
Towards an ω-groupoid model of Type Theory
Based on joint work with Ondrej Rypacek

Thorsten Altenkirch

Functional Programming Laboratory
School of Computer Science

University of Nottingham

August 14, 2012

Thorsten Altenkirch (Nottingham) HDACT 12 August 14, 2012 1 / 1

Why Homotopy Type Theory?

Background

In Type Theory for any A : Type and a b : A we can form a new type
a = b : Type, the set of proofs that a is equal to b.
The canonical way to prove an equality is refl : a = a.
Using the standard eliminator (J) we can show that equality is a
congruence.
Since refl is the only constructor we would assume that all
equality proofs are equal (uniqueness of equality proofs).
However, this is not provable using the standard eliminator (J).
This was shown by Hofmann and Streicher using the Groupoid
model of Type Theory.

Thorsten Altenkirch (Nottingham) HDACT 12 August 14, 2012 2 / 1

Why Homotopy Type Theory?

Homotopy Type Theory

Voevodsky proposed an interpretation of Type Theory using
Homotopy Theory.
Types are interpreted as topological spaces and equality proofs as
paths (homotopies).
This interpretation doesn’t support uniqueness of equality proofs,
i.e. (α : a = a)−→ α = refl is not provabble.
However, it does support the standard eliminator (J), in particular
we can prove: that given a : A for all p : (b : A)× (a = b) we have
p = (a, refl).

Thorsten Altenkirch (Nottingham) HDACT 12 August 14, 2012 3 / 1

Why Homotopy Type Theory?

Dimensions (Homotopy levels)

We say that a type is contractible or 0-dimensional, if it contains
exactly one element, i.e. there is (a : A)× (b : A)−→ a = b.
A type is n + 1-dimensional, if all its equalities are n-dimensional.
We arrive at the following hierarchy:
0 contractible types
1 propositions
2 sets
3 ???

We can show that if a type is n-dimensional then it is also
n + 1-dimensional.
Uniqueness of equality proofs means that all types are
2-dimensional.

Thorsten Altenkirch (Nottingham) HDACT 12 August 14, 2012 4 / 1

Why Homotopy Type Theory?

Weak equivalence

The notion of weak equivalence can be expressed in Type Theory.
A function f : A−→ B is a weak equivalence if the type
(a : B)× f a = b is contractible for b : B.
A and B are weakly equivalent.
Weak equivalence in different dimensions:
0 contractible types trivial
1 propositions logical equivalence
2 sets isomorphism
3 ??? weak equivalence

Univalence axiom (Voevodsky): Weak equivalence is weakly
equivalent to equality.
Univalence implies functional extensionality (Voevodsky): Any two
functions which are pointwise equal are equal.

Thorsten Altenkirch (Nottingham) HDACT 12 August 14, 2012 5 / 1

Why Homotopy Type Theory?

Why are we interested in this?

We have found a fascinating connection between Type Theory
and Homotopy Theory.
We can use Type Theory to formalize constructions in Homotopy
Theory.
However, most Computer Scientists don’t care about Homotopy
theory.
Is there a way to motivate the univalence axiom which has nothing
to do with homotopy theory?

Thorsten Altenkirch (Nottingham) HDACT 12 August 14, 2012 6 / 1

Why Homotopy Type Theory?

Extensionality

Leibniz principle
Any two objects should either have a property which distinguishes
them or they should be equal.

This principle justifies functional extensionality (black box view of
functions).
Isomorphic sets cannot be distinguished in Type Theory - hence
they should be equal.
Isomorphism is not the correct notion from dimension 3 because it
lacks a coherence property.
This is fixed by weak equivalence (being a weak equivalence is
propositional while being an isomorphism is not.
Note that the Leibniz principle is not satisfied by Extensional Type
Theory.

Thorsten Altenkirch (Nottingham) HDACT 12 August 14, 2012 7 / 1

Why Homotopy Type Theory?

Open problem

Canonicity
Any closed term inhabiting a datatype (like N) should be definitionally
(strictly) equal to a term in constructor form (starting with a
constructor).

This is justified by Intensional Type Theory due to the
normalisation property.
Assuming univalence destroys canonicity.
How can we have the univalence principle and keep canonicity?
How can we eliminate univalence?

Thorsten Altenkirch (Nottingham) HDACT 12 August 14, 2012 8 / 1

Eliminating extensionality

Deja vue

This is reminiscient to the problem of eliminating functional
extensionality in Type Theory.

ext : (f g : (x : A)−→ B x)
−→ ((x : A)−→ f x = g x)−→ f = g

We have proposed a solution to this problem (LICS 99) which
relies on a translation using the Setoid model.
This was later (PLPV 08) refined in joint work with Conor McBride
and others (Observational Type Theory).
However, the construction relies on a strong form of proof
irrelevance.

Thorsten Altenkirch (Nottingham) HDACT 12 August 14, 2012 9 / 1

Eliminating extensionality

Sketch of the construction

We define a translation from a source type theory to a target type
theory.
The target type theory doesn’t have a equality types.
The source type theory does have equality types and ext is
inhabited. This is explained by the translation.
The translation preserves datatypes (like N) and hence canonicity
holds.
The target type theory features a universe of (strictly)
proof-irrelevant propositions Prop.

Thorsten Altenkirch (Nottingham) HDACT 12 August 14, 2012 10 / 1

Eliminating extensionality

Prop

Prop is a subuniverse of Set , i.e. P : Prop implies P : Set .
If P : Prop and p q : P then p and q are definitionally equal.
Prop is closed under Π- and Σ-types. That is

I If A : Set and P : A−→ Prop then (x : A)−→ P x : Prop
I If P : Prop and Q : P −→ Prop then (x : P)×Q x : Prop.
I > : Prop and ⊥ : Prop.

Thorsten Altenkirch (Nottingham) HDACT 12 August 14, 2012 11 / 1

Eliminating extensionality

The translation

A closed type A : Set in the source theory is translated as a setoid
in the target theory, i.e.

I A.set : Set a type in the target theory
I ∼A : A.set −→ A.set −→ Prop a relation
I Proofs of refl , sym, trans.

A family of types B : A−→ Set is modelled as a functor from
(A.set ,∼A) into the category of Setoids, i.e.

I A family B.fam : A.set −→ Setoid in the target theory.
I A term subst : (a∼A a′)−→ (B.fam a) .set −→ (B.fam a′) .set .
I Proofs that subst is functorial upto setoid equality.

Thorsten Altenkirch (Nottingham) HDACT 12 August 14, 2012 12 / 1

Eliminating extensionality

Translating Π-types

Given a setoid A : Set and a family of setoids B : A−→ Set we
construct a setoid Π A B : Set

I (Π A B) .set is the set of functions which preserve equality, i.e.
(f : (x : A.set)−→ (B.fam x) .set)× ((p : x∼A y)−→
B.subst p (f x)∼(B.fam y) f y

I Equality f∼(Π A B) g is extensional equality, i.e.
(x : A.set)−→ f x∼(B.fam x) g x

In fact we have to generalize this construction to the case
B : A−→ Set and C : (a : A)× B a−→ Set leading to
Π B C : A−→ Set .

Thorsten Altenkirch (Nottingham) HDACT 12 August 14, 2012 13 / 1

Eliminating extensionality

Interpreting equality

In the source type theory we interpret equality using ∼A.
Equality for Π-types is extensional by definition.
We can derive the eliminator from subst and the fact that equality
is definitionally proof-irrelevant.
N is translated by itself using the definable recursive equality on
natural numbers.
We can also interpret quotient types.
We can use logical equivalence as the equality for propositions
hence we can eliminate univalence for propositions.

Thorsten Altenkirch (Nottingham) HDACT 12 August 14, 2012 14 / 1

Eliminating extensionality

Proof - irrelevance

We need equations between equality proofs at several points of
the construction, e.g. when verifying the functor laws for subst for
Π.
All these equations hold trivially because of definitional
proof-irrelevance.
In the end we need to derive J from subst .
This also requires definitional proof-irrleevance.

Thorsten Altenkirch (Nottingham) HDACT 12 August 14, 2012 15 / 1

Eliminating extensionality

Observational Type Theory

Instead of defining the Source Type Theory by a translation, we
can define it directly.
We define = :A−→ A−→ Prop by recursion over the type A and
subst : (P : A−→ Type)−→ a = b −→ P a−→ P b by recursion
over the family P : A−→ Type.
The other constants don’t need to be defined because they live in
Prop.
Using a clever trick we can also address the problem that
subst P refl is not definitionally equal to the identity.
For details see our PLPV 2008 paper (jointly with Conor McBride
and Wouter Swierstra).

Thorsten Altenkirch (Nottingham) HDACT 12 August 14, 2012 16 / 1

Eliminating extensionality

From Setoids to Groupoids
The setoid construction allows us to interpret types upto
dimension 2.
Replacing setoids by groupoids we can interpret types upto
dimension 3.
We have to use Groupoids enriched over Setoids:
∼A : A.set −→ A.set −→ Prop is replaced by
∼A : A.set −→ A.set −→ Setoid .
The groupoid equations hold up to setoid equality.
We can define equality of the universe of sets as isomorphism -
hence we can interpret univalence at dimension 2.
Carrying out this construction in detail would provide an
alternative to Harper’s and Licata’s proof of canonicity of
2-dimensional Type Theory.
Our proposal would also address the issue that they have been
using an extensional Type Theory at dimension 2.

Thorsten Altenkirch (Nottingham) HDACT 12 August 14, 2012 17 / 1

Eliminating extensionality

From Groupoids to ω-Groupoids

We would like to eliminate the Prop-universe.
If we can construct a groupoid model enriched over itself we
should be able to do this.
And we should be able to interpret univalence at any level.
This would require to construct an ω-Groupoid model of Type
Theory.
As a first step we need to define what is a ω-Groupoid in Type
Theory.

Thorsten Altenkirch (Nottingham) HDACT 12 August 14, 2012 18 / 1

Globular sets

What are weak ω-groupoids?

There are a number of definitions in the literature, e.g. based on
contractible globular operads.
We need to formalize them in Type Theory . . .
Formalizing the required categorical concepts creates a
considerable overhead.
Also it is not always clear how to represent them in the absence of
UIP.
E.g. what are strict ω-groupoids?

Thorsten Altenkirch (Nottingham) HDACT 12 August 14, 2012 19 / 1

Globular sets

Globular sets
We define a globular set G : Glob coinductively:

objG : Set
homG : objG → objG →∞Glob

Given globular sets A,B a morphism f : Glob(A,B) between them is
given by

obj→f : objA → objB
hom→f : Πa,b : objA.

Glob(homA a b,homB(obj→f a, obj→f b))

As an example we can define the terminal object in 1Glob : Glob by the
equations

obj1Glob
= 1Set

hom1Glob x y = 1Glob

Thorsten Altenkirch (Nottingham) HDACT 12 August 14, 2012 20 / 1

Globular sets

The Identity Globular set

More interestingly, the globular set of identity proofs over a given set A,
Idω A : Glob can be defined as follows:

objIdω A = A
homIdω A a b = Idω (a = b)

Thorsten Altenkirch (Nottingham) HDACT 12 August 14, 2012 21 / 1

Globular sets

Globular sets as a presheaf

Our definition of globular sets is equivalent to the usual one as a
presheaf category over the diagram:

0
s0 //
t0
// 1

s1 //
t1
// 2 . . . n

sn //
tn
// (n + 1) . . .

with the globular identities:

ti+1 ◦ si = si+1 ◦ ti
ti+1 ◦ ti = si+1 ◦ ti

Thorsten Altenkirch (Nottingham) HDACT 12 August 14, 2012 22 / 1

Weak ω-groupoids

A syntactic approach

When is a globular set a weak ω-groupoid?
We define a syntax for objects in a weak ω-groupoid.
A globular set is a weak ω-groupoid, if we can interpret the syntax.
This is reminiscient of environment λ-models.

Thorsten Altenkirch (Nottingham) HDACT 12 August 14, 2012 23 / 1

Weak ω-groupoids

The syntactical framework

Contexts
Con : Set

ε : Con
C : Cat Γ

(Γ,C) : Con

Categories
Γ : Con

Cat Γ : Set

• : Cat Γ
C : Cat Γ a, b : Obj C

C[a , b] : Cat Γ

Objects
C : Cat Γ

Obj C,Var C : Set

Thorsten Altenkirch (Nottingham) HDACT 12 August 14, 2012 24 / 1

Weak ω-groupoids

Interpretation
1 An assignment of sets to contexts:

Γ : Con
JΓK : Set

2 An assignment of globular sets to category expressions:
C : Cat Γ γ : JΓK

JCK γ : Glob
3 Assignments of elements of object sets to object expressions and

variables
C : Cat Γ A : Obj C γ : JΓK

JAK γ : objJCK γ

Subject to some (obvious) conditions such as:

J•K γ = G
JC[a,b]K γ = homJCKγ (JaK γ) (JbK γ)

Thorsten Altenkirch (Nottingham) HDACT 12 August 14, 2012 25 / 1

Weak ω-groupoids

Composition

a bf // b c
g // 7→ a c

gf //

a b
f

%%
a b

f ′

99α �� b c

g
%%

b c

g′

99β �� 7→ a c

gf
%%

a c

g′f ′

99βα ��

a b

f

a bf ′ //

α �� α′

γ //

a b

f ′′

>>β �� β′

δ
// 7→ a c

f

((a c

f ′′

77β·α
��

β′·α′
��

δ·γ //

Thorsten Altenkirch (Nottingham) HDACT 12 August 14, 2012 26 / 1

Weak ω-groupoids

Telescopes

A telescope t : Tel C n is a path of length n from a category C of to one
of its (indirect) hom-categories:

C : Cat Γ n : N
Tel C n : Set

We can turn telescopes into categories:

t : Tel C n
C ++ t : Cat Γ

Thorsten Altenkirch (Nottingham) HDACT 12 August 14, 2012 27 / 1

Weak ω-groupoids

Formalizing composition

α : Obj(t ⇓) β : Obj(u ⇓)

β ◦ α : Obj(u ◦ t ⇓)

is a new constructor of Obj where

t : Tel (C[a,b]) n u : Tel (C[b, c]) n
u ◦ t : Tel (C[a, c])

is a function on telescopes defined by cases

• ◦ •C = • u[a′,b′] ◦ t [a,b] = (u ◦ t)[a′ ◦ a,b′ ◦ b]

Thorsten Altenkirch (Nottingham) HDACT 12 August 14, 2012 28 / 1

Weak ω-groupoids

Laws
For example the left unit law in dimension 1:

idb ◦ f = f , (1)

and in dimension 2.
id2

b ◦ α = α ,

where id2
b = ididb

In the strict case the 2nd equation only type-checks due to the first.
In the weak case we have to apply the previous isomorphism
explicitely.

λα : a b
f

%%
b b

id f
%%

a b

f

��
λ−1

f��

a b

f ′

99 b b
id b

99α �� id2b ��a b

f ′

@@
λf ′��

V a b

f

��
α ��a b

f ′

CC

Thorsten Altenkirch (Nottingham) HDACT 12 August 14, 2012 29 / 1

Weak ω-groupoids

Coherence
Example:

(g idb) f g (idb f)
αg,idg ,f //(g idb) f

g f

ρ idf

$$J
JJJJJJJJJJJJJJJJJJJJJJJJ
g (idb f)

g f

idg λf

��

p

��
qpp
""

In summary and full generality:

For any pair of coherence cells with the same domain and
target, there must be a mediating coherence cell.

Problem
This definition of coherence is too strong!

Thorsten Altenkirch (Nottingham) HDACT 12 August 14, 2012 30 / 1

Weak ω-groupoids

Formalizing coherence

x : Obj C
hollow x : Set

hollow (λ_ _) = > . . .

f g : Obj C[a,b] p : hollow f q : hollow g
coh p q : Obj C[a,b][f ,g]

hollow (coh p q) = >

Thorsten Altenkirch (Nottingham) HDACT 12 August 14, 2012 31 / 1

Summary

Summary

To be able to eliminate univalence we want to interpret Type
Theory in a weak ω-groupoid in Type Theory.
As a first step we need to define what is a weak ω-groupoid.
Our approach is to define a syntax for objects in a weak
ω-groupoid.
A globular set is a weak ω groupoid if we can interpret this syntax.
See our draft paper for details: A Syntactical Approach to Weak
ω-Groupoids

Thorsten Altenkirch (Nottingham) HDACT 12 August 14, 2012 32 / 1

Summary

Further work

We need to fix our definition of coherence!
The current definition is quite complex - can we simplify it?
Can we actually show that the identity globular set is a weak
ω-groupoid, internalizing results by Lumsdaine and Garner/van de
Berg?
What is a model of Type Theory in a weak ω-groupoid.
Can we use this construction to eliminate univalence?

Thorsten Altenkirch (Nottingham) HDACT 12 August 14, 2012 33 / 1

	Why Homotopy Type Theory?
	Eliminating extensionality
	Globular sets
	Weak -groupoids
	Summary

