A Short History of Equality

Thorsten Altenkirch

School of Computer Science
University of Nottingham

June 25, 2011

unff QU

Thorsten Altenkirch (Nottingham June 25, 2011 1/30



-
Agda is cool!

data Vec (A: Set) : N — Set where
[l :VecAzero
_u_:{n:N} - A— Vec An— Vec A (suc n)

data Fin: N — Set where
zero: {n:N} — Fin (suc n)

suc :{n:N} — Fin n— Fin (suc n) Ul Norell

_N_:v{An}—>VecAn— Finn— A
[] 0

(x::xs)!lzero =x

(x::xs) !l (suci)y=xs!li

Safe lookup in Agda.

Thorsten Altenkirch (Nottingham) June 25, 2011 2/30



|
Theorem proving in Agda

_4+ N—->N-—=N
zero +n=n
suc m+ n=suc (m+ n)

assoc:{ijk N} =i+ (+Kk)=(+j)+k
assoc zero j k = refl
assoc (suc i) j k = cong suc (assoc i j k)

@ Exploit Curry-Howard.
@ Think of proofs as programs.
@ Termination checker to achieve logical soundness.

Thorsten Altenkirch (Nottingham) fita 11 June 25, 2011 3/30



-
Basic ingredients of Type Theory

Per Martin-Lof
M-types (x:A) ->Bxor{x:A}—-Bx ;

@ Generalize function types (A — B) 4§
@ Represent universal quantification |
@ Alternative syntax: M [x: A] Bx _&

Y-types ¥ [x:A] Bx
@ Generalize product types

@ Represent existential quantification
@ Usually curried away or replaced by datatypes

I

Equality types a= b (for a b: A)

@ No simply typed correspondence

@ Represent propositional equality

@ Implicitly used in dependent datatypes
(like Vec or Fin)

Thorsten Altenkirch (Nottingham) fita 11 June 25, 2011 4/30



|
Equality to define inductive families

data Fin: N — Set where
zero: {n:N} — Fin (suc n)
suc :{n:N} — Fin n— Fin (suc n)

Fin is the initial algebra of the following functor:

TFin: (N — Set) - N — Set
TFin X n= (X [m:N] (suc m = n))
W (X [m:N] (suc m=n)x X m)

Thorsten Altenkirch (Nottingham) June 25, 2011 5/30



-
Equality types

data _=_{A:Set}:A— A— Set where
refl:(a:A)—a=a

Proof: _= _ is an equivalence relation (using pattern matching):

sym:{A:Set} (ab:A)—wa=b—b=a
sym a .a(refl .a) = refl a

trans: {A:Set} (abc:A)—-a=b—-b=c—a=c
tfrans a .a b (refl .a) g=q

Thorsten Altenkirch (Nottingham) fita 11 June 25, 2011 6/30



|
J : the eliminator

J:{A: Set}
(M:(ab:A)— a=b— Set)
—((a: A) — M aa(refl a))
—(ab:A)(p:a=b)—>Mabp
JMma .a(refl .a)=ma

@ Think of induction on equality proofs
@ Alternative to pattern matching
@ Combinator instead of a scheme.

Thorsten Altenkirch (Nottingham) June 25, 2011 7130



|
sym and trans from J

We can derive sym and trans from J alone:

sym:{A:Set} (ab:A)—a=b—b=a
sym=J(\Nad b _—-b=42)
(A& —refl d)

trans: {A:Set} (abc:A)—wa=b—-b=c—a=c
transabc=J(\Nad b _—b=c—ad=c)
Nd—=-Xd—7q)
ab

Thorsten Altenkirch (Nottingham) June 25, 2011 8/30



|
Uniqueness of Identity Proofs

@ Can all pattern matching programs derived using J?

uip:{A:Set} (ab:A)(pg:a=b)—p=gq
uip .b b (refl .b) (refl .b) = refl (refl b)

@ Attempts to prove uip fail.
@ We cannot use J to eliminate proofs of the type a = a.

Thorsten Altenkirch (Nottingham) fita 11 June 25, 2011 9/30



|
A 2nd eliminator K

K:{A: Set}
(M:(a:A)—a=a— Set)
— ((a: A) — M a(refl a))
—(a:A)(p:a=a—Map

KMma(refl.a)=ma

using K and J we can derive uip:

uip:{A:Set} (ab:A)(pg:a=b)—p=q
up=JdMNabp—=(@q:d=b)-p=7q)
(K(A\a"q"—refld =q")
(N &' — refl (refl d")))

Thorsten Altenkirch (Nottingham) fita 11 June 25, 2011 10/30



|
Conor’s PhD

Conor McBride (1999):

J and K and the eliminators for other datatypes are enough to
implement pattern matching.

Thorsten Altenkirch (Nottingham) fita 11 June 25, 2011 11/30



But
Do we really need K? J

Thorsten Altenkirch (Nottingham) fita 11



-
Groupoids

@ While we cannot show that all equality proofs are equal
using only J.

@ We can show some equations between equality proofs.

@ Equality proofs from a groupoid.

@ A groupoid is a category where every morphism has an inverse
(i.e. is an isomorphism).

@ As categories generalize monoids and preorders . ..

@ ...groupoids generalize groups and equivalence relations

Thorsten Altenkirch (Nottingham) fita 11 June 25, 2011 13/30



|
Equality forms a groupoid

Only using J we can prove:

Ineutr : trans refl p = p

rneutr : trans p refl = p

assoc : trans (trans p q) r = trans p (tfrans q r)
linv : trans (sym p) p = refl

rinv : trans p (sym p) = refl

Thorsten Altenkirch (Nottingham) June 25, 2011 14 /30



|
Hofmann/Streicher

Hofmann/Streicher 94

Groupoids form a model of Type Theory in which uip doesn’t hold.
Hence uip is not derivable from J only.

Thorsten Altenkirch (Nottingham) June 25, 2011 15/30



|
Incompleteness?

@ We can view the lack of uip as an incompleteness of Martin-L6f’s
original formulation of equality types.

@ This can easily be fixed by adding K.

@ There is another incompleteness of equality types.
@ Which is easier to show.

@ But harder to fix!

Thorsten Altenkirch (Nottingham) fita 11 June 25, 2011 16/30



Consider the functions
f:N—N
f=An—=n+0
g:N—>N
g=An—n

We can show

exteq: (n:N)—-fn=gn
exteqg n = addOlem n

but we cannot show

eq:f=g

because if such a proof exists.
Then there is one in normal from (refl).
And f and g would have to be convertible (same normal form).
However, n+ 0 and n are not convertible.
Thorsten Altenkirch (Nottingham) fita 11 June 25, 2011 17/30



-
Extensionality

This shows that the principle:

ext:{AB:Set} (fg:A— B)
—((a:A)—fa=ga)—~f=g

is not provable in Type Theory.

Thorsten Altenkirch (Nottingham) i June 25, 2011

18/30



|
Data vs codata

@ Data (like N) is defined by the way it is constructed.
@ Codata (like functions) is defined by the way it is eliminated.

@ Data is based on a producer contract, the producer only uses the
allowed constructors.

@ Codata is based on a consumer contract, the consumer only uses
the allowed eliminators.

@ The producer contract justifies elimination principles (like
induction) for data.

@ The consumer contract justifies coelimination principles (like
coinduction and extensionality) for codata.

Thorsten Altenkirch (Nottingham) fita 11 June 25, 2011 19/30



|
The Leibniz principle

@ Any two objects should be either distinguishable (without using
equality) or equal.

@ Since all we can do with a function is to apply it, two extensionally
equivalent functions should be equal.

Thorsten Altenkirch (Nottingham) June 25, 2011 20/30



Axiom?

@ Why don’t we add ext as an axiom?
@ Disadvantage: this induces non-canonical elements in other types.

strange : N
strange = subst (A — — N) (ext f g exteq) 0

@ Adding axioms destroys the computational structure of Type
Theory.

Thorsten Altenkirch (Nottingham) fita 11 June 25, 2011 21/30



]
Setoids?

@ A set with an equivalence relation is called a setoid.
@ We can define the setoid of functions with extensional equality.
@ We define operations on setoids instead of sets.

@ Disadvantages:

» Each time we have to prove that any operation preserves
extensional equality even though we know this is always true.

» We have to decide which sets we turn into setoids and which we
leave as sets. This leads potentially to many copies of a given
operation.

@ Why not working in the Type Theory generated by setoids?

Thorsten Altenkirch (Nottingham) fita 11 June 25, 2011 22/30



-
Extensional Equality in Intensional Type Theory

Indeed, this was the idea which lead to my LICS 99 paper.

However, Setoids are not a model of Type Theory because certain
equalities don’t hold.

E.g. the Beck-Chevallier condition fails
(Mx : A.Bx)[0] = Nx : A[d].(Bx)[d]

because both sides produce different equality proofs.

We can address this by introducing a type Prop with the property
that all proofs of a proposition are convertible.

While this is a non-standard Type Theory, it is possible to
implement such a theory.

However, nobody ever implemented a Type Theory based on my
LICS99 paper.

Thorsten Altenkirch (Nottingham) fita 11 June 25, 2011 23/30



-
Observational Type Theory

@ Jointly with Conor McBride and Wouter Swierstra we developed a
more syntactic approach to the setoid model:
Observational Type Theory, now (PLPV 08)

@ Equality is defined by recursion over the types
(following the setoid model).

@ We also define

subst: {A:Set} {B:A— Set} {ab:A} wa=b—-Ba—Bb

by recursion over B.
@ Other constants, in particular

cong:{AB:Set} (f:A—B){ab:A} »a=b—~fa=fb

are added as axioms.
@ We have irreducible terms in equality types.
But not in other types (like N).

@ This is the basis for the onaoina imol
Thorsten Altenkirch (Nottingham)

tion of Epiaram 2.
June 25, 2011 24 /30

men




-
Equality of types

@ When should two types be provably equal?

@ All operations in Type Theory preserve isomorphisms.

@ Unlike Set Theory, e.g. {0,1} ~ {1,2} but
{0,1}uU{0,1} 2 {0,1} U {1,2}.

@ Indeed, isomorphic types are propositionally indistinguishable in
Type Theory.

@ Leibniz principle: isomorphic sets should be equal!?

Thorsten Altenkirch (Nottingham) fita 11 June 25, 2011 25/30



|
Univalent Type Theory

@ Vladimir Voevodsky proposed a
new principle for Type Theory: the univalence principle.
@ This is inspired by models of Homotopy theoretic models
of Type Theory.
@ He defines the notion of weak equivalence of types.

Voevodsky’s Univalence Principle
Equality of types is weakly equivalent to weak equivalence

@ Using this principle we can show that isomorphic types are equal.
@ It also implies ext.
@ However, it is incompatible with uip and K.

Thorsten Altenkirch (Nottingham) fita 11 June 25, 2011 26/30



-
Dimensions of types

@ A type which has exactly one element is 0-dimensional.
the contractible types.

@ A type whose equality is 0-dimensional is 1-dimensional
the propositions.

@ A type whose equality is 1-dimensional is 2-dimensional
the sets

@ There are higher dimensional types, such as the universe of small
sets (dimension 3).

Thorsten Altenkirch (Nottingham) fita 11 June 25, 2011 27/30



N
Conclusions

@ If we want to construct a univalent Type Theory
we have to give up UIP.

@ We can add the Univalence Principle as an axiom,
but this destroys the computational structure of Type Theory.

@ However, eliminating extensionality principles
seems to rely on proof-irrelvance.

@ Can we develop an extensional type theory which is not
proof-irrelevant?

@ And where univalence is provable?

Thorsten Altenkirch (Nottingham) fita 11 June 25, 2011 28/30



@ A type is contractible, if it has precisely one element:

Contr : Set — Set
ContrA=%[a:A]((d:A)—a=4d)

@ We define the inverse image of a function:

_"".{AB:Set} (f:A— B) (b: B) — Set
(f Yb=%[a:_](fa=b)

@ A function is a weak equivalence if the inverse image is
everywhere contractible:

Weqg:{AB: Set} (f: A— B) — Set
Weq f = (b:_) — Contr ((f 1) b)

Thorsten Altenkirch (Nottingham) fita 11 June 25, 2011 29/30



@ Two types are weakly equivalent, if there is a weak equivalence
between them:

_~_:(AB: Set)— Set
A~B=Y[f: (A B)] (Weq f)

@ Weak equivalence is reflexive:
refl~:{A:Set} - A=A
@ Hence equality implies weak equivalence:

=~ {AB:Set} +A=B—+A=B
=~ refl = refl =

@ Univalence is to postulate that the above map is a weak
equivalence:

postulate unival : { A B: Set} — Weq (=—~{A} {B})

Thorsten Altenkirch (Nottingham) fita 11 June 25, 2011 30/30



