
Isomorphisms on inductive types
Thorsten Altenkirch

based on discussions with

Wouter Swierstra and Peter Morris

WIT 2005 – p.1/??



Context-free types ( ��� �)

Parameters

Variables

Fibred Coproducts

Products

Fibred initial algebras

Examples

Natural numbers

Lists

Binary trees

Spine trees

WIT 2005 – p.2/??



Context-free types ( ��� �)

� ��� � � 	�
 
 
 Parameters

Variables

Fibred Coproducts

Products

Fibred initial algebras

Examples

Natural numbers

Lists

Binary trees

Spine trees

WIT 2005 – p.2/??



Context-free types ( ��� �)

� ��� � � 	�
 
 
 Parameters

� �� �� 
� 
 
 
 Variables

Fibred Coproducts

Products

Fibred initial algebras

Examples

Natural numbers

Lists

Binary trees

Spine trees

WIT 2005 – p.2/??



Context-free types ( ��� �)

� ��� � � 	�
 
 
 Parameters

� �� �� 
� 
 
 
 Variables

� � � � ��� Fibred Coproducts

Products

Fibred initial algebras

Examples

Natural numbers

Lists

Binary trees

Spine trees

WIT 2005 – p.2/??



Context-free types ( ��� �)

� ��� � � 	�
 
 
 Parameters

� �� �� 
� 
 
 
 Variables

� � � � ��� Fibred Coproducts

� � � � � � Products

Fibred initial algebras

Examples

Natural numbers

Lists

Binary trees

Spine trees

WIT 2005 – p.2/??



Context-free types ( ��� �)

� ��� � � 	�
 
 
 Parameters

� �� �� 
� 
 
 
 Variables

� � � � ��� Fibred Coproducts

� � � � � � Products

� � �
 � Fibred initial algebras

Examples

Natural numbers

Lists

Binary trees

Spine trees

WIT 2005 – p.2/??



Context-free types ( ��� �)

� ��� � � 	�
 
 
 Parameters

� �� �� 
� 
 
 
 Variables

� � � � ��� Fibred Coproducts

� � � � � � Products

� � �
 � Fibred initial algebras

Examples

Natural numbers

Lists

Binary trees

Spine trees

WIT 2005 – p.2/??



Context-free types ( ��� �)

� ��� � � 	�
 
 
 Parameters

� �� �� 
� 
 
 
 Variables

� � � � ��� Fibred Coproducts

� � � � � � Products

� � �
 � Fibred initial algebras

Examples

Natural numbers � �
 � � ��� �

Lists

Binary trees

Spine trees

WIT 2005 – p.2/??



Context-free types ( ��� �)

� ��� � � 	�
 
 
 Parameters

� �� �� 
� 
 
 
 Variables

� � � � ��� Fibred Coproducts

� � � � � � Products

� � �
 � Fibred initial algebras

Examples

Natural numbers � �
 � � ��� �
Lists � �
 � � � � ��� ��

Binary trees

Spine trees

WIT 2005 – p.2/??



Context-free types ( ��� �)

� ��� � � 	�
 
 
 Parameters

� �� �� 
� 
 
 
 Variables

� � � � ��� Fibred Coproducts

� � � � � � Products

� � �
 � Fibred initial algebras

Examples

Natural numbers � �
 � � ��� �
Lists � �
 � � � � ��� ��
Binary trees � �
 � � � � � � � � �
 � � � � � � �

Spine trees

WIT 2005 – p.2/??



Context-free types ( ��� �)

� ��� � � 	�
 
 
 Parameters

� �� �� 
� 
 
 
 Variables

� � � � ��� Fibred Coproducts

� � � � � � Products

� � �
 � Fibred initial algebras

Examples

Natural numbers � �
 � � ��� �
Lists � �
 � � � � ��� ��
Binary trees � �
 � � � � � � � � �
 � � � � � � �

Spine trees � �
 � � � � � � � � � � �
 � � � �
 � � � � � � �

WIT 2005 – p.2/??



Fibred . . .

Simple slice ( Obj )
Obj Obj

Given

Fibred coproducts, initial algebras:
exist in all slices and are preserved by .

In CCCs: Coproducts and initial algebras are always fibred.

WIT 2005 – p.3/??



Fibred . . .

Simple slice

� � ��

(

�  

Obj

�

)
Obj

� � �� ��� �  
Obj

�

� !#" $ $% � � � � ! " �

Given

Fibred coproducts, initial algebras:
exist in all slices and are preserved by .

In CCCs: Coproducts and initial algebras are always fibred.

WIT 2005 – p.3/??



Fibred . . .

Simple slice

� � ��

(

�  

Obj

�

)
Obj

� � �� ��� �  
Obj

�

� !#" $ $% � � � � ! " �

Given

&  � ! '

& �  � � � ' ! � � � �

Fibred coproducts, initial algebras:
exist in all slices and are preserved by .

In CCCs: Coproducts and initial algebras are always fibred.

WIT 2005 – p.3/??



Fibred . . .

Simple slice

� � ��

(

�  

Obj

�

)
Obj

� � �� ��� �  
Obj

�

� !#" $ $% � � � � ! " �

Given

&  � ! '

& �  � � � ' ! � � � �

Fibred coproducts, initial algebras:
exist in all slices and are preserved by

& �
.

In CCCs: Coproducts and initial algebras are always fibred.

WIT 2005 – p.3/??



Fibred . . .

Simple slice

� � ��

(

�  

Obj

�

)
Obj

� � �� ��� �  
Obj

�

� !#" $ $% � � � � ! " �

Given

&  � ! '

& �  � � � ' ! � � � �

Fibred coproducts, initial algebras:
exist in all slices and are preserved by

& �
.

In CCCs: Coproducts and initial algebras are always fibred.

WIT 2005 – p.3/??



Functorial semantics

Variable closed type
– finite set of free parameters.

F

iff F is naturally isomorphic to F

in all interpretations (or in the classifying category).
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b � c

F vs

b � c

L

but L L

but L L

Modifications:

Consider multisets instead of words.
Replace by .

Consider muliplicities instead of acceptance.

Replace Bool by .
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Proof idea: if

Given

define pow

as pow

Observe that pow M F

because pow preserves .
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Proof idea: only if

Using ideas from:

Abbott,A.,Ghani 05 Containers - Constructing Strictly Positive Types,
Theoretical Computer Science, special issue on Applied Semantics
(APPSEM).

we define a notion of morphisms on the multiset semantics. Using our
representation theorem we can show that

&� v , if pow

& + pow v .
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Questions

Are commutative semigroup equations +

enough to characterize the isos on

regular types?

Is the multi-set equivalence of regular expressions decidable? (I
think so).

What about context-free types in general? (No idea, maybe
undecidable).

What is the relation to recursive types (cf. Marcello’s work).

Can we use (or ) to decide the iomorphism problem for

regular expressions? E.g. interpret .
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