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Ideology

David Turner:
Elementary Strong Functional Programming

Martin-Löf Type Theory

Types = sets, programs = total functions.

Dependent types to avoid accidental partiality
(e.g. hd).

E.g.: Conor McBride’s Epigram system.
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Plan of the talk

Inductive and coinductive types.

Container types for dummies.

Properties of container types.

W-types are sufficent for inductive types.

Further work and applications

Related work
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Inductive and coinductive types

Widespread in functional programming (e.g.
Haskell)

��� � � Lam � �� Int

� � � Lam Lam

� 	 �
 Lam

Categorically: Initial algebra of a functor

Lam
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vs. �

In a total setting � � � (terminal coalgebras):

finite lists
potentially infinite lists

infinite lists

can be nested
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Axiomatically?
How do we say?
All inductive or coinductive datatypes

Not every parametrized type has an initial
algebra (or terminal coalgebra) in set theory,
e.g.

Strictly positive types, e.g.
ordinal notations

How do we say?
Strictly positive
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Containers and -types
Container types are a syntax-free
representation of strictly positive types.

In an extensive LCCC: W-types
( ) are sufficent
to show that container types are closed under

(here)
(journal paper, submitted)

Application: Generic Programming
e.g. see our work on derivatives of datatypes

Application: Small trusted cores
e.g. for Epigram
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Containers for dummies

A container type is given by

A collection of shapes , e.g.

}, ,{
An assignment of positions to shapes , e.g.
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Containers for dummies . . .

We can use a container by

Choosing a shape, e.g.

Filling the positions with payload (here natural
numbers), e.g.

1 4 0
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Container for scientists

A container type is given by

a set of shapes

a family of sets of position, e.g. is a set
for any .

The extension of a container is the
endofunctor

Straightforward extension to -ary containers
.
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Example: Lists
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Morphisms of containers

Given containers

� � and � a morphism

� � is given by

its extension is the natural transformation
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Representation theorem

Theorem (AAG,FOSSACS 03)
The extension functor

�
�

�

is full and faithful.

Consequence: All polymorphic functions
(i.e. natural transformations)

are given by

A length transformer ,

A where-did-you-come-from function
.
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Closure properties
Containers are closed under (*)

Constant functors,

Coproducts ( )

Products ( � )

Constant exponentation �

Composition of functors

initial algebras ( �) [ICALP 04]

terminal coalgebras ( �) [Journal paper]

(*) In any Martin-Löf category = LCCC (locally cartesian
closed category) + W-types.
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Coproducts of containers

Given containers

� � � �
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�

�
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Products of containers

Given containers
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Initial algebras ( )

Given a 2-ary container
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Reply to referee comment
. . . Now, the above is a strictly positive definition so should
have a least as well as a greatest solution which are not in
general isomorphic.
Thus the corollary mentioned in the proof of 4.1 would be
wrong and as a result the entire argument collapses.
I thus fear that the paper must be rejected; . . .

Reply: Since there are no infinite paths in a finite tree,
there is only one solution to this isomorphism, the initial
one.
This is reflected in the proof of proposition 4.1!
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Constructing the iso
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Terminal coalgebras [Journal submission]

The same construction works for the -case.

Now we have to show that the solution is
initial!

We need -types, the dual of -types.

However, -types can be constructed from
-types.

See: Containers - Constructing Strictly Positive
Types on my publication page.
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Further work

Quotient containers to model types like bags.
First steps, see our MPC paper.
Constructing Polymorphic Programs with
Quotient Types

Dependent containers
Work in progress.
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Related work

Joyal 86 Foncteurs Analytiques et Espèces de Structures

Jay 95 A semantics for shape

Dybjer 97 Representing inductively defined sets by
wellorderings in Martin-Löf’s type theory

Hoogendijk and de Moor 00 Container Types Categorically

Moerdijk and Palmgren 00 Wellfounded Trees in Categories

Hasegawa 02 Two applications of analytic functors

Gambino and Hyland 03 Wellfounded Trees and Dependent
Polynomial Functors
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