
Thorsten Altenkirch

Functional Programming Laboratory

School of Computer Science

Univalence

Email discussion with David McAllester

Why do we believe that univalence is sound?

Doesn’t understand the simplicial set model.

The Simplicial Model of Univalent Foundations

Chris Kapulkin, Peter LeFanu Lumsdaine, Vladimir Voevodsky

Triggered by his morphoid theory, comments on classical logic.

Why don’t you use HoTT?
!
Other alternatives: cubical - but not easy to explain univalence.

However: I realized that there is an intuitive explanation for a limited form of univalence.

Groupoids!
July 3, 2015, Friday

TLCA Invited Talk

 (chair: Peter Dybjer)

9:00: Martin Hofmann.

The Groupoid Interpretation
of Type Theory, a Personal

Retrospective

Sets with Isomorphism are a groupoid.

This is a trivial way to construct a univalent universe of sets.
!
Suggested to Martin to talk about groupoids at TLCA.

Groupoids : univalent universe of sets

Setoids : univalent universe of propositions

Can we do 2-groupoids?

This gets complicated !

There is an even simpler example: Prop with <-> are a setoid.

This gives rise to a univalent universe of propositions in Setoids.
!
Can we move up step by step?

2-groupoids already look very hard.

Better check this on a computer, which gets us to another talk…

Type Theory eats itself

without indigestion

Thorsten Altenkirch

Functional Programming Laboratory

School of Computer Science

joint work with Ambrus Kaposi

Type Theory in Type Theory?

No pre-terms ! Only typed objects.

Verified Metatheory

Template Type Theory

Type Theory should eat itself	

James Chapman, LFMTP 2008	

A Formalisation of a 	

Dependently Typed Language 	

as an Inductive-Recursive Family	

Nils Anders Danielsson	

TYPES 2006	

Guilhem Jaber, Nicolas Tabareau, 	

Matthieu Sozeau. 	

Extending Type Theory with Forcing.	

LICS 2012

Previous work by Chapman and Danielsson.

Looking for a more canonical and concise approach.
!
Main motivation for me verified metatheory.
!
Template programming: extend your programming language by new constructs.

Can be applied to Type Theory.

Paper by Jaber,Tabareau & Sozeau demonstrates this idea on presheaf models.

Eg add principles of guarded type theory.

Simply Typed λ-calculus

data Ty : Set where
 ι : Ty
 ⇒ : Ty ! Ty ! Ty

data Con : Set where
 • : Con
 , : Con ! Ty ! Con

data Var : Con ! Ty ! Set where
 zero : Var (Γ , σ) σ
 suc : Var Γ σ ! Var (Γ , τ) σ

data Tm : Con ! Ty ! Set where
 var : Var Γ σ ! Tm Γ σ
 $: Tm Γ (σ ⇒ τ) ! Tm Γ σ ! Tm Γ τ
 ƛ : Tm (Γ , σ) τ ! Tm Γ (σ ⇒ τ)

STL is easy. Just to demonstrate the idea that we restrict ourselves to typed objects.
!
Moving to dependent types much harder - so far.

OMITTED
Substitution  
 

βη- Equality 
 

Terms as quotient

[] : Tm Γ σ " Tms Γ Δ " Tm Γ σ

data _~_ : Tm Γ σ " Tm Γ σ " Set where

Tm Γ σ / ~

We need to define substitution.

Explicit or Implicit. Explicit is usually better.

Really should consider terms as a quotient!

Dependent Types

data Con : Set
data Ty : Con ! Set
data Tm : (Γ : Con) ! Ty Γ ! Set
data Tms : Con ! Con ! Set

For DTP we need to define Con, Ty , Tm mutually.
!
Also throw in Tms = Substitutions to use explicit substitutions.

Induction-Induction
 , : (Γ : Con) " Ty Γ " Con

 []T : Ty Δ " Tms Γ Δ " Ty Γ

 , : (δ : Tms Γ Δ){A : Ty Δ} # Tm Γ (A [δ]T) # Tms Γ (Δ , A)

A categorical semantics for inductive-inductive definitions	

TA, Frederik Forsberg, Peter Morris and Anton Setzer	

CALCO 2011	

Even worse: constructor types mention other constructors.
!
Inductive - Inductive types.

add one constructor at a time. Use dialgebras.

Understand this better now.

Coerce

 coe : A ~Ty B ! Tm Γ A ! Tm Γ B

It is getting worse. Coercion rule shows that we also need to define ~ mutually.

Dependent Types II
data Con : Set
data Ty : Con ! Set
data Tm : (Γ : Con) ! Ty Γ ! Set
data Tms : Con ! Con ! Set
data _~Con_ : Con ! Con ! Set
data _~Ty_ : Ty Γ ! Ty Γ ! Set
data _~Tm_ : Tm Γ A ! Tm Γ A ! Set
data _~Tms_ : Tms Γ Δ ! Tms Γ Δ ! Set

This starts looking a bit ugly!

Boilerplate

~s are equivalence relations

constructors are congruences

Ty, Tm, Tms are families of setoids

But it is much worse. We need to say that all families are functorial wrt all their indices.
!
Can’t see the content of too much boilerplate.

Maybe we can automatically generate the boilerplate. But better..

I was told not to mention housewives in my talk.
!
But I couldn’t help it.

Higher Inductive Types

(HITs)

to the rescue

data S¹ : Set where
 base : S¹
 loop : base ≡ base

HITs which are sets can be useful.

Quotient Inductive Types (QITs)

Examples in the HoTT book:

Cauchy reals (11.3)

Cumulative hierarchy of sets (10.5)

The infinite tree example
data T₀ : Set where
 leaf : T₀
 node : (� → T₀) → T₀

data _~_ : T₀ → T₀ → Set where
 leaf : leaf ~ leaf
 node : (∀ {n} → f n ~ g n) → node f ~ node g
 perm : isIso f → node g ~ node (g ∘ f)

T = T₀ / _~_

nodeT : (� → T) → T

[node f] ≡ nodeT (λ i → [f i])

Define !

You can lift the constructors to finite trees by sequencing the eliminator.
!
But there seems to be no general way to do this for infinite trees.

The problem boils down to comute function types and equivalence classes.

This corresponds to instances of the axiom of choice (not provable in HoTT).

Infinite trees as a QIT
data T : Set where
 leaf : T
 node : (� → T) → T
 perm : isIso f → node g ≡ node (g ∘ f)
 isSet : {e0 e1 : u ≡ v} → e0 ≡ e1

Using HITs there is an easy way out.
!
Here also force this to be a set.

Omitted in subsequent examples.

Dependent types

as a QIIT

data Con where
 • : Con
 , : (Γ : Con) → Ty Γ → Con

data Ty where
 []T : Ty Δ → Tms Γ Δ → Ty Γ
 U : Ty Γ
 El : (A : Tm Γ U) → Ty Γ
 Π : (A : Ty Γ)(B : Ty (Γ , A)) → Ty Γ

data Tms where
 ε : Tms Γ •
 , : (δ : Tms Γ Δ) → Tm Γ (A [δ]T) → Tms Γ (Δ , A)
 id : Tms Γ Γ
 ∘ : Tms Δ Σ → Tms Γ Δ → Tms Γ Σ
 π₁ : Tms Γ (Δ , A) → Tms Γ Δ

data Tm where
 []t : Tm Δ A → (δ : Tms Γ Δ) → Tm Γ (A [δ]T)
 π₂ : (δ : Tms Γ (Δ , A)) → Tm Γ (A [π₁ δ]T)
 app : Tm Γ (Π A B) → Tm (Γ , A) B
 lam : Tm (Γ , A) B → Tm Γ (Π A B)

 [id]T : A [id]T ≡ A
 [][]T : (A [δ]T) [σ]T ≡ A [δ ∘ σ]T
 U[] : U [δ]T ≡ U
 El[] : El A [δ]T ≡ El (coe (TmΓ= U[]) (A [δ]t))
 Π[] : (Π A B) [δ]T ≡ Π (A [δ]T) (B [δ ^ A]T)

 idl : id ∘ δ ≡ δ
 idr : δ ∘ id ≡ δ
 ass : (σ ∘ δ) ∘ ν ≡ σ ∘ (δ ∘ ν)
 ,∘ : (δ , a) ∘ σ ≡ (δ ∘ σ) , coe .. (a [σ]t)
 π₁β : π₁ (δ , a) ≡ δ
 πη : (π₁ δ , π₂ δ) ≡ δ
 εη : {σ : Tms Γ •} → σ ≡ ε

 [id]t : t [id]t ≡[[id]T]≡ t
 [][]t : (t [δ]t) [σ]t ≡[[][]T]≡ t [δ ∘ σ]t
 π₂β : π₂ (δ , a) ≡[π₁β]≡ a
 lam[] : (lam t) [δ]t ≡[Π[]]≡ lam (t [δ ^ A]t)
 Πβ : app (lam t) ≡ t
 Πη : lam (app t) ≡ t

The Recursor
record Motives : Set₁ where
 field
 Conᴹ : Set
 Tyᴹ : Conᴹ → Set
 Tmsᴹ : Conᴹ → Conᴹ → Set
 Tmᴹ : (Γᴹ : Conᴹ) → Tyᴹ Γᴹ → Set

record Methods (M : Motives) : Set₁ where
 field
 •ᴹ : Conᴹ
 ,Cᴹ : (Γᴹ : Conᴹ) → Tyᴹ Γᴹ → Conᴹ
 ...

module rec (M : Motives)(m : Methods M) where

 Con-elim : Con → Conᴹ
 Ty-elim : (A : Ty Γ) → Tyᴹ (Con-elim Γ)
 Tms-elim : (δ : Tms Γ Δ)→ Tmsᴹ(Con-elim Γ)(Con-elim Δ)
 Tm-elim : (t : Tm Γ A) → Tmᴹ (Con-elim Γ) (Ty-elim A)

Motives + Methods

Algebras

Models of TT

=

=

Set theoretic model

Problem: Set is not a set!

data UU : Set
EL : UU → Set

data UU where
 ′Π′ : (A : UU) → (EL A → UU) → UU
 ′Σ′ : (A : UU) → (EL A → UU) → UU
 ′⊤′ : UU

EL (′Π′ A B) = (x : EL A) → EL (B x)
EL (′Σ′ A B) = Σ (EL A) λ x → EL (B x)
EL ′⊤′ = ⊤

M : Motives
M = record
 { Conᴹ = UU
 ; Tyᴹ = λ ⟦Γ⟧ → EL ⟦Γ⟧ → UU
 ; Tmsᴹ = λ ⟦Γ⟧ ⟦Δ⟧ → EL ⟦Γ⟧ → EL ⟦Δ⟧
 ; Tmᴹ = λ ⟦Γ⟧ ⟦A⟧ → (γ : EL ⟦Γ⟧) → EL (⟦A⟧ γ)
 }

m : Methods M
m = record
 { •ᴹ = ′⊤′
 ; _,Cᴹ_ = λ ⟦Γ⟧ ⟦A⟧ → ′Σ′ ⟦Γ⟧ ⟦A⟧

 ...

 ; [id]Tᴹ = refl
 ; [][]Tᴹ = refl

 ...

⟦_⟧C : Con → UU
⟦_⟧T : Ty Γ → EL (⟦ Γ ⟧C) → UU
⟦_⟧s : Tms Γ Δ → EL (⟦ Γ ⟧C) → EL (⟦ Δ ⟧C)
⟦_⟧t : (t : Tm Γ A) → (γ : EL (⟦ Γ ⟧C)) → EL (⟦ A ⟧T γ)

The logical predicate translation  
(almost finished)

Inspired by JP Bernardy et al on
parametricity for dependent types

A syntactic translation assigning to

each context, an extended context

to every type, a logical predicate

to every term, a proof that the term
satisfies the logical predicate.

requires dependent eliminator

Eg Parametricity and dependent types

JP Bernardy; P Jansson R Paterson, ICFP 2010
!
This doesn’t include “internal parametricity” from 2012, joint with Moulin.

The presheaf interpretation

(started)

Fix a category C

Contexts are interpreted as presheaves

Types as families of presheaves

Substitutions are natural transformations

Terms are global sections

Normalisation by
evaluation

Normal forms are a presheaf over the
category of variable substitutions.

We can generalise NBE from simple types to
dependent types.

However, the normal forms have types which
are not normal.

Compare to

Categorical reconstruction of a reduction free

 normalization proof

TA, M.Hofmann, T Streicher

CTCS 95

Normal forms with
normal types?

Can we define a mutual datatype of normal
forms with normal types?

No equations, no truncation!

Use this to define semi-simplicial types?

We need to define normalisation mutual with
normal forms!

Even in the simplest case (only variables) this
leads to a new coherence problem!

substitution is defined by recursion

joint work with Frederik Forsberg.

[]T : Ty Δ → Vars Γ Δ → Ty Γ
[]v : Var Δ A → (δ : Vars Γ Δ) → Var Γ (A [δ]T)

data Vars where
 ε : Vars Γ •
 , : (δ : Vars Γ Δ){A : Ty Δ} → Var Γ (A [δ]T)
 → Vars Γ (Δ , A)

wk : {A : Ty Γ} → Vars (Γ , A) Γ

data Var where
 vz : Var (Γ , A) (A [wk]T)
 vs : Var Γ A → Var (Γ , B) (A [wk]T)

Complete Failure !

Your goal was to model

univalent universes

but you can only eliminate

into a set!

2-level theory

Start with a strict type theory (with K)

Introduce a universe with a univalent
equality, can only eliminate into the universe.

Syntax of Type Theory has to be defined in
the strict theory

However we can use the univalent universe
to build models.

