The power of T1
A Days 2020 in Krakow

Thorsten Altenkirch

Functional Programming Laboratory
School of Computer Science
University of Nottingham

February 19, 2020

Thorsten Altenkirch (Nottingham) The power of I

Thorsten Altenkirch (Nottingham) The power of I

Typing disciplines

C static but weak

Java, C# static / dynamic but strong
Python, Scheme dynamic and strong
Haskell, SML static and strong

Thorsten Altenkirch (Nottingham) The power of I February 19, 2020 3/32

Haskell's type system
is not up to the job!

Because it lacks dependent types.

Thorsten Altenkirch (Nottingham) ower February 19, 2020 4/32

What are dependent types?’

Thorsten Altenkirch (Nottingham)

Conor McBride: Winging It, 20007

The established social order

Thorsten Altenkirch (Nottingham) The power of I

Proletarian revolution: do the types run away in terror?

Thorsten Altenkirch (Nottingham) The power of I February 19, 2020 7/32

No! They're overjoyed at their new articulacy.

Thorsten Altenkirch (Nottingham) The power of I February 19, 2020 8/32

[-types

The title of this talk was stolen from a ICFP 08 paper by
Nicolas Oury and Wouter Swierstra

zeroes : (n : N) — VecNn
zeroes zero = ||

zeroes (suc n) = 0 : zeroes n

Dependent function type, also called MM-type.

M,.nVec An

Thorsten Altenkirch (Nottingham) The power of I

February 19, 2020 9/32

|
Why is it called [-type?

Finn = {0,1, .. n-1}

f:Fin3 - N
fo =2
f1 =23
f2 =14

(x : Fin3) — Fin (fx) = Ni=3fi =24

The same idea works for dependent pairs = X-types.

Thorsten Altenkirch (Nottingham) The power of I February 19, 2020 10/32

What is the power of 17

Thorsten Altenkirch (Nottingham)

Good programs that can't be typed without I1

printf : (s : String) — Argss
Args : String — Set

Args "%s" = s = String — Argss
Args "%d" =s = Int — Argss
Argsc:s = Argss

Args "" =10T

Thorsten Altenkirch (Nottingham) The power of I February 19, 2020 12 /32

Pre-Newtonian dependent types

Objection J

Using data kinds we can represent types like this in Haskell.

@ Yes, but only if the format string is static.

e What if it is part of a scheme that is computed internally?

Thorsten Altenkirch (Nottingham) The power of I February 19, 2020 13 /32

|
The scheme is part of the data

Scheme : Set
Data : Scheme — Set

record DataBase : Set where
field
scheme : Scheme
content : Data scheme

The power of .

Thorsten Altenkirch (Nottingham) The power of I February 19, 2020 14 /32

Eliminating runtime errors

Matr : N — N — Set
Matr mn = Vecm (Vec n R)

~x_ :{ijk: N} = Matrij — Matrjk — Matrik

Thorsten Altenkirch (Nottingham) The power of I

NS
Gradual Typing

U : Set
El : U — Set

record Dynamic where
field
type : U
value : El type

Thorsten Altenkirch (Nottingham) The power of I

Summary : use cases for dependent types

Giving types to all sensible programs
Schemes are part of the data

Eliminating run time errors

Capturing gradual typing

Thorsten Altenkirch (Nottingham) The power of I February 19, 2020 17 /32

It dependent types are so great
why isn't everybody using them?

Thorsten Altenkirch (Nottingham) ower February 19, 2020 18 /32

Some myths and facts
about

dependently typed programming
(DTP)

Thorsten Altenkirch (Nottingham) ower February 19, 2020 19 /32

Myth 1 : Programming in DTP languages is more difficult

DTP languages contain Haskell types as a subset.

Hence you can always not use dependent types.

If you use dependent types you may have to work harder to get your
programs through the type checker.

@ Pay as you go.

Thorsten Altenkirch (Nottingham) The power of I February 19, 2020 20 /32

Myth 2 : You have to prove that your program is
terminating

@ Good programs are total programs.
@ It can be hard to convince a compiler that your program is total.

@ You can declare that your program is total without proving it.
I am a doctor.

@ In some cases knowing that your program is total can make the
program faster without compromising safety.

Thorsten Altenkirch (Nottingham) The power of I February 19, 2020 21/32

Knowing that your program terminates makes it faster

have : Vec Am
7 : VecAn
thm : m = n

transport (Vec A) thm have : Vec An

@ Do we need to run thm at runtime?
@ No, if we know that it is total.

@ Yes, if we don't.

Thorsten Altenkirch (Nottingham) The power of I February 19, 2020 22/32

Myth 3 : DTP languages are not Turing complete

o If we insist that all programs are total we can't have all programs.

e Partiality is a monad (see our paper).
TA, Nils Anders Danielsson, Nicolai Kraus
Partiality, Revisited: The Partiality Monad as a Quotient
Inductive-Inductive Type

@ Using the partiality monad we can write and run all partially recursive
functions in a DTP language.

Thorsten Altenkirch (Nottingham) The power of I February 19, 2020 23 /32

Myth 4 : DTP doesn't work with effects

@ What happens if an effectful computation appears in a type?
@ Does the compiler execute the effect?

o E.g. we implement a missile control system and
startMissiles : 10 T appears in a dependent type ...

Thorsten Altenkirch (Nottingham) The power of I February 19, 2020 24 /32

Thorsten Altenkirch (Nottingham) February 19, 2020

Beauty in the Beast

@ Wouter Swierstra and | made a proposal how to integrate effects in
DTP in 2007.

@ At compiletime we use a mathematical semantics of effects, a
functional program.

@ At runtime we just execute the effect.

o Example: Partiality

Thorsten Altenkirch (Nottingham) The power of I February 19, 2020 26 /32

Fact 1. DTP makes big demands on the IDE

@ Need special support to effectively develop DTP software.
@ Interactive and incremental typing
o Automatic case splitting

@ Moving between implicit and explicit syntax

Thorsten Altenkirch (Nottingham) The power of I February 19, 2020 27 /32

Fact 2: Compile time can be an issue

@ The problem is not that you run functions at compile time.

@ Solving unification problems with existential variables may blow up
compilation time.

e Cause: loss of sharing

@ Solutions have been suggested (e.g. by Andras Kovacs) but still an

issue in current implementations.

Thorsten Altenkirch (Nottingham) The power of I February 19, 2020 28 /32

Fact 3: More precise types can hamper reusability

@ Eg we have lists, vectors, sorted lists, ...
@ In many cases this can be addressed by identifying new abstractions.

e Cf Conor McBride's paper:
Ornamental Algebras, Algebraic Ornaments

Thorsten Altenkirch (Nottingham) The power of I February 19, 2020 29 /32

Fact 4: DTP toolchains are not yet ready for professional
developers

This guy may disagree:

Edwin Brady, developer of Idris
and author of Type driven development with Idris

Thorsten Altenkirch (Nottingham) The power of I February 19, 2020 30/32

|
Summary: Myths vs facts

Myths @ Programming in DTP languages is more difficult
@ You have to prove that your program is terminating
© DTP languages are not Turing complete
@ DTP doesn't work with effects
Facts @ DTP makes big demands on the IDE
@ Compile time can be an issue
© More precise types can hamper reusability
@ DTP toolchains are not yet ready for professional
developers

Thorsten Altenkirch (Nottingham) The power of I February 19, 2020 31/32

Claims

@ A strong static type discipline requires dependent types.
@ Dependent types are not an additional feature to be added in the end.

o Full dependent types are feasible and extremely useful for
programming.

Thorsten Altenkirch (Nottingham) The power of I February 19, 2020 32/32

