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Univalence



Email discussion with David McAllester



Why do we believe that univalence is sound?



Doesn’t understand the simplicial set model.

The Simplicial Model of Univalent Foundations

Chris Kapulkin, Peter LeFanu Lumsdaine, Vladimir Voevodsky

Triggered by his morphoid theory, comments on classical logic.

Why don’t you use HoTT? 
!
Other alternatives: cubical - but not easy to explain univalence.

However: I realized that there is an intuitive explanation for a limited form of univalence.



Groupoids!
July 3, 2015, Friday


TLCA Invited Talk



 (chair: Peter Dybjer)


9:00: Martin Hofmann. 



The Groupoid Interpretation 
of Type Theory, a Personal 

Retrospective 



Sets with Isomorphism are a groupoid.

This is a trivial way to construct a univalent universe of sets.
!
Suggested to Martin to talk about groupoids at TLCA.




Groupoids : univalent universe of sets



Setoids : univalent universe of propositions



Can we do 2-groupoids? 



This gets complicated !

There is an even simpler example: Prop with <-> are a setoid.

This gives rise to a univalent universe of propositions in Setoids.
!
Can we move up step by step?

2-groupoids already look very hard.

Better check this on a computer, which gets us to another talk…



Type Theory eats itself


without indigestion

Thorsten Altenkirch


Functional Programming Laboratory



School of Computer Science



joint work with Ambrus Kaposi



Type Theory in Type Theory?

No pre-terms ! Only typed objects.



Verified Metatheory



Template Type Theory

Type Theory should eat itself	


James Chapman, LFMTP 2008	



A Formalisation of a 	


Dependently Typed Language 	



as an Inductive-Recursive Family	


Nils Anders Danielsson	



TYPES 2006	



Guilhem Jaber, Nicolas Tabareau, 	


Matthieu Sozeau. 	



Extending Type Theory with Forcing.	


LICS 2012

Previous work by Chapman and Danielsson.

Looking for a more canonical and concise approach.
!
Main motivation for me verified metatheory.
!
Template programming: extend your programming language by new constructs.

Can be applied to Type Theory.

Paper by Jaber,Tabareau & Sozeau demonstrates this idea on presheaf models.

Eg add principles of guarded type theory.



Simply Typed λ-calculus

data Ty : Set where
  ι    : Ty
  _⇒_ : Ty ! Ty ! Ty

data Con : Set where
  •   : Con
  _,_ : Con ! Ty ! Con

data Var : Con ! Ty ! Set where
  zero : Var (Γ , σ) σ
  suc  : Var Γ σ ! Var (Γ , τ) σ  

data Tm :  Con ! Ty ! Set where
  var : Var Γ σ ! Tm Γ σ
  _$_ : Tm Γ (σ ⇒ τ) ! Tm Γ σ ! Tm Γ τ 
  ƛ   : Tm (Γ , σ) τ ! Tm Γ (σ ⇒ τ)

STL is easy. Just to demonstrate the idea that we restrict ourselves to typed objects.
!
Moving to dependent types much harder - so far.



OMITTED
Substitution  
 

βη- Equality 
 

Terms as quotient 

_[_] : Tm Γ σ " Tms Γ Δ " Tm Γ σ

data _~_ : Tm Γ σ " Tm Γ σ " Set where

Tm Γ σ / ~

We need to define substitution.

Explicit or Implicit. Explicit is usually better.

Really should consider terms as a quotient!



Dependent Types

data Con : Set
data Ty : Con ! Set
data Tm : (Γ : Con) ! Ty Γ ! Set
data Tms : Con ! Con ! Set

For DTP we need to define Con, Ty , Tm mutually.
!
Also throw in Tms = Substitutions to use explicit substitutions.



Induction-Induction
  _,_   : (Γ : Con) " Ty Γ " Con

  _[_]T : Ty Δ " Tms Γ Δ " Ty Γ

  _,_   : (δ : Tms Γ Δ){A : Ty Δ} # Tm Γ (A [ δ ]T) # Tms Γ (Δ , A)

A categorical semantics for inductive-inductive definitions	


TA, Frederik Forsberg, Peter Morris and Anton Setzer	



CALCO 2011	



Even worse: constructor types mention other constructors.
!
Inductive - Inductive types.

add one constructor at a time. Use dialgebras.

Understand this better now.



Coerce

  coe   : A ~Ty B ! Tm Γ A ! Tm Γ B

It is getting worse. Coercion rule shows that we also need to define ~ mutually.



Dependent Types II
data Con : Set
data Ty : Con ! Set
data Tm : (Γ : Con) ! Ty Γ ! Set
data Tms : Con ! Con ! Set
data _~Con_ : Con ! Con ! Set
data _~Ty_ : Ty Γ ! Ty Γ ! Set
data _~Tm_ : Tm Γ A ! Tm Γ A ! Set 
data _~Tms_ : Tms Γ Δ ! Tms Γ Δ ! Set

This starts looking a bit ugly!



Boilerplate

~s are equivalence relations



constructors are congruences



Ty, Tm, Tms are families of setoids

But it is much worse. We need to say that all families are functorial wrt all their indices. 
!
Can’t see the content of too much boilerplate. 

Maybe we can automatically generate the boilerplate. But better..



I was told not to mention housewives in my talk.
!
But I couldn’t help it.



Higher Inductive Types 


(HITs)



to the rescue

data S¹ : Set where
  base : S¹
  loop : base ≡ base



HITs which are sets can be useful.



Quotient Inductive Types (QITs)



Examples in the HoTT book:



Cauchy reals (11.3)



Cumulative hierarchy of sets (10.5)



The infinite tree example
data T₀ : Set where
  leaf : T₀
  node : (� → T₀) → T₀

data _~_ : T₀ → T₀ → Set where
  leaf : leaf ~ leaf
  node : (∀ {n} → f n ~ g n) → node f ~ node g
  perm : isIso f → node g ~ node (g ∘ f)

T = T₀ / _~_

nodeT : (� → T) → T

[ node f ] ≡ nodeT (λ i → [ f i ])

Define !

You can lift the constructors to finite trees by sequencing the eliminator.
!
But there seems to be no general way to do this for infinite trees. 

The problem boils down to comute function types and equivalence classes.

This corresponds to instances of the axiom of choice (not provable in HoTT).



Infinite trees as a QIT
data T : Set where
  leaf : T
  node : (� → T) → T
  perm : isIso f → node g ≡ node (g ∘ f) 
  isSet  : {e0 e1 : u ≡ v} → e0 ≡ e1

Using HITs there is an easy way out.
!
Here also force this to be a set.

Omitted in subsequent examples.



Dependent types


as a QIIT

data Con where
  •     : Con  
  _,_   : (Γ : Con) → Ty Γ → Con

data Ty where
  _[_]T : Ty Δ → Tms Γ Δ → Ty Γ
  U     : Ty Γ
  El    : (A : Tm Γ U) → Ty Γ
  Π     : (A : Ty Γ)(B : Ty (Γ , A)) → Ty Γ

data Tms where
  ε   : Tms Γ •
  _,_ : (δ : Tms Γ Δ) → Tm Γ (A [ δ ]T) → Tms Γ (Δ , A)
  id  : Tms Γ Γ
  _∘_  : Tms Δ Σ → Tms Γ Δ → Tms Γ Σ
  π₁   : Tms Γ (Δ , A) →  Tms Γ Δ

data Tm where
  _[_]t : Tm Δ A → (δ : Tms Γ Δ) → Tm Γ (A [ δ ]T) 
  π₂    : (δ : Tms Γ (Δ , A)) → Tm Γ (A [ π₁ δ ]T)
  app   : Tm Γ (Π A B) → Tm (Γ , A) B
  lam   : Tm (Γ , A) B → Tm Γ (Π A B)



   [id]T : A [ id ]T ≡ A
   [][]T : (A [ δ ]T) [ σ ]T ≡ A [ δ ∘ σ ]T
   U[]   : U [ δ ]T ≡ U
   El[]  : El A [ δ ]T ≡ El (coe (TmΓ= U[]) (A [ δ ]t))
   Π[]   : (Π A B) [ δ ]T ≡ Π (A [ δ ]T) (B [ δ ^ A ]T)

   idl   : id ∘ δ ≡ δ 
   idr   : δ ∘ id ≡ δ 
   ass   : (σ ∘ δ) ∘ ν ≡ σ ∘ (δ ∘ ν)
   ,∘    : (δ , a) ∘ σ ≡ (δ ∘ σ) , coe .. (a [ σ ]t)
   π₁β   :  π₁ (δ , a) ≡ δ
   πη    : (π₁ δ , π₂ δ) ≡ δ
   εη    : {σ : Tms Γ •} → σ ≡ ε

   [id]t : t [ id ]t ≡[ [id]T ]≡ t
   [][]t : (t [ δ ]t) [ σ ]t ≡[ [][]T ]≡  t [ δ ∘ σ ]t
   π₂β   :  π₂ (δ , a) ≡[ π₁β ]≡ a
   lam[] : (lam t) [ δ ]t ≡[ Π[] ]≡ lam (t [ δ ^ A ]t)
   Πβ    : app (lam t) ≡ t
   Πη    : lam (app t) ≡ t



The Recursor
record Motives : Set₁ where
  field
    Conᴹ : Set
    Tyᴹ  : Conᴹ → Set
    Tmsᴹ : Conᴹ → Conᴹ → Set
    Tmᴹ  : (Γᴹ : Conᴹ) → Tyᴹ Γᴹ → Set

record Methods (M : Motives) : Set₁ where
  field
    •ᴹ     : Conᴹ
    _,Cᴹ_  : (Γᴹ : Conᴹ) → Tyᴹ Γᴹ → Conᴹ
    ...

module rec (M : Motives)(m : Methods M) where

  Con-elim : Con → Conᴹ
  Ty-elim  : (A : Ty Γ) → Tyᴹ (Con-elim Γ)
  Tms-elim : (δ : Tms Γ Δ)→ Tmsᴹ(Con-elim Γ)(Con-elim Δ)
  Tm-elim  : (t : Tm Γ A) → Tmᴹ (Con-elim Γ) (Ty-elim A)



Motives + Methods

Algebras

Models of TT

=

=



Set theoretic model

Problem: Set is not a set!

data UU : Set
EL : UU → Set

data UU where
  ′Π′ : (A : UU) → (EL A → UU) → UU 
  ′Σ′ : (A : UU) → (EL A → UU) → UU
  ′⊤′ : UU

EL (′Π′ A B) =   (x : EL A) → EL (B x)
EL (′Σ′ A B) = Σ (EL A) λ x → EL (B x)
EL ′⊤′ = ⊤



M : Motives
M = record
      { Conᴹ =             UU
      ; Tyᴹ  = λ ⟦Γ⟧     → EL ⟦Γ⟧ → UU
      ; Tmsᴹ = λ ⟦Γ⟧ ⟦Δ⟧ → EL ⟦Γ⟧ → EL ⟦Δ⟧
      ; Tmᴹ  = λ ⟦Γ⟧ ⟦A⟧ → (γ : EL ⟦Γ⟧) → EL (⟦A⟧ γ)
      }

m : Methods M
m = record
      { •ᴹ     =             ′⊤′
      ; _,Cᴹ_  = λ ⟦Γ⟧ ⟦A⟧ → ′Σ′ ⟦Γ⟧ ⟦A⟧
      
      ...

      ; [id]Tᴹ = refl
      ; [][]Tᴹ = refl

      ...  

⟦_⟧C : Con → UU
⟦_⟧T : Ty Γ → EL (⟦ Γ ⟧C) → UU
⟦_⟧s : Tms Γ Δ → EL (⟦ Γ ⟧C) → EL (⟦ Δ ⟧C)
⟦_⟧t : (t : Tm Γ A) → (γ : EL (⟦ Γ ⟧C)) → EL (⟦ A ⟧T γ)



The logical predicate translation  
(almost finished)

Inspired by JP Bernardy et al on 
parametricity for dependent types



A syntactic translation assigning to 



each context, an extended context



to every type, a logical predicate



to every term, a proof that the term 
satisfies the logical predicate.



requires dependent eliminator

Eg Parametricity and dependent types

JP Bernardy; P Jansson R Paterson, ICFP 2010
!
This doesn’t include “internal parametricity” from 2012, joint with Moulin.



The presheaf interpretation


(started)

Fix a category C



Contexts are interpreted as presheaves



Types as families of presheaves



Substitutions are natural transformations



Terms are global sections



Normalisation by 
evaluation

Normal forms are a presheaf over the 
category of variable substitutions.



We can generalise NBE from simple types to 
dependent types.



However, the normal forms have types which 
are not normal.

Compare to 

Categorical reconstruction of a reduction free


 
   normalization proof

TA, M.Hofmann, T Streicher

CTCS 95



Normal forms with 
normal types?

Can we define a mutual datatype of normal 
forms with normal types?



No equations, no truncation!



Use this to define semi-simplicial types?



We need to define normalisation mutual with 
normal forms!



Even in the simplest case (only variables) this 
leads to a new coherence problem!



substitution is defined by recursion

joint work with Frederik Forsberg.



_[_]T : Ty Δ → Vars Γ Δ → Ty Γ
_[_]v : Var Δ A → (δ : Vars Γ Δ) → Var Γ (A [ δ ]T) 

data Vars where
  ε     : Vars Γ •
  _,_   : (δ : Vars Γ Δ){A : Ty Δ} → Var Γ (A [ δ ]T) 
             → Vars Γ (Δ , A)

wk : {A : Ty Γ} → Vars (Γ , A) Γ

data Var where
  vz : Var (Γ , A) (A [ wk ]T)
  vs : Var Γ A → Var (Γ , B) (A [ wk ]T) 



Complete Failure !

Your goal was to model


univalent universes



but you can only eliminate


into a set! 



2-level theory

Start with a strict type theory (with K)



Introduce a universe with a univalent 
equality, can only eliminate into the universe.



Syntax of Type Theory has to be defined in 
the strict theory



However we can use the univalent universe 
to build models.


