
The power of Π
λ Days 2020 in Krakow

Thorsten Altenkirch

Functional Programming Laboratory
School of Computer Science
University of Nottingham

February 19, 2020

Thorsten Altenkirch (Nottingham) The power of Π February 19, 2020 1 / 32



Thorsten Altenkirch (Nottingham) The power of Π February 19, 2020 2 / 32



Typing disciplines

C static but weak
Java, C# static / dynamic but strong
Python, Scheme dynamic and strong
Haskell, SML static and strong

Thorsten Altenkirch (Nottingham) The power of Π February 19, 2020 3 / 32



Haskell’s type system
is not up to the job!
Because it lacks dependent types.

Thorsten Altenkirch (Nottingham) The power of Π February 19, 2020 4 / 32



What are dependent types?

Thorsten Altenkirch (Nottingham) The power of Π February 19, 2020 5 / 32



Conor McBride: Winging It, 2000?

The established social order

Thorsten Altenkirch (Nottingham) The power of Π February 19, 2020 6 / 32



Proletarian revolution: do the types run away in terror?

Thorsten Altenkirch (Nottingham) The power of Π February 19, 2020 7 / 32



No! They’re overjoyed at their new articulacy.

Thorsten Altenkirch (Nottingham) The power of Π February 19, 2020 8 / 32



Π-types

The title of this talk was stolen from a ICFP 08 paper by
Nicolas Oury and Wouter Swierstra

zeroes : (n : N) → Vec N n

zeroes zero = []
zeroes (suc n) = 0 :: zeroes n

Dependent function type, also called Π-type.

Πn : NVec A n

Thorsten Altenkirch (Nottingham) The power of Π February 19, 2020 9 / 32



Why is it called Π-type?

Fin n = {0 , 1 , . . n-1}
f : Fin 3 → N
f 0 = 2
f 1 = 3
f 2 = 4

(x : Fin 3) → Fin (f x) = Πi<3
i=0f i = 24

The same idea works for dependent pairs = Σ-types.

Thorsten Altenkirch (Nottingham) The power of Π February 19, 2020 10 / 32



What is the power of Π?

Thorsten Altenkirch (Nottingham) The power of Π February 19, 2020 11 / 32



Good programs that can’t be typed without Π

printf : (s : String) → Args s

Args : String → Set

Args "%s" :: s = String → Args s
Args "%d" :: s = Int → Args s
Args c :: s = Args s
Args "" = IO >

Thorsten Altenkirch (Nottingham) The power of Π February 19, 2020 12 / 32



Pre-Newtonian dependent types

Objection
Using data kinds we can represent types like this in Haskell.

Yes, but only if the format string is static.
What if it is part of a scheme that is computed internally?

Thorsten Altenkirch (Nottingham) The power of Π February 19, 2020 13 / 32



The scheme is part of the data

Scheme : Set

Data : Scheme → Set

record DataBase : Set where
field

scheme : Scheme
content : Data scheme

The power of Σ.

Thorsten Altenkirch (Nottingham) The power of Π February 19, 2020 14 / 32



Eliminating runtime errors

Matr : N → N → Set
Matr m n = Vec m (Vec n R)

_×_ : { i j k : N} → Matr i j → Matr j k → Matr i k

Thorsten Altenkirch (Nottingham) The power of Π February 19, 2020 15 / 32



Gradual Typing

U : Set

El : U → Set

record Dynamic where
field

type : U
value : El type

Thorsten Altenkirch (Nottingham) The power of Π February 19, 2020 16 / 32



Summary : use cases for dependent types

Giving types to all sensible programs
Schemes are part of the data
Eliminating run time errors
Capturing gradual typing

Thorsten Altenkirch (Nottingham) The power of Π February 19, 2020 17 / 32



If dependent types are so great
why isn’t everybody using them?

Thorsten Altenkirch (Nottingham) The power of Π February 19, 2020 18 / 32



Some myths and facts
about
dependently typed programming
(DTP)

Thorsten Altenkirch (Nottingham) The power of Π February 19, 2020 19 / 32



Myth 1 : Programming in DTP languages is more difficult

DTP languages contain Haskell types as a subset.
Hence you can always not use dependent types.
If you use dependent types you may have to work harder to get your
programs through the type checker.
Pay as you go.

Thorsten Altenkirch (Nottingham) The power of Π February 19, 2020 20 / 32



Myth 2 : You have to prove that your program is
terminating

Good programs are total programs.
It can be hard to convince a compiler that your program is total.
You can declare that your program is total without proving it.
I am a doctor.
In some cases knowing that your program is total can make the
program faster without compromising safety.

Thorsten Altenkirch (Nottingham) The power of Π February 19, 2020 21 / 32



Knowing that your program terminates makes it faster

have : Vec A m

? : Vec A n

thm : m ≡ n

transport (Vec A) thm have : Vec A n

Do we need to run thm at runtime?
No, if we know that it is total.
Yes, if we don’t.

Thorsten Altenkirch (Nottingham) The power of Π February 19, 2020 22 / 32



Myth 3 : DTP languages are not Turing complete

If we insist that all programs are total we can’t have all programs.
Partiality is a monad (see our paper).
TA, Nils Anders Danielsson, Nicolai Kraus
Partiality, Revisited: The Partiality Monad as a Quotient
Inductive-Inductive Type
Using the partiality monad we can write and run all partially recursive
functions in a DTP language.

Thorsten Altenkirch (Nottingham) The power of Π February 19, 2020 23 / 32



Myth 4 : DTP doesn’t work with effects

What happens if an effectful computation appears in a type?
Does the compiler execute the effect?
E.g. we implement a missile control system and
startMissiles : IO > appears in a dependent type . . .

Thorsten Altenkirch (Nottingham) The power of Π February 19, 2020 24 / 32



Thorsten Altenkirch (Nottingham) The power of Π February 19, 2020 25 / 32



Beauty in the Beast

Wouter Swierstra and I made a proposal how to integrate effects in
DTP in 2007.
At compiletime we use a mathematical semantics of effects, a
functional program.
At runtime we just execute the effect.
Example: Partiality

Thorsten Altenkirch (Nottingham) The power of Π February 19, 2020 26 / 32



Fact 1: DTP makes big demands on the IDE

Need special support to effectively develop DTP software.
Interactive and incremental typing
Automatic case splitting
Moving between implicit and explicit syntax

Thorsten Altenkirch (Nottingham) The power of Π February 19, 2020 27 / 32



Fact 2: Compile time can be an issue

The problem is not that you run functions at compile time.
Solving unification problems with existential variables may blow up
compilation time.
Cause: loss of sharing
Solutions have been suggested (e.g. by Andras Kovacs) but still an
issue in current implementations.

Thorsten Altenkirch (Nottingham) The power of Π February 19, 2020 28 / 32



Fact 3: More precise types can hamper reusability

Eg we have lists, vectors, sorted lists, . . .
In many cases this can be addressed by identifying new abstractions.
Cf Conor McBride’s paper:
Ornamental Algebras, Algebraic Ornaments

Thorsten Altenkirch (Nottingham) The power of Π February 19, 2020 29 / 32



Fact 4: DTP toolchains are not yet ready for professional
developers

This guy may disagree:

Edwin Brady, developer of Idris
and author of Type driven development with Idris

Thorsten Altenkirch (Nottingham) The power of Π February 19, 2020 30 / 32



Summary: Myths vs facts

Myths 1 Programming in DTP languages is more difficult
2 You have to prove that your program is terminating
3 DTP languages are not Turing complete
4 DTP doesn’t work with effects

Facts 1 DTP makes big demands on the IDE
2 Compile time can be an issue
3 More precise types can hamper reusability
4 DTP toolchains are not yet ready for professional

developers

Thorsten Altenkirch (Nottingham) The power of Π February 19, 2020 31 / 32



Claims

A strong static type discipline requires dependent types.
Dependent types are not an additional feature to be added in the end.
Full dependent types are feasible and extremely useful for
programming.

Thorsten Altenkirch (Nottingham) The power of Π February 19, 2020 32 / 32


