Isomorphisms for context-free types

joint work with Wouter Swierstra

Thorsten Altenkirch

School of Computer Science and IT
University of Nottingham

January 18, 2007

Thorsten Altenkirch Isomorphisms for context-free types

What is an isomorphism?

Given types A, B, an isomorphism is given by 2 functions

o € A—B
v € B—A

s.t.

— idg

¢
o1 = idp

We say that A and B are isomorphic (A ~ B), if there is an
isomorphism between them.

Examples:

o N~N+N
@ N~NxN
@ NA2N—N

Thorsten Altenkirch Isomorphisms for context-free types

Type variables

Many interesting isomorphisms involve type variables, e.g.

List (1 + X) ~ List X x List (List X)

Types with variables (no —) give rise to functors F:

A € Type feA—B
F A e Type FfeFA—FB

such that

Fidgy = idry
F(fog) = FfoFg

Thorsten Altenkirch Isomorphisms for context-free types

Isomorphisms with variables

A natural isomorphism between functors F, G is given by an

assignment:
A € Type
bpc FA— GA
Ve GA—-FA
such that

@ 4,V 4 are an isomorphism between F A and G A.

@ The assignment is natural, for any function f € A — B we
have that

GfoW, = WVpoFf
Ffody, = &a0Gf
Exercise: Show that we only need one of the two equations.

We write F ~ G if there is a natural isomorphism between the
functors F, G.

Thorsten Altenkirch Isomorphisms for context-free types

Why study isomorphisms?

@ Curry-Howard correspondence:
Proofs ~ Programs
Propositions ~ Types
Logical Equivalence ~ Isomorphism
@ We can replace any type in our program by an isomorphic

type
(change of representation).

@ We can replace any type operator by a naturally
isomorphic operator.

@ When searching for data by type, we may only want to
specify the type upto isomorphism.

Thorsten Altenkirch Isomorphisms for context-free types

List (1 + X) ~ List X x List (List X)

¢ :: [Maybe a] — ([a], [[a]])
¢] = ([I.1D)
¢ (ma: mas) =
case ma of
Nothing — ([], as : aas)
Justa — (a:as,aas)
where (as, aas) = ¢ mas

¢ ([a], [[a]]) — [Maybe a]

¢ ({111 =]

¥ ([], as : aas) = Nothing : 1 (as, aas)

Y (b: bs,aas) = Just b: 1 (bs, aas)
Naturality? All polymorphic functions definable in Haskell are
natural.

Thorsten Altenkirch Isomorphisms for context-free types

How to prove non-isomorphisms?

List X 2 List X x List X

Thorsten Altenkirch Isomorphisms for context-free types

What are context-free types?

Given a finite set of parameters P and a finite set of of recursive
variables X we define the set of context-free types CFx P
inductively by the following rules:

peP xeX
p € CFx P x € CFx P
o,7 € CFx P

0,1 CEx P o+ 71€CFxP
ocxT17€CFxP

S CFx+X P

ux.c € CFx P
We write CF P for CFy P.

Thorsten Altenkirch Isomorphisms for context-free types

Examples of context-free types

Natural numbers

N=uX.1+ X e CF{
Lists

ListA= uX.1+ Ax X € CF{A}
Binary trees
BTAB =
pX.A+ B x X2
uX.A+Bx Xx X € CF{A B}
Spine trees

STAB =
uX.B x List(Ax X) =
uX.BxpuY1+(Ax X)xY € CF{AB}

Exercise: Show that BT ~ ST.

Thorsten Altenkirch Isomorphisms for context-free types

Grammars vs Types

Context-free types Context-free grammars
parameters terminal symbols
recursive variables non-terminal symbols
o+T V+w
oXT vw
isomorphism (~) | language equivalence (~;) ???

Thorsten Altenkirch Isomorphisms for context-free types

Isomorphism vs. language equivalence

Commutativity of x
OXTXXTXO

but
VX W WXV

Idempotence of +
V+ Ve~V

but
ct+oFto

Thorsten Altenkirch Isomorphisms for context-free types

Finite sets and multisets

P.wA = finite sets over A

N* = N+ {w}

MA = finite multi-sets over A

MTA = finite multi-sets using N* instead of N.

Thorsten Altenkirch Isomorphisms for context-free types

Parsing languages and multisets

Given o € CF P:
Languages

Parser
[o] € List P — Bool

Partial parser
Hgﬂgartial € ListP — P<w (LiSt P)

Multisets

Parser
[oc]M e MP — Nt

Partial parser

[[Uﬂl\gmal EMP — M*(MP)
p

Thorsten Altenkirch Isomorphisms for context-free types

Relating multisets and types

For simplicity let P = Athen [o]M € N — N*.

We can recover the typetheoretic interpretation of o as a functor
[o]" € Type — Type

by '
[o]f X = Zi € N.[o]M x X’

Theorem:
[o]" =~ [7]" < [o] =[]

Corollary: Isomorphism of context-free types is semidecidable.

Thorsten Altenkirch Isomorphisms for context-free types

Sketch of the proof

@ Define a notion of morphisms between the multi-set
interpretation N — N giving rise to a category.

© Show that two objects in this category are isomorphic iff
they are equal.
The category is skeletal.

© Every morphism gives rise to a natural transformation
between the associated functors.

© Vice versa: every natural transformaton gives rise to a
morphism.
The interpretation is full and faithful.

Thorsten Altenkirch Isomorphisms for context-free types

Questions

@ |s isomorphism between context-free types decidable?

@ |s isomorphism between regular types (only List instead of
1) decidable?

@ Have Kleene algebras with commutative x and
non-idempotent + been studied?

Thorsten Altenkirch Isomorphisms for context-free types

