
Isomorphisms on inductive types
Thorsten Altenkirch

based on discussions with

Wouter Swierstra and Peter Morris

WIT 2005 – p.1/??

Context-free types (��� �)

Parameters

Variables

Fibred Coproducts

Products

Fibred initial algebras

Examples

Natural numbers

Lists

Binary trees

Spine trees

WIT 2005 – p.2/??

Context-free types (��� �)

� ��� � � 	�

 Parameters

Variables

Fibred Coproducts

Products

Fibred initial algebras

Examples

Natural numbers

Lists

Binary trees

Spine trees

WIT 2005 – p.2/??

Context-free types (��� �)

� ��� � � 	�

 Parameters

� �� ��
�

 Variables

Fibred Coproducts

Products

Fibred initial algebras

Examples

Natural numbers

Lists

Binary trees

Spine trees

WIT 2005 – p.2/??

Context-free types (��� �)

� ��� � � 	�

 Parameters

� �� ��
�

 Variables

� � � � ��� Fibred Coproducts

Products

Fibred initial algebras

Examples

Natural numbers

Lists

Binary trees

Spine trees

WIT 2005 – p.2/??

Context-free types (��� �)

� ��� � � 	�

 Parameters

� �� ��
�

 Variables

� � � � ��� Fibred Coproducts

� � � � � � Products

Fibred initial algebras

Examples

Natural numbers

Lists

Binary trees

Spine trees

WIT 2005 – p.2/??

Context-free types (��� �)

� ��� � � 	�

 Parameters

� �� ��
�

 Variables

� � � � ��� Fibred Coproducts

� � � � � � Products

� � �
 � Fibred initial algebras

Examples

Natural numbers

Lists

Binary trees

Spine trees

WIT 2005 – p.2/??

Context-free types (��� �)

� ��� � � 	�

 Parameters

� �� ��
�

 Variables

� � � � ��� Fibred Coproducts

� � � � � � Products

� � �
 � Fibred initial algebras

Examples

Natural numbers

Lists

Binary trees

Spine trees

WIT 2005 – p.2/??

Context-free types (��� �)

� ��� � � 	�

 Parameters

� �� ��
�

 Variables

� � � � ��� Fibred Coproducts

� � � � � � Products

� � �
 � Fibred initial algebras

Examples

Natural numbers � �
 � � ��� �

Lists

Binary trees

Spine trees

WIT 2005 – p.2/??

Context-free types (��� �)

� ��� � � 	�

 Parameters

� �� ��
�

 Variables

� � � � ��� Fibred Coproducts

� � � � � � Products

� � �
 � Fibred initial algebras

Examples

Natural numbers � �
 � � ��� �
Lists � �
 � � � � ��� ��

Binary trees

Spine trees

WIT 2005 – p.2/??

Context-free types (��� �)

� ��� � � 	�

 Parameters

� �� ��
�

 Variables

� � � � ��� Fibred Coproducts

� � � � � � Products

� � �
 � Fibred initial algebras

Examples

Natural numbers � �
 � � ��� �
Lists � �
 � � � � ��� ��
Binary trees � �
 � � � � � � � � �
 � � � � � � �

Spine trees

WIT 2005 – p.2/??

Context-free types (��� �)

� ��� � � 	�

 Parameters

� �� ��
�

 Variables

� � � � ��� Fibred Coproducts

� � � � � � Products

� � �
 � Fibred initial algebras

Examples

Natural numbers � �
 � � ��� �
Lists � �
 � � � � ��� ��
Binary trees � �
 � � � � � � � � �
 � � � � � � �

Spine trees � �
 � � � � � � � � � � �
 � � � �
 � � � � � � �

WIT 2005 – p.2/??

Fibred . . .

Simple slice (Obj)
Obj Obj

Given

Fibred coproducts, initial algebras:
exist in all slices and are preserved by .

In CCCs: Coproducts and initial algebras are always fibred.

WIT 2005 – p.3/??

Fibred . . .

Simple slice

� � ��

(

�

Obj

�

)
Obj

� � �� ��� �
Obj

�

� !#" $ $% � � � � ! " �

Given

Fibred coproducts, initial algebras:
exist in all slices and are preserved by .

In CCCs: Coproducts and initial algebras are always fibred.

WIT 2005 – p.3/??

Fibred . . .

Simple slice

� � ��

(

�

Obj

�

)
Obj

� � �� ��� �
Obj

�

� !#" $ $% � � � � ! " �

Given

& � ! '

& � � � � ' ! � � � �

Fibred coproducts, initial algebras:
exist in all slices and are preserved by .

In CCCs: Coproducts and initial algebras are always fibred.

WIT 2005 – p.3/??

Fibred . . .

Simple slice

� � ��

(

�

Obj

�

)
Obj

� � �� ��� �
Obj

�

� !#" $ $% � � � � ! " �

Given

& � ! '

& � � � � ' ! � � � �

Fibred coproducts, initial algebras:
exist in all slices and are preserved by

& �
.

In CCCs: Coproducts and initial algebras are always fibred.

WIT 2005 – p.3/??

Fibred . . .

Simple slice

� � ��

(

�

Obj

�

)
Obj

� � �� ��� �
Obj

�

� !#" $ $% � � � � ! " �

Given

& � ! '

& � � � � ' ! � � � �

Fibred coproducts, initial algebras:
exist in all slices and are preserved by

& �
.

In CCCs: Coproducts and initial algebras are always fibred.

WIT 2005 – p.3/??

Functorial semantics

Variable closed type
– finite set of free parameters.

F

iff F is naturally isomorphic to F

in all interpretations (or in the classifying category).

Fibred coproducts:

Fibred initial algebras:

WIT 2005 – p.4/??

Functorial semantics

Variable closed type �

(

– finite set of free parameters.

F

iff F is naturally isomorphic to F

in all interpretations (or in the classifying category).

Fibred coproducts:

Fibred initial algebras:

WIT 2005 – p.4/??

Functorial semantics

Variable closed type �

(

– finite set of free parameters.

) � * F � (! � � ! �

iff F is naturally isomorphic to F

in all interpretations (or in the classifying category).

Fibred coproducts:

Fibred initial algebras:

WIT 2005 – p.4/??

Functorial semantics

Variable closed type �

(

– finite set of free parameters.

) � * F � (! � � ! �

� + � iff

) � * F is naturally isomorphic to
)� *

F

in all interpretations (or in the classifying category).

Fibred coproducts:

Fibred initial algebras:

WIT 2005 – p.4/??

Functorial semantics

Variable closed type �

(

– finite set of free parameters.

) � * F � (! � � ! �

� + � iff

) � * F is naturally isomorphic to
)� *

F

in all interpretations (or in the classifying category).

Fibred coproducts:� � �� �-, � + � � � � � � ,

Fibred initial algebras:

WIT 2005 – p.4/??

Functorial semantics

Variable closed type �

(

– finite set of free parameters.

) � * F � (! � � ! �

� + � iff

) � * F is naturally isomorphic to
)� *

F

in all interpretations (or in the classifying category).

Fibred coproducts:� � �� �-, � + � � � � � � ,
Fibred initial algebras:� �
 � � � � � + � � �
 � � � � � � � � + �� � �

WIT 2005 – p.4/??

Regular types

, where is not free in .

Observation:
Regular types can be expressed as

regular expressions ()
using

WIT 2005 – p.5/??

Regular types

� �
 � � � ��� , where

�

is not free in �� � .

Observation:
Regular types can be expressed as

regular expressions ()
using

WIT 2005 – p.5/??

Regular types

� �
 � � � ��� , where

�

is not free in �� � .

Observation:
Regular types can be expressed as

regular expressions (

� � � � � � � � � � � � � �)
using � �
 � � � � � + �� � �

WIT 2005 – p.5/??

Regular types

� �
 � � � ��� , where

�

is not free in �� � .

Observation:
Regular types can be expressed as

regular expressions (

� � � � � � � � � � � � � �)
using � �
 � � � � � + �� � �

� �
 � � � � � �
 � � � � 	 � � � .

WIT 2005 – p.5/??

Regular types

� �
 � � � ��� , where

�

is not free in �� � .

Observation:
Regular types can be expressed as

regular expressions (

� � � � � � � � � � � � � �)
using � �
 � � � � � + �� � �

� �
 � � � � � �
 � � � � 	 � � � .

+ � �
 � � � � � � � � 	 � � � . �

WIT 2005 – p.5/??

Regular types

� �
 � � � ��� , where

�

is not free in �� � .

Observation:
Regular types can be expressed as

regular expressions (

� � � � � � � � � � � � � �)
using � �
 � � � � � + �� � �

� �
 � � � � � �
 � � � � 	 � � � .

+ � �
 � � � � � � � � 	 � � � . �

+ � �
 � � � � � � 	 � � � � � � � .

WIT 2005 – p.5/??

Regular types

� �
 � � � ��� , where

�

is not free in �� � .

Observation:
Regular types can be expressed as

regular expressions (

� � � � � � � � � � � � � �)
using � �
 � � � � � + �� � �

� �
 � � � � � �
 � � � � 	 � � � .

+ � �
 � � � � � � � � 	 � � � . �

+ � �
 � � � � � � 	 � � � � � � � .

+ � � � � � � 	 � � � � � � .

WIT 2005 – p.5/??

Examples of isos

different from recursive types.

WIT 2005 – p.6/??

Examples of isos

�� � �
 � � � + � �
 � � � �

different from recursive types.

WIT 2005 – p.6/??

Examples of isos

�� � �
 � � � + � �
 � � � �
different from recursive types.

WIT 2005 – p.6/??

Examples of isos

�� � �
 � � � + � �
 � � � �
different from recursive types.

� �
 � � � � � + � �
 � � � � � �

WIT 2005 – p.6/??

Examples of isos

�� � �
 � � � + � �
 � � � �
different from recursive types.

� �
 � � � � � + � �
 � � � � � �

� � � � � � + � �� � � � � � ��

WIT 2005 – p.6/??

� � � � / �

 � � � � 0 � 1

Full subcategory of :

Obj

Arithmetic

if

Initial algebras

Observation:
For closed :

iff Closed isos are easy.

WIT 2005 – p.7/??

� � � � / �

 � � � � 0 � 1

Full subcategory of

243 5

:

Obj

� � � 0 � 1 � 67� 8 � � 0 � 1

6 !:9 ; < 9 = 8 0> ? > @ 6 1 ! 0A ? A @ 8 1

Arithmetic

if

Initial algebras

Observation:
For closed :

iff Closed isos are easy.

WIT 2005 – p.7/??

� � � � / �

 � � � � 0 � 1

Full subcategory of

243 5

:

Obj

� � � 0 � 1 � 67� 8 � � 0 � 1

6 !:9 ; < 9 = 8 0> ? > @ 6 1 ! 0A ? A @ 8 1
Arithmetic� � 6� 6 � �� �

if

Initial algebras

Observation:
For closed :

iff Closed isos are easy.

WIT 2005 – p.7/??

� � � � / �

 � � � � 0 � 1

Full subcategory of

243 5

:

Obj

� � � 0 � 1 � 67� 8 � � 0 � 1

6 !:9 ; < 9 = 8 0> ? > @ 6 1 ! 0A ? A @ 8 1
Arithmetic� � 6� 6 � �� �

� � 6� 6 � �� �

if

Initial algebras

Observation:
For closed :

iff Closed isos are easy.

WIT 2005 – p.7/??

� � � � / �

 � � � � 0 � 1

Full subcategory of

243 5

:

Obj

� � � 0 � 1 � 67� 8 � � 0 � 1

6 !:9 ; < 9 = 8 0> ? > @ 6 1 ! 0A ? A @ 8 1
Arithmetic� � 6� 6 � �� �

� � 6� 6 � �� �

6 � �� � � 6� � if 6 B �

Initial algebras

Observation:
For closed :

iff Closed isos are easy.

WIT 2005 – p.7/??

� � � � / �

 � � � � 0 � 1

Full subcategory of

243 5

:

Obj

� � � 0 � 1 � 67� 8 � � 0 � 1

6 !:9 ; < 9 = 8 0> ? > @ 6 1 ! 0A ? A @ 8 1
Arithmetic� � 6� 6 � �� �

� � 6� 6 � �� �

6 � �� � � 6� � if 6 B �
Initial algebras

) � �
 � * �

) � * � C D) � * ��) � * �

� E F GIHJ K CML H

Observation:
For closed :

iff Closed isos are easy.

WIT 2005 – p.7/??

� � � � / �

 � � � � 0 � 1

Full subcategory of

243 5

:

Obj

� � � 0 � 1 � 67� 8 � � 0 � 1

6 !:9 ; < 9 = 8 0> ? > @ 6 1 ! 0A ? A @ 8 1
Arithmetic� � 6� 6 � �� �

� � 6� 6 � �� �

6 � �� � � 6� � if 6 B �
Initial algebras

) � �
 � * �

) � * � C D) � * ��) � * �

� E F GIHJ K CML H

Observation:
For closed �� � :

� + � iff
) � * �)� *

Closed isos are easy.

WIT 2005 – p.7/??

� � � � / �

 � � � � 0 � 1

Full subcategory of

243 5

:

Obj

� � � 0 � 1 � 67� 8 � � 0 � 1

6 !:9 ; < 9 = 8 0> ? > @ 6 1 ! 0A ? A @ 8 1
Arithmetic� � 6� 6 � �� �

� � 6� 6 � �� �

6 � �� � � 6� � if 6 B �
Initial algebras

) � �
 � * �

) � * � C D) � * ��) � * �

� E F GIHJ K CML H

Observation:
For closed �� � :

� + � iff
) � * �)� *

Closed isos are easy.
WIT 2005 – p.7/??

Formal languages, revisited

, regular expression over
L Bool

L False

L L L

L

L

L L L

L L L

WIT 2005 – p.8/??

Formal languages, revisited

�, regular expression over

(

) � * L (� !

Bool

L False

L L L

L

L

L L L

L L L

WIT 2005 – p.8/??

Formal languages, revisited

�, regular expression over

(

) � * L (� !

Bool

) � * L N � False

L L L

L

L

L L L

L L L

WIT 2005 – p.8/??

Formal languages, revisited

�, regular expression over

(

) � * L (� !

Bool

) � * L N � False

) � ��� *

L N �) � * L N O)� *
L N

L

L

L L L

L L L

WIT 2005 – p.8/??

Formal languages, revisited

�, regular expression over

(

) � * L (� !

Bool

) � * L N � False

) � ��� *

L N �) � * L N O)� *
L N

) � * L N � P � QSR N D EJ � (

L

L L L

L L L

WIT 2005 – p.8/??

Formal languages, revisited

�, regular expression over

(

) � * L (� !

Bool

) � * L N � False

) � ��� *

L N �) � * L N O)� *
L N

) � * L N � P � QSR N D EJ � (

) � * L N � P QSR N

L L L

L L L

WIT 2005 – p.8/??

Formal languages, revisited

�, regular expression over

(

) � * L (� !

Bool

) � * L N � False

) � ��� *

L N �) � * L N O)� *
L N

) � * L N � P � QSR N D EJ � (

) � * L N � P QSR N

) � � � * L N � T <VUMW U X Y U U X#Z [=) � * L \])� * L \ ^

L L L

WIT 2005 – p.8/??

Formal languages, revisited

�, regular expression over

(

) � * L (� !

Bool

) � * L N � False

) � ��� *

L N �) � * L N O)� *
L N

) � * L N � P � QSR N D EJ � (

) � * L N � P QSR N

) � � � * L N � T <VUMW U X Y U U X#Z [=) � * L \])� * L \ ^

) �� *

L N � T <VUMW U X Y U U X#Z [W U _Z `a =) � * L \]) � � *

L \ ^

O P QR N

WIT 2005 – p.8/??

b � c

F vs

b � c

L

but L L

but L L

Modifications:

Consider multisets instead of words.
Replace by .

Consider muliplicities instead of acceptance.

Replace Bool by .

WIT 2005 – p.9/??

b � c

F vs

b � c

L

� � � � + � � �

but L L

but L L

Modifications:

Consider multisets instead of words.
Replace by .

Consider muliplicities instead of acceptance.

Replace Bool by .

WIT 2005 – p.9/??

b � c

F vs

b � c

L

� � � � + � � �

but

) � � � * L d�) � � � *

L

but L L

Modifications:

Consider multisets instead of words.
Replace by .

Consider muliplicities instead of acceptance.

Replace Bool by .

WIT 2005 – p.9/??

b � c

F vs

b � c

L

� � � � + � � �

but

) � � � * L d�) � � � *

L

� � d + � � �

but L L

Modifications:

Consider multisets instead of words.
Replace by .

Consider muliplicities instead of acceptance.

Replace Bool by .

WIT 2005 – p.9/??

b � c

F vs

b � c

L

� � � � + � � �

but

) � � � * L d�) � � � *

L

� � d + � � �

but

) � *

L�) � � � *

L

Modifications:

Consider multisets instead of words.
Replace by .

Consider muliplicities instead of acceptance.

Replace Bool by .

WIT 2005 – p.9/??

b � c

F vs

b � c

L

� � � � + � � �

but

) � � � * L d�) � � � *

L

� � d + � � �

but

) � *

L�) � � � *

L

Modifications:

Consider multisets instead of words.
Replace by .

Consider muliplicities instead of acceptance.

Replace Bool by .

WIT 2005 – p.9/??

b � c

F vs

b � c

L

� � � � + � � �

but

) � � � * L d�) � � � *

L

� � d + � � �

but

) � *

L�) � � � *

L

Modifications:

� Consider multisets instead of words.
Replace e � by e ! �.

Consider muliplicities instead of acceptance.

Replace Bool by .

WIT 2005 – p.9/??

b � c

F vs

b � c

L

� � � � + � � �

but

) � � � * L d�) � � � *

L

� � d + � � �

but

) � *

L�) � � � *

L

Modifications:

� Consider multisets instead of words.
Replace e � by e ! �.

� Consider muliplicities instead of acceptance.

Replace e !

Bool by e ! � � � 0 � 1 �

.

WIT 2005 – p.9/??

Multiset semantics

M

M

M M M

M

M

M M M

M M M

M

WIT 2005 – p.10/??

Multiset semantics

) � *M � (! � � ! � � � 0 � 1 �

M

M M M

M

M

M M M

M M M

M

WIT 2005 – p.10/??

Multiset semantics

) � *M � (! � � ! � � � 0 � 1 �

M

M M M

M

M

M M M

M M M

M

WIT 2005 – p.10/??

Multiset semantics

) � *M � (! � � ! � � � 0 � 1 �

) � *M N � �

M M M

M

M

M M M

M M M

M

WIT 2005 – p.10/??

Multiset semantics

) � *M � (! � � ! � � � 0 � 1 �

) � *M N � �

) � ��� *

M N �) � *M N �)� *

M N

M

M

M M M

M M M

M

WIT 2005 – p.10/??

Multiset semantics

) � *M � (! � � ! � � � 0 � 1 �

) � *M N � �

) � ��� *

M N �) � *M N �)� *

M N

) � *M N � f � f � � N D EJ � (

M

M M M

M M M

M

fhg i�

� C Djg R i

� E F G HJ K C L H

WIT 2005 – p.10/??

Multiset semantics

) � *M � (! � � ! � � � 0 � 1 �

) � *M N � �

) � ��� *

M N �) � *M N �)� *

M N

) � *M N � f � f � � N D EJ � (

) � *M N � f k� N

M M M

M M M

M

fhg i�

� C Djg R i

� E F G HJ K C L H

WIT 2005 – p.10/??

Multiset semantics

) � *M � (! � � ! � � � 0 � 1 �

) � *M N � �

) � ��� *

M N �) � *M N �)� *

M N

) � *M N � f � f � � N D EJ � (

) � *M N � f k� N

) � � � *

M N � l <VUMW U X Y U ;U X Z [=) � *M \ �)� *

M \ ^

M M M

M

fhg i�

� C Djg R i

� E F G HJ K C L H

WIT 2005 – p.10/??

Multiset semantics

) � *M � (! � � ! � � � 0 � 1 �

) � *M N � �

) � ��� *

M N �) � *M N �)� *

M N

) � *M N � f � f � � N D EJ � (

) � *M N � f k� N

) � � � *

M N � l <VUMW U X Y U ;U X Z [=) � *M \ �)� *

M \ ^

) �� *

M N � l <VUMW U X Y U ;U X Z [W U _Z mon =) � *M \ �) �� *

M \ ^

� � f k� N � � � � �) � *M k� �

fhg i�

� C Djg R i

� E F G HJ K C L H

WIT 2005 – p.10/??

b � c

F vs

b � c

M

� + � iff

) � *M�)� *

M ???

WIT 2005 – p.11/??

Proof idea: if

Given

define pow

as pow

Observe that pow M F

because pow preserves .

WIT 2005 – p.12/??

Proof idea: if

Given

& � (! � � ! � � � 0 � 1 �

define pow

& � (! 243 5 � ! 243 5

as pow

Observe that pow M F

because pow preserves .

WIT 2005 – p.12/??

Proof idea: if

Given

& � (! � � ! � � � 0 � 1 �

define pow

& � (! 243 5 � ! 243 5

as pow

& k ��� lqp r sut 9 � &jv � � wyx (
 � v x � ! � k � x �

Observe that pow M F

because pow preserves .

WIT 2005 – p.12/??

Proof idea: if

Given

& � (! � � ! � � � 0 � 1 �

define pow

& � (! 243 5 � ! 243 5

as pow

& k ��� lqp r sut 9 � &jv � � wyx (
 � v x � ! � k � x �
Observe that pow

) � * M +) � * F
because pow e preserves

� � � � � � � � e � .

WIT 2005 – p.12/??

Proof idea: only if

Using ideas from:

Abbott,A.,Ghani 05 Containers - Constructing Strictly Positive Types,
Theoretical Computer Science, special issue on Applied Semantics
(APPSEM).

we define a notion of morphisms on the multiset semantics. Using our
representation theorem we can show that

&� v , if pow

& + pow v .

WIT 2005 – p.13/??

Questions

Are commutative semigroup equations +

enough to characterize the isos on

regular types?

Is the multi-set equivalence of regular expressions decidable? (I
think so).

What about context-free types in general? (No idea, maybe
undecidable).

What is the relation to recursive types (cf. Marcello’s work).

Can we use (or) to decide the iomorphism problem for

regular expressions? E.g. interpret .

WIT 2005 – p.14/??

Questions

� Are commutative semigroup equations +� � � � � � + � �� � � � � � ��

enough to characterize the isos on

regular types?

Is the multi-set equivalence of regular expressions decidable? (I
think so).

What about context-free types in general? (No idea, maybe
undecidable).

What is the relation to recursive types (cf. Marcello’s work).

Can we use (or) to decide the iomorphism problem for

regular expressions? E.g. interpret .

WIT 2005 – p.14/??

Questions

� Are commutative semigroup equations +� � � � � � + � �� � � � � � ��

enough to characterize the isos on

regular types?

� Is the multi-set equivalence of regular expressions decidable? (I
think so).

What about context-free types in general? (No idea, maybe
undecidable).

What is the relation to recursive types (cf. Marcello’s work).

Can we use (or) to decide the iomorphism problem for

regular expressions? E.g. interpret .

WIT 2005 – p.14/??

Questions

� Are commutative semigroup equations +� � � � � � + � �� � � � � � ��

enough to characterize the isos on

regular types?

� Is the multi-set equivalence of regular expressions decidable? (I
think so).

� What about context-free types in general? (No idea, maybe
undecidable).

What is the relation to recursive types (cf. Marcello’s work).

Can we use (or) to decide the iomorphism problem for

regular expressions? E.g. interpret .

WIT 2005 – p.14/??

Questions

� Are commutative semigroup equations +� � � � � � + � �� � � � � � ��

enough to characterize the isos on

regular types?

� Is the multi-set equivalence of regular expressions decidable? (I
think so).

� What about context-free types in general? (No idea, maybe
undecidable).

� What is the relation to recursive types (cf. Marcello’s work).

Can we use (or) to decide the iomorphism problem for

regular expressions? E.g. interpret .

WIT 2005 – p.14/??

Questions

� Are commutative semigroup equations +� � � � � � + � �� � � � � � ��

enough to characterize the isos on

regular types?

� Is the multi-set equivalence of regular expressions decidable? (I
think so).

� What about context-free types in general? (No idea, maybe
undecidable).

� What is the relation to recursive types (cf. Marcello’s work).

� Can we use

z

(or

{

) to decide the iomorphism problem for

regular expressions? E.g. interpret g � � ||h} ~ .

WIT 2005 – p.14/??

	Context-free types ($sigma ,	au $)
	Fibred dots
	Functorial semantics
	Regular types
	Examples of isos
	$omega + { omega }$
	Formal languages, revisited
	$evalF {sigma }$ vs $evalL {sigma }$
	Multiset semantics
	$evalF {sigma }$ vs $evalM {sigma }$
	Proof idea: 	extbf {if}
	Proof idea: 	extbf {only if}
	Questions

