
Introduction to (Homotopy) Type Theory
or

Näıve Type Theory

Thorsten Altenkirch

Functional Programming Laboratory
School of Computer Science
University of Nottingham

April 6, 2018

Thorsten Altenkirch (Nottingham) HoTT (FMV 18) April 6, 2018 1 / 31

In memoriam

Martin Hofmann (1965 - 2018)

Thorsten Altenkirch (Nottingham) HoTT (FMV 18) April 6, 2018 2 / 31

Hochplatte 2017

Cameron, me, Annette, Martin

Thorsten Altenkirch (Nottingham) HoTT (FMV 18) April 6, 2018 3 / 31

Sets vs Types

Set Theory (ZFC)

Formulated in classical predicate logic with equality.

One relation a ∈ A (a is an element of the set A).

Axioms: extensionality, pairing, union, powerset, infinity,
comprehension, regularity, replacement and choice.

Can be used to represent most (all ?) mathematical concepts.

Näıve Set Theory

Use sets intuitively, don’t refer to the axioms explicitely.

Thorsten Altenkirch (Nottingham) HoTT (FMV 18) April 6, 2018 5 / 31

Sets vs Types

Type Theory (Martin-Löf)

Basic judgments (static)

a : A (a is an element of type A),
a ≡A b (a and b are definitionally equal elements of type A).

Defined using typing rules defining e.g. Γ ` a : A, using contexts of
assumptions Γ = x0 : A0, x1 : A1. . . . , xn : An.

Basic type formers: Π-types, Σ-types, equality types, inductive types,
universes, . . .

Uses the propositions as types translation. Intuitionistic logic.

Different flavours: Intensional Type Theory (ITT), Extensional Type
Theory (ETT), Homotopy Type Theory (HoTT)

Implementations: NuPRL, Coq, Agda, Lean, Idris, . . .

Näıve Type Theory

Use types intuitively, don’t refer to the rules explicitely.

Thorsten Altenkirch (Nottingham) HoTT (FMV 18) April 6, 2018 6 / 31

Sets vs Types

Set Theory

Type Theory
=

Python

Haskell

Thorsten Altenkirch (Nottingham) HoTT (FMV 18) April 6, 2018 7 / 31

Sets vs Types

Simple types

Given types A,B we can form

Products (A× B) The elements are tuples (a, b) : A× B, where a : A and
b : B.

Sums (A + B) The elements are injections left a, right b : A + B where
a : A and b : B respectively.

Unit (1), Empty type (∅) Nullary product and sum. () : 1 but no elements
in ∅.

Functions (A→ B) A function f : A→ B is a way to map elements a : A
to f a : B (black box).

A
f

B

Thorsten Altenkirch (Nottingham) HoTT (FMV 18) April 6, 2018 8 / 31

Sets vs Types

Propositions as types (propositional logic)

Given a proposition P we assign to it the type of its evidence [[P]]:

[[P ⇒ Q]] :≡ [[P]]→ [[Q]]

[[P ∧ Q]] :≡ [[P]]× [[Q]]

[[True]] :≡ 1

[[P ∨ Q]] :≡ [[P]] + [[Q]]

[[False]] :≡ 0

Other connectives can be defined:

¬P :≡ P ⇒ False

P ⇔ Q :≡ (P ⇒ Q) ∧ (Q ⇒ P)

Thorsten Altenkirch (Nottingham) HoTT (FMV 18) April 6, 2018 9 / 31

Sets vs Types

Example

To show that
P ∧ (Q ∨ R)⇒ (P ∧ Q) ∨ (P ∧ R)

we need to find a function

f : P × (Q + R)→ (P × Q) + (P × R)

which we define as follows:

f (p, left q) :≡ left (p, q)
f (p, right r) :≡ right (p, r)

Exercise

Show that
P ∧ (Q ∨ R)⇔ (P ∧ Q) ∨ (P ∧ R)

Thorsten Altenkirch (Nottingham) HoTT (FMV 18) April 6, 2018 10 / 31

Sets vs Types

Dependent types

Given a type A a dependent type B : A→ Type assigns to every element
a : A a type B a : Type.
Here Type is the universe of (small) types.

Π-types An element f : Πx : A.B x is a function that maps elements
a : A to f a : B a.

Σ-types Elements are tuples (a, b) : Σx : A.B x where a : A and
b : B a

→ and × arise as special cases:

A→ B ≡ Π− : A.B

A× B ≡ Σ− : A.B

Thorsten Altenkirch (Nottingham) HoTT (FMV 18) April 6, 2018 11 / 31

Sets vs Types

Dependent types (Examples)

We write An for the type of n-tuples of elements of A.

zeroes : Πn : N.Nn

zeroes n :≡ (0, 0, . . . , 0)︸ ︷︷ ︸
n

(3, (1, 2, 3)) : Σn : N.Nn because (1, 2, 3) : N3

Puzzle

What is a good name for Σn : N.An?

Thorsten Altenkirch (Nottingham) HoTT (FMV 18) April 6, 2018 12 / 31

Sets vs Types

All type formers in one picture

We can derive binary operations from the dependent ones:

A + B :≡ Σb : Bool.if b thenA elseB
A× B :≡ Πb : Bool.if b thenA elseB

Π

→ ×

Σ

+

goes from the dependent to the non-dependent version.
goes from the indexed version to the binary one.

Thorsten Altenkirch (Nottingham) HoTT (FMV 18) April 6, 2018 13 / 31

Sets vs Types

Propositions as types (predicate logic)
Given a type A a predicate over A is a dependent type A→ Type

[[∀x : A.P(x)]] :≡ Πx : A.[[P(x)]]

[[∃x : A.P(x)]] :≡ Σx : A.[[P(x)]]

Example:

(∀x : A.P x ∧ Q x)→ (∀x : A.P x) ∧ (∀x : A.Q x)

f : ((Πx : A.P x × Q x)→ (Πx : A.P x) ∧ (Πx : A.Q x))
f h :≡ (λx .fst (h x), λx .snd (h x))

where
fst : A× B → A snd : A× B → B
fst (a, b) :≡ a snd (a, b) :≡ b

Thorsten Altenkirch (Nottingham) HoTT (FMV 18) April 6, 2018 14 / 31

Equality

Intensional equality

Equality is a type former, that is given a, b : A we can form the type
a =A b : Type.
Given a : A we can construct refla : a =A a.
We can view this as a definition of equality.
We can derive for example:

trans : Πa,b,c:Aa =A b → b =A c → a =A c
trans refla p :≡ p

In the same way we can derive

sym : Πa,b:Aa =A b → b =A a
resp : Πf : A→ B.Πa,b:Aa =A b → f a =B f b
sym refla :≡ reflA

resp f refla :≡ reflf a

Thorsten Altenkirch (Nottingham) HoTT (FMV 18) April 6, 2018 16 / 31

Equality

Uniqueness of equality proofs

Can we prove
uep : Πa,b:AΠp, q : a =A b.p =a=Ab q

It seems yes:
uep refla refla :≡ reflreflA

Thorsten Altenkirch (Nottingham) HoTT (FMV 18) April 6, 2018 17 / 31

Equality

The J-eliminator

However, in intensional Martin-Löf Type Theory, dependent functions out
of an equality type can only be defined by J.
To define a function

f : Πx , y : A.Πp : x = y .C x y p

where C : Πx , y : A, x = y → Type, it is sufficient to supply:

f x x reflx :≡ g x

where g : Πx : A.C x x reflx .
Formally, we write f :≡ J C g .

Hofmann-Streicher’s Groupoid model

Martin Hofmann and Thomas Streicher have shown that uep is not
derivable from J using the groupoid model of Type Theory.

Thorsten Altenkirch (Nottingham) HoTT (FMV 18) April 6, 2018 18 / 31

Equality

Adding K ?

This can be fixed by adding a 2nd eliminator.
To define a function

f : Πx : A.Πp : x = x .C x p

where C : Πx : A, x = x → Type, it is sufficient to define

f x reflx :≡ g x

where g : Πx : A.C x reflx .
Formally, we write f :≡ K C g .

Univalence ?

However, K is incompatible with Voevodsky’s univalence principle which is
the cornerstone of Homotopy Type Theory (HoTT).

Thorsten Altenkirch (Nottingham) HoTT (FMV 18) April 6, 2018 19 / 31

Vladimir Voevodsky (1966 - 2017)

Univalence

What is equality of types?

Easier question: What is equality of propositions?

Follow up: What is a proposition?

Thorsten Altenkirch (Nottingham) HoTT (FMV 18) April 6, 2018 21 / 31

Univalence

What is a proposition?

classical
Prop = Bool

Propositional extensionality : P = Q ⇔ (P ⇔ Q)

Type Theory (naive)
Prop = Type

Axiom of choice (AC) is provable.

(∀x : A.∃y : B.R x y)→ ∃f : A→ B.∀x : A.R x (f x)

Subset inclusion may not be injective.

{x : A | P x} = Σx : A.P x

Thorsten Altenkirch (Nottingham) HoTT (FMV 18) April 6, 2018 22 / 31

Univalence

What is a proposition?

Type Theory (HoTT)

Prop :≡ {A : Type | ∀x , y : A.x = y}
≡ ΣA : Type.Πx , y : A.x = y

AC not provable, implies excluded middle (Diaconescu)
Subset inclusion injective.
Retain propositional extensionality.
(P = Q)⇔ (P ⇔ Q)
Subobject classifier in a (predicative) Topos

Thorsten Altenkirch (Nottingham) HoTT (FMV 18) April 6, 2018 23 / 31

Univalence

Propositions as Types (HoTT)
Goal : [[P]] : Prop

[[P =⇒ Q]] :≡ [[P]]→ [[Q]]

[[P ∧ Q]] :≡ [[P]]× [[Q]]

[[True]] :≡ 1

[[P ∨ Q]] :≡ ||[[P]] + [[Q]]||
[[False]] :≡ 0

[[∀x : A.P(x)]] :≡ Πx : A.[[P(x)]]

[[∃x : A.P(x)]] :≡ ||Σx : A.[[P]]||

where || || : Type→ Prop such that

||A|| → P ' A→ P for P : Prop

Thorsten Altenkirch (Nottingham) HoTT (FMV 18) April 6, 2018 24 / 31

Univalence

What is a set?
A set is a type whose equalities are propositions.

Set ≡ {A : Type | ∀x , y : A.isProp (x = y)}
where isPropA ≡ ∀x , y : A.x = y
Propositional extensionality becomes set extensionality.

A = B ∼= (A ∼= B) (A,B : Set)

A ∼= B :≡Σf : A→ B

g : B → A

η : Πx : B.f (g x) = x

ε : Πx : A.g (f x) = x

Bool = Bool is not a proposition.
Hence Set is not a set (not just due to size)!
Correct statement: the canonical map A = B → (A ∼= B) is an
isomorphism.

Thorsten Altenkirch (Nottingham) HoTT (FMV 18) April 6, 2018 25 / 31

Univalence

Equality of types (univalence)
Fir general types we need to modify the previous definition, replacing
isomorphism by equivalence.

A ' B :≡Σf : A→ B

g : B → A

η : Πy : B.f (g y) = y

ε : Πx : A.g (f x) = x

δ : Πx : A.η (f x) = f (ε x)

A = B ' (A ' B) (A,B : Type)

I write f (ε x) for resp f (ε x)
Asymmetric

τ : Πy : B.ε (g x) = g (η y)???

Correct statement: the canonical map A = B → (A ' B) is an
equivalence.

Thorsten Altenkirch (Nottingham) HoTT (FMV 18) April 6, 2018 26 / 31

Extensionality

Extensionality

Should mathematical objects be considered equal, if they are defined the
same way (intensional) or if they behave the same way (extensional)?
Examples

functional extensionality the functions λx .x + 0 and λy .y + 0 are
intensionally different but extensionally equal.

propositional extensionality the propositions True and ¬False are
intensionally different but extensionally equal.

set extensionality The sets N (Peano numbers) and List Bool (binary
numbers) are intensionally different but extensionally equal.

Thorsten Altenkirch (Nottingham) HoTT (FMV 18) April 6, 2018 28 / 31

Extensionality

Sets vs Types

Set theory has functional extensionality and propositional
extensionality.

But it lacks set extensionality.

Indeed we can distinguish isomorphic sets (e.g. von Neuman numerals
and Zermelo numerals).

Intensional Type Theory lacks all extensionality principles.

However, we cannot distinguish isomorphic types.

Extensional Type Theory has the same extensionality principles as set
theory.

It also requires uniqueness of equality proofs, hence is inconsistent
with set extensionality.

Homotopy Type Theory has all extensionality prinicples (consequence
of univalence).

Thorsten Altenkirch (Nottingham) HoTT (FMV 18) April 6, 2018 29 / 31

Extensionality

Higher Groupoids
While we cannot prove univalence from J we can show that every
type is a groupoid:

trans p refl = p trans p (sym p) = refl

trans refl p = p trans (sym p) p = refl

trans (trans p q) r = trans p (trans q r)

Indeed to model types in HoTT we need ω-groupoids.
Voevodsky was using Kan simplicial sets to model HoTT, including
the univalence principle.
However, the metatheory was classical. It was believed but not known
wether univalence is constructive.
This was resolved by Coquand et als work on cubical type theory
which uses cubical sets to interpret univalence constructively.
This gives rise to implementations of HoTT.
Higher groupoids also lead to Higher Inductive Types (HITs) which
are extremely useful when representing mathematical concepts
choice-free.

Thorsten Altenkirch (Nottingham) HoTT (FMV 18) April 6, 2018 30 / 31

Extensionality

Thesis

To build towers of abstractions that can withstand the rigorous demands of
formal (computer-aided) Mathematics we need foundations that support
extensional reasoning and structural Mathematics in their core. Homotopy
Type Theory is currently the only foundational calculus that fits this bill.

Thorsten Altenkirch (Nottingham) HoTT (FMV 18) April 6, 2018 31 / 31

	Sets vs Types
	Equality
	Univalence
	Extensionality

