (Nottingham) fita 11 June 25, 2011 9 / 30

A 2nd eliminator K

K : {A : Set }
(M : (a : A)→ a ≡ a→ Set)
→ ((a : A)→M a (refl a))
→ (a : A) (p : a ≡ a)→M a p

K M m a (refl .a) = m a

using K and J we can derive uip:

uip : {A : Set } (a b : A) (p q : a ≡ b)→ p ≡ q
uip = J (λ a′ b′ p′→ (q′ : a′ ≡ b′)→ p′ ≡ q′)

(K (λ a′′ q′′→ refl a′′ ≡ q′′)
(λ a′′→ refl (refl a′′)))

Thorsten Altenkirch (Nottingham) fita 11 June 25, 2011 10 / 30

Conor’s PhD

Conor McBride (1999):
J and K and the eliminators for other datatypes are enough to
implement pattern matching.

Thorsten Altenkirch (Nottingham) fita 11 June 25, 2011 11 / 30

But:
Do we really need K ?

Thorsten Altenkirch (Nottingham) fita 11 June 25, 2011 12 / 30

Groupoids

While we cannot show that all equality proofs are equal
using only J.
We can show some equations between equality proofs.
Equality proofs from a groupoid.
A groupoid is a category where every morphism has an inverse
(i.e. is an isomorphism).
As categories generalize monoids and preorders . . .
. . . groupoids generalize groups and equivalence relations

Thorsten Altenkirch (Nottingham) fita 11 June 25, 2011 13 / 30

Equality forms a groupoid

Only using J we can prove:

lneutr : trans refl p ≡ p
rneutr : trans p refl ≡ p
assoc : trans (trans p q) r ≡ trans p (trans q r)

linv : trans (sym p) p ≡ refl
rinv : trans p (sym p) ≡ refl

Thorsten Altenkirch (Nottingham) fita 11 June 25, 2011 14 / 30

Hofmann/Streicher

Hofmann/Streicher 94
Groupoids form a model of Type Theory in which uip doesn’t hold.
Hence uip is not derivable from J only.

Thorsten Altenkirch (Nottingham) fita 11 June 25, 2011 15 / 30

Incompleteness?

We can view the lack of uip as an incompleteness of Martin-Löf’s
original formulation of equality types.
This can easily be fixed by adding K .
There is another incompleteness of equality types.
Which is easier to show.
But harder to fix!

Thorsten Altenkirch (Nottingham) fita 11 June 25, 2011 16 / 30

Consider the functions

f : N→ N
f = λ n→ n + 0

g : N→ N
g = λ n→ n

We can show

exteq : (n : N)→ f n ≡ g n
exteq n = add0lem n

but we cannot show

eq : f ≡ g

because if such a proof exists.
Then there is one in normal from (refl).
And f and g would have to be convertible (same normal form).
However, n + 0 and n are not convertible.

Thorsten Altenkirch (Nottingham) fita 11 June 25, 2011 17 / 30

Extensionality

This shows that the principle:

ext : {A B : Set } (f g : A→ B)
→ ((a : A)→ f a ≡ g a)→ f ≡ g

is not provable in Type Theory.

Thorsten Altenkirch (Nottingham) fita 11 June 25, 2011 18 / 30

Data vs codata

Data (like N) is defined by the way it is constructed.
Codata (like functions) is defined by the way it is eliminated.
Data is based on a producer contract, the producer only uses the
allowed constructors.
Codata is based on a consumer contract, the consumer only uses
the allowed eliminators.
The producer contract justifies elimination principles (like
induction) for data.
The consumer contract justifies coelimination principles (like
coinduction and extensionality) for codata.

Thorsten Altenkirch (Nottingham) fita 11 June 25, 2011 19 / 30

The Leibniz principle

Any two objects should be either distinguishable (without using
equality) or equal.
Since all we can do with a function is to apply it, two extensionally
equivalent functions should be equal.

Thorsten Altenkirch (Nottingham) fita 11 June 25, 2011 20 / 30

Axiom?

Why don’t we add ext as an axiom?
Disadvantage: this induces non-canonical elements in other types.

strange : N
strange = subst (λ → N) (ext f g exteq) 0

Adding axioms destroys the computational structure of Type
Theory.

Thorsten Altenkirch (Nottingham) fita 11 June 25, 2011 21 / 30

Setoids?

A set with an equivalence relation is called a setoid.
We can define the setoid of functions with extensional equality.
We define operations on setoids instead of sets.
Disadvantages:

I Each time we have to prove that any operation preserves
extensional equality even though we know this is always true.

I We have to decide which sets we turn into setoids and which we
leave as sets. This leads potentially to many copies of a given
operation.

Why not working in the Type Theory generated by setoids?

Thorsten Altenkirch (Nottingham) fita 11 June 25, 2011 22 / 30

Extensional Equality in Intensional Type Theory

Indeed, this was the idea which lead to my LICS 99 paper.
However, Setoids are not a model of Type Theory because certain
equalities don’t hold.
E.g. the Beck-Chevallier condition fails

(Πx : A.Bx)[δ] = Πx : A[δ].(Bx)[δ]

because both sides produce different equality proofs.
We can address this by introducing a type Prop with the property
that all proofs of a proposition are convertible.
While this is a non-standard Type Theory, it is possible to
implement such a theory.
However, nobody ever implemented a Type Theory based on my
LICS99 paper.

Thorsten Altenkirch (Nottingham) fita 11 June 25, 2011 23 / 30

Observational Type Theory
Jointly with Conor McBride and Wouter Swierstra we developed a
more syntactic approach to the setoid model:
Observational Type Theory, now (PLPV 08)
Equality is defined by recursion over the types
(following the setoid model).
We also define

subst : {A : Set } {B : A→ Set } {a b : A}→ a ≡ b→ B a→ B b

by recursion over B.
Other constants, in particular

cong : {A B : Set } (f : A→ B) {a b : A}→ a ≡ b→ f a ≡ f b

are added as axioms.
We have irreducible terms in equality types.
But not in other types (like N).
This is the basis for the ongoing implementation of Epigram 2.

Thorsten Altenkirch (Nottingham) fita 11 June 25, 2011 24 / 30

Equality of types

When should two types be provably equal?
All operations in Type Theory preserve isomorphisms.
Unlike Set Theory, e.g. {0,1} ' {1,2} but
{0,1} ∪ {0,1} 6' {0,1} ∪ {1,2}.
Indeed, isomorphic types are propositionally indistinguishable in
Type Theory.
Leibniz principle: isomorphic sets should be equal!?

Thorsten Altenkirch (Nottingham) fita 11 June 25, 2011 25 / 30

Univalent Type Theory
Vladimir Voevodsky proposed a
new principle for Type Theory: the univalence principle.
This is inspired by models of Homotopy theoretic models
of Type Theory.
He defines the notion of weak equivalence of types.

Voevodsky’s Univalence Principle
Equality of types is weakly equivalent to weak equivalence

Using this principle we can show that isomorphic types are equal.
It also implies ext .
However, it is incompatible with uip and K .

Thorsten Altenkirch (Nottingham) fita 11 June 25, 2011 26 / 30

Dimensions of types

A type which has exactly one element is 0-dimensional.
the contractible types.
A type whose equality is 0-dimensional is 1-dimensional
the propositions.
A type whose equality is 1-dimensional is 2-dimensional
the sets
There are higher dimensional types, such as the universe of small
sets (dimension 3).

Thorsten Altenkirch (Nottingham) fita 11 June 25, 2011 27 / 30

Conclusions

If we want to construct a univalent Type Theory
we have to give up UIP.
We can add the Univalence Principle as an axiom,
but this destroys the computational structure of Type Theory.
However, eliminating extensionality principles
seems to rely on proof-irrelvance.
Can we develop an extensional type theory which is not
proof-irrelevant?
And where univalence is provable?

Thorsten Altenkirch (Nottingham) fita 11 June 25, 2011 28 / 30

A type is contractible, if it has precisely one element:

Contr : Set → Set
Contr A = Σ [a : A] ((a′ : A)→ a ≡ a′)

We define the inverse image of a function:

−1 : {A B : Set } (f : A→ B) (b : B)→ Set
(f −1) b = Σ [a :] (f a ≡ b)

A function is a weak equivalence if the inverse image is
everywhere contractible:

Weq : {A B : Set } (f : A→ B)→ Set
Weq f = (b :)→ Contr ((f −1) b)

Thorsten Altenkirch (Nottingham) fita 11 June 25, 2011 29 / 30

Two types are weakly equivalent, if there is a weak equivalence
between them:

≈ _ :(A B : Set)→ Set
A≈ B = Σ [f : (A→ B)] (Weq f)

Weak equivalence is reflexive:

refl ≈ :{A : Set }→ A≈ A

Hence equality implies weak equivalence:

≡→≈ :{A B : Set }→ A ≡ B→ A≈ B
≡→≈ refl = refl ≈

Univalence is to postulate that the above map is a weak
equivalence:

postulate unival : {A B : Set }→Weq (≡→≈{A} {B})

Thorsten Altenkirch (Nottingham) fita 11 June 25, 2011 30 / 30

