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Univalence: isomorphic types are equal.
Hence equality cannot be proof-irrelevant.
Kraus: we can construct types with arbitrary complex
equality (n-types) using universes + univalence.
Higher inductive types (HITs) give us an alternative way to
construct n-types without using universes.
Main application: synthetic homotopy theory (e.g. define
the n-spheres and verify their properties).
Today: applications of HITs to datatypes.
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Container

Container = polynomial functor
W-types = initial algebras of containers
Given by

Shapes S : Set

Positions P : S ! Set

we write S C P.
Extension as a functor:

[[S C P]] : Set ! Set

[[S C P]](A) = ⌃s : S.P(s) ! A

Examples (Fin(n) = {0, 1, . . . , n � 1})

[[1 C 1]](A) = A

[[1 C Fin(n)]](A) = A

n

[[n : N C Fin(n)]](A) = List(A)

[[1 C N]](A) = Stream(A)
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Constructions on containers

Coproducts

(S C P) + (T C Q) = x : S + T C case x of

⇢
inl(s)!P(s)
inr(t)!Q(t)

Products

(S C P)⇥ (T C Q) = (s, t) : S ⇥ T C P(s) + Q(t)

Composition

(S C P)� (T C Q) = ⌃s : S, f : P(s) ! T C ⌃p : P(s).Q(f (p))

[[(S C P) + (T C Q)]](A) = [[S C P]](A) + [[T C Q]](A)

[[(S C P)⇥ (T C Q)]](A) = [[S C P]](A)⇥ [[T C Q]](A)

[[(S C P) � (T C Q)]](A) = [[S C P]]([[T C Q]](A))
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Container morphisms

Given (S C P), (T C Q) a morphism f C r is given by

f : S ! T

r : ⇧
s:SQ(f (s)) ! P(s)

whose extension is a natural transformation given by

[[f C r ]] : ⇧
A:Set

[[S C P]](A) ! [[T C Q]](A)

[[f C r ]](A, (s,~a)) = (f (s),~a � r(s))

Read ⇧
A:Set

T (A) as
R

A:Set

T (A).
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Container morphisms

Examples:
tail

tail : ⇧
A:Set

List(A) ! List(A)

tail([a0, a1, . . . , an

]) = [a1 . . . an

]

tail = �n.n�̇1 C �n, i .i � 1

reverse

reverse : ⇧
A:Set

List(A) ! List(A)

reverse([a0, a1, . . . , an

]) = [a
n

, a
n�1 . . . a0]

reverse = �n.n C �n, i .n � i
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Container morphisms

Given a container S C P and a functor F : Set ! Set:

⇧
A:Set

[[S C P]](A) ! F (A)

= ⇧
A:Set

(⌃
s:SP(s) ! A) ! F (A)

= ⇧
A:Set

⇧
s:S(P(s) ! A) ! F (A)

= ⇧
s:S⇧A:Set

(P(s) ! A) ! F (A)

= ⇧
s:SF (P(s)) (Yoneda)

Let F = [[T C Q]] then

⇧
A:Set

[[S C P]](A) ! [[T C Q]](A)

= ⇧
s:S[[T C Q]](P(s))

= ⇧
s:S⌃t :T Q(t) ! P(s)

= ⌃
f :S!T

Q(f (s)) ! P(s)

Hence the functor [[�]] : Cont ! (Set ! Set) is full and faithful.
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Multisets as containers?

Multisets are lists quotiented by permutations, i.e.

{a, a, b}M = {b, a, a}M {a, a, b}M 6= {a, b}M

M(A) = List(A)/ ⇠
l ⇠ l

0 = l is a permutation of l

0

We can show that all container preserve pullbacks, but M

does not preserve pullbacks.
Multisets are not representable as containers in
conventional Type Theory.
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Quotient containers / Symmetric containers

Abbot, A., Ghani, McBride MPC 2004
Constructing Polymorphic Programs with Quotient

Types

Uses quotient types to represent containers with
permutable positions.

Gylterud MSc thesis 2012
Symmetric containers

Generalizes containers by replacing the set of
positions by a groupoid.
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Multisets in HoTT

We can can define the following HIT:

S

M

: Type1

e : N ! S

M

✏ : Fin(m) = Fin(n) ! e(m) = e(n)

And the following family :

P

M

: S

M

! Set

P

M

(e(n)) = Fin(n) P

M

(✏(↵)) = transport(Fin,↵)

M = S

M

C P

M

is the multiset container, that is [[M]](A) is
the set of multisets over A.
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Cycles

Another example are cycles, i.e. lists quotiented by
rotations. E.g.

{a, b, c}C = {c, a, b}C {a, b, c}C 6= {a, c, b}C

We define the HIT

S

C

: Type1

e : N ! S

C

✏ : Fin(m) ! e(m) = e(m) � : ✏(0) = refl

And the following family :

P

C

: S

C

! Set

P

C

(e(n)) = Fin(n) P

C

(✏(i)) = �j .i + j mod(n)

C = S

C

C P

C

s.t.
[[C]](A) is the set of cycles over A.
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Main insight

In HoTT quotient containers become ordinary containers, if we
allow S : Type (that is not necessarily a set).
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Zipper

The notion of the derivative of a parametric datatype was
introduced by Conor McBride.
Conor was generalizing the notion of a zipper, introduced
by Gerard Huet.
A zipper is a datastructure which represents a position
within a tree.
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Zipper

For example a zipper for binary trees

T = 1 + T

2

is
Z = 1 + 2 ⇥ T ⇥ Z

In general given a datatype

T = F (T )

the corresponding zipper is given by

Z = 1 + @F (Z )
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Derivatives

Given
F : Set ! Set,

@F : Set ! Set

is the type of one hole contexts.
Conor noticed that this operation satisfies the laws of
differential calculus, e.g.

@(F + G)(A) = @F (A) + @G(A)

@(F ⇥ G)(A) = @F (A)⇥ G(A) + F (A)⇥ @G(A)

@(F � G)(A) = @F (G(A))⇥ @G(A)
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Cartesian morphisms

To formally specify derivatives of containers, we need
cartesian morphisms of containers.
Cartesian morphisms do neither forget or copy data.
Given (S C P), (T C Q) a cartesian morphism f C � is
given by

f : S ! T

� : ⇧
s:SQ(f (s)) = P(s)

Each cartesian morphism induces an ordinary morphism
by transporting along �(s).
Indeed it’s extension are exactly the natural
transformations whose naturality squares are pullbacks.
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Specifying @

Using cartesian morphisms, we can specify @.

Cart(K ⇥ I,F ) = Cart(K , @F )

where I = 1 C 1 and K is any container.
This is the translation of the intuitive idea of a one-hole
context.
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Explicit definition of @

Give A : Type, a : A we can specify A � a : Type as
satisfying

(A = 1 + B) = (⌃a : A.A � a = B)

A � a exists, iff equality on A is decidable and then it is
given as

A � a :⌘ ⌃a

0 : A.a 6= a

0

We can show that @(S C P) exists, iff for all s : A, equality
on P(s) is decidable and then it is given as

@(S C P) :⌘ ⌃s : S, p : P(s) C P(s)� p



Intro Container Quotient containers Container in HoTT Derivatives Antiderivatives

Examples

@(�A.An+1) = �A.Fin(n + 1)⇥ A

n

@(1 C Fin(n + 1))
= i : Fin(n + 1) C Fin(n + 1)� i

= Fin(n + 1) C Fin(n)

What is @List ?
@List = List

2

@List

= @(n : N C Fin(n))

= ⌃n : N.i : Fin(n) C Fin(n)� i

= (l ,m) : N⇥ N C Fin(l) + Fin(m)

= (l : N C Fin(l))⇥ (m : N C Fin(m))

= List

2
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Examples

What is the derivative of multisets @M?
@M = M !

@M

= @(S
M

C P

M

)

= ⌃e(n) : S

M

.i : P

M

(n) C P

M

(n)� i

= S

M

C P

M

(n)
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Antiderivatives

Gylterud asked wether antiderivatives exist.
He noticed that we don’t have antiderivatives in general if
we rely on S : Set.
Eg. there are no antiderivatives of F (A) = A

n and hence
there is no anti-derivative of List.
However, this is different in the presence of HITs.
What is the antiderivative of List?
@C = List

@C = @(S
C

C P

C

)

= ⌃e(n) : S

C

.i : P

C

(n) C P

C

(n)� i

= m : N C Fin(n)

= List
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Analytic containers

To each (discrete) container S C P we can associate the
Taylor series:

T

S C P

: N ! Set

T

S C P

(n) = @n(S C P)(0)/S

n

A container is analytic, iff

[[⌃
n:NT

S C P

(n) C Fin(n)]] = [[S C P]]

Gylterud: A discrete container (S C P) is analytic iff P(s)
is finite for all s : S.
Gylterud: All analytic container have antiderivatives.
The antiderivatives are given by a HIT whose elements are
⌃n : N.T

S C P

(n) and the equality and positions as for the
cycles.
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Sattler’s result

Christian Sattler showed that a cycle of size n has an
antiderivative iff there is a finite field of size n + 1.
The derivative of this field is given by the cyclic group of
bijective affine transformations on the field that fix 0:

{x 7! ax | a : F , a 6= 0}

Hence there is no antiderivative of the cycle of size 5
(since there is no finite field of size 6).
Hence there is no antiderivative of cycles in general.
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