
Towards a
High Level

Quantum Programming Language
Thorsten Altenkirch

University of Nottingham

based on joint work with Jonathan Grattage

and discussions with V.P. Belavkin

supported by EPSRC grant GR/S30818/01

MGS Xmas 04 – p.1/??

Background

Simulation of quantum systems is expensive:
Exponential time to simulate polynomial circuits.

Feynman: Can we exploit this fact to perform
computations more efficiently?

Shor: Factorisation in quantum polynomial time.

Grover: Blind search in

Can we build a quantum computer?

yes We can run quantum algorithms.

no Nature is classical after all!

MGS Xmas 04 – p.2/??

Background
Simulation of quantum systems is expensive:
Exponential time to simulate polynomial circuits.

Feynman: Can we exploit this fact to perform
computations more efficiently?

Shor: Factorisation in quantum polynomial time.

Grover: Blind search in

Can we build a quantum computer?

yes We can run quantum algorithms.

no Nature is classical after all!

MGS Xmas 04 – p.2/??

Background
Simulation of quantum systems is expensive:
Exponential time to simulate polynomial circuits.

Feynman: Can we exploit this fact to perform
computations more efficiently?

Shor: Factorisation in quantum polynomial time.

Grover: Blind search in

Can we build a quantum computer?

yes We can run quantum algorithms.

no Nature is classical after all!

MGS Xmas 04 – p.2/??

Background
Simulation of quantum systems is expensive:
Exponential time to simulate polynomial circuits.

Feynman: Can we exploit this fact to perform
computations more efficiently?

Shor: Factorisation in quantum polynomial time.

Grover: Blind search in

Can we build a quantum computer?

yes We can run quantum algorithms.

no Nature is classical after all!

MGS Xmas 04 – p.2/??

Background
Simulation of quantum systems is expensive:
Exponential time to simulate polynomial circuits.

Feynman: Can we exploit this fact to perform
computations more efficiently?

Shor: Factorisation in quantum polynomial time.

Grover: Blind search in
� � � �

Can we build a quantum computer?

yes We can run quantum algorithms.

no Nature is classical after all!

MGS Xmas 04 – p.2/??

Background
Simulation of quantum systems is expensive:
Exponential time to simulate polynomial circuits.

Feynman: Can we exploit this fact to perform
computations more efficiently?

Shor: Factorisation in quantum polynomial time.

Grover: Blind search in
� � � �

Can we build a quantum computer?

yes We can run quantum algorithms.

no Nature is classical after all!

MGS Xmas 04 – p.2/??

Background
Simulation of quantum systems is expensive:
Exponential time to simulate polynomial circuits.

Feynman: Can we exploit this fact to perform
computations more efficiently?

Shor: Factorisation in quantum polynomial time.

Grover: Blind search in
� � � �

Can we build a quantum computer?

yes We can run quantum algorithms.

no Nature is classical after all!

MGS Xmas 04 – p.2/??

Background
Simulation of quantum systems is expensive:
Exponential time to simulate polynomial circuits.

Feynman: Can we exploit this fact to perform
computations more efficiently?

Shor: Factorisation in quantum polynomial time.

Grover: Blind search in
� � � �

Can we build a quantum computer?

yes We can run quantum algorithms.

no Nature is classical after all!

MGS Xmas 04 – p.2/??

The quantum software crisis

Quantum algorithms are usually presented
using the circuit model.

Nielsen and Chuang, p.7, Coming up with
good quantum algorithms is hard.
Richard Josza, QPL 2004: We need to
develop quantum thinking!

MGS Xmas 04 – p.3/??

The quantum software crisis

Quantum algorithms are usually presented
using the circuit model.

Nielsen and Chuang, p.7, Coming up with
good quantum algorithms is hard.
Richard Josza, QPL 2004: We need to
develop quantum thinking!

MGS Xmas 04 – p.3/??

The quantum software crisis

Quantum algorithms are usually presented
using the circuit model.

Nielsen and Chuang, p.7, Coming up with
good quantum algorithms is hard.

Richard Josza, QPL 2004: We need to
develop quantum thinking!

MGS Xmas 04 – p.3/??

The quantum software crisis

Quantum algorithms are usually presented
using the circuit model.

Nielsen and Chuang, p.7, Coming up with
good quantum algorithms is hard.
Richard Josza, QPL 2004: We need to
develop quantum thinking!

MGS Xmas 04 – p.3/??

QML

QML: a first-order functional language for quantum
computations on finite types.

Design based on semantic analogy:

Finite classical computations

Finite quantum computations

Quantum control and quantum data.

Contraction is interpreted as sharing not cloning.

Control of decoherence,
hence no implicit weakening.

Compiler under construction (Jonathan)

MGS Xmas 04 – p.4/??

QML
QML: a first-order functional language for quantum
computations on finite types.

Design based on semantic analogy:

Finite classical computations

Finite quantum computations

Quantum control and quantum data.

Contraction is interpreted as sharing not cloning.

Control of decoherence,
hence no implicit weakening.

Compiler under construction (Jonathan)

MGS Xmas 04 – p.4/??

QML
QML: a first-order functional language for quantum
computations on finite types.

Design based on semantic analogy:� � �

Finite classical computations� �

Finite quantum computations

Quantum control and quantum data.

Contraction is interpreted as sharing not cloning.

Control of decoherence,
hence no implicit weakening.

Compiler under construction (Jonathan)

MGS Xmas 04 – p.4/??

QML
QML: a first-order functional language for quantum
computations on finite types.

Design based on semantic analogy:� � �

Finite classical computations� �

Finite quantum computations

Quantum control and quantum data.

Contraction is interpreted as sharing not cloning.

Control of decoherence,
hence no implicit weakening.

Compiler under construction (Jonathan)

MGS Xmas 04 – p.4/??

QML
QML: a first-order functional language for quantum
computations on finite types.

Design based on semantic analogy:� � �

Finite classical computations� �

Finite quantum computations

Quantum control and quantum data.

Contraction is interpreted as sharing not cloning.

Control of decoherence,
hence no implicit weakening.

Compiler under construction (Jonathan)

MGS Xmas 04 – p.4/??

QML
QML: a first-order functional language for quantum
computations on finite types.

Design based on semantic analogy:� � �

Finite classical computations� �

Finite quantum computations

Quantum control and quantum data.

Contraction is interpreted as sharing not cloning.

Control of decoherence,
hence no implicit weakening.

Compiler under construction (Jonathan)

MGS Xmas 04 – p.4/??

QML
QML: a first-order functional language for quantum
computations on finite types.

Design based on semantic analogy:� � �

Finite classical computations� �

Finite quantum computations

Quantum control and quantum data.

Contraction is interpreted as sharing not cloning.

Control of decoherence,
hence no implicit weakening.

Compiler under construction (Jonathan)

MGS Xmas 04 – p.4/??

Example: Hadamard operation

Matrix

QML

MGS Xmas 04 – p.5/??

Example: Hadamard operation

Matrix

� �
�

� �
� 	 �

QML

MGS Xmas 04 – p.5/??

Example: Hadamard operation

Matrix

� �
�

� �
� 	 �

QML
��
�� � � �
��
�� � �� � ������ ��� ��� �!" #$ 	 � % � &(') " *

� +�, � ��� ��� �!" # � &(') " *

MGS Xmas 04 – p.5/??

Deutsch algorithm-./ 021 3 021 3 021

-.4 5768:9; �=<?> @> �4 A> 5 A � � 6BC D E=F GIH JLKM N F OQPR M S

; T 9U �F OQPR M > BC D4; T 9U � E=F GIH JLKM N �WV X � F OQPR M S> �F OQPR M > 5 � �

9 8:Y 9� E �WV X � F GIH JLKM N F OQPR M S> �F GIH JLKM > 5 � � �

9 8:Y 9�F GIH JKM > BC D 5
; T 9U � E �WV X � F G H JKM N F OQPR M S> �4 > F OQPR M � �

9 8:Y 9� E=F G H JKM N �WV X � F OQPR M S> �4 > F G H JKM � � �

B U Z4 [<
MGS Xmas 04 – p.6/??

Overview

1. Finite classical computation

2. Finite quantum computation

3. QML

4. Conclusions and further work

MGS Xmas 04 – p.7/??

1. Finite classical computation

1. Finite classical computation

2. Finite quantum computation

3. QML

4. Conclusions and further work

MGS Xmas 04 – p.8/??

Classical computations on finite types

Quantum mechanics is time-reversible. . .

. . . hence quantum computation is based on reversible
operations.

However: Newtonian mechanics, Maxwellian
electrodynamics are also time-reversible. . .

. . . hence classical computation should be based on
reversible operations.

MGS Xmas 04 – p.9/??

Classical computations on finite types

Quantum mechanics is time-reversible. . .

. . . hence quantum computation is based on reversible
operations.

However: Newtonian mechanics, Maxwellian
electrodynamics are also time-reversible. . .

. . . hence classical computation should be based on
reversible operations.

MGS Xmas 04 – p.9/??

Classical computations on finite types

Quantum mechanics is time-reversible. . .

. . . hence quantum computation is based on reversible
operations.

However: Newtonian mechanics, Maxwellian
electrodynamics are also time-reversible. . .

. . . hence classical computation should be based on
reversible operations.

MGS Xmas 04 – p.9/??

Classical computations on finite types

Quantum mechanics is time-reversible. . .

. . . hence quantum computation is based on reversible
operations.

However: Newtonian mechanics, Maxwellian
electrodynamics are also time-reversible. . .

. . . hence classical computation should be based on
reversible operations.

MGS Xmas 04 – p.9/??

Classical computations on finite types

Quantum mechanics is time-reversible. . .

. . . hence quantum computation is based on reversible
operations.

However: Newtonian mechanics, Maxwellian
electrodynamics are also time-reversible. . .

. . . hence classical computation should be based on
reversible operations.

MGS Xmas 04 – p.9/??

Classical computation ()

Given finite sets (input) and (output):

� �

a finite set of initial heaps ,

an initial heap ,

a finite set of garbage states ,

a bijection ,

MGS Xmas 04 – p.10/??

Classical computation ()

Given finite sets (input) and (output):

\]^_ � ` a �

a finite set of initial heaps ,

an initial heap ,

a finite set of garbage states ,

a bijection ,

MGS Xmas 04 – p.10/??

Classical computation ()

Given finite sets (input) and (output):

\]^_ � ` a �

a finite set of initial heaps ,

an initial heap
bdc ,

a finite set of garbage states ,

a bijection c e f e ,

MGS Xmas 04 – p.10/??

Composing computations

�

>>
>>

>>
>>

88
88

88
8 �

�

��������

������� �

MGS Xmas 04 – p.11/??

Composing computations

g] hg �

>>
>>

>>
>>

88
88

88
8 g�

h �

��������

������� h�

h � g

MGS Xmas 04 – p.11/??

Extensional equality

A classical computation
induces a function U by

//

��

OO

U
//

We say that two computations are
extensionally equivalent, if they give rise to
the same function.

MGS Xmas 04 – p.12/??

Extensional equality

A classical computation i �$ j b j j %
induces a function U i c by

e k // e
lnm

��

oqpsr t uOO

U g //

We say that two computations are
extensionally equivalent, if they give rise to
the same function.

MGS Xmas 04 – p.12/??

Extensional equality

A classical computation i �$ j b j j %
induces a function U i c by

e k // e
lnm

��

oqpsr t uOO

U g //

We say that two computations are
extensionally equivalent, if they give rise to
the same function.

MGS Xmas 04 – p.12/??

Extensional equality . . .

Theorem:

U

$ v i % �$ U

% v$ U i %

Hence, classical computations upto extensional
equality give rise to the category .

Theorem: Any function on finite sets
can be realized by a computation.

Translation for Category Theoreticians:
U is full and faithful.

MGS Xmas 04 – p.13/??

Extensional equality . . .

Theorem:

U

$ v i % �$ U

% v$ U i %

Hence, classical computations upto extensional
equality give rise to the category .

Theorem: Any function on finite sets
can be realized by a computation.

Translation for Category Theoreticians:
U is full and faithful.

MGS Xmas 04 – p.13/??

Extensional equality . . .

Theorem:

U

$ v i % �$ U

% v$ U i %

Hence, classical computations upto extensional
equality give rise to the category .

Theorem: Any function
c

on finite setsj can be realized by a computation.

Translation for Category Theoreticians:
U is full and faithful.

MGS Xmas 04 – p.13/??

Extensional equality . . .

Theorem:

U

$ v i % �$ U

% v$ U i %

Hence, classical computations upto extensional
equality give rise to the category .

Theorem: Any function
c

on finite setsj can be realized by a computation.

Translation for Category Theoreticians:
U is full and faithful.

MGS Xmas 04 – p.13/??

Example � :
function wyx c $ � j � % �

wzx $ � j { % � �

computation

�

MGS Xmas 04 – p.14/??

Example � :
function wyx c $ � j � % �

wzx $ � j { % � �

computation � �

� �^}|~

MGS Xmas 04 – p.14/??

Example :

function �c � $ � j � %

�� �$ � j� %

computation

� '&%$!"#

MGS Xmas 04 – p.15/??

Example :

function �c � $ � j � %

�� �$ � j� %

computation � � � � � � �

� � � � '&%$!"# � � �

� � c $ � j � % $ � j � %

�$ � j� % �$ � j� %

�$ � j� % �$ � j � � %

MGS Xmas 04 – p.15/??

2. Finite quantum computation

1. Finite classical computation

2. Finite quantum computation

3. QML basics

4. Compiling QML

5. Conclusions and further work

MGS Xmas 04 – p.16/??

Pure quantum values

A pure quantum value over a finite set is
given by with unit norm:

is monadic, giving rise to the category
of (finite dimensional) vector spaces.

MGS Xmas 04 – p.17/??

Pure quantum values

A pure quantum value over a finite set is
given by

���c with unit norm:# # ��� # # � � c � # ��� � # � � �

is monadic, giving rise to the category
of (finite dimensional) vector spaces.

MGS Xmas 04 – p.17/??

Pure quantum values

A pure quantum value over a finite set is
given by

���c with unit norm:# # ��� # # � � c � # ��� � # � � �

is monadic, giving rise to the category
of (finite dimensional) vector spaces.

MGS Xmas 04 – p.17/??

Vector spaces as a monad

��� � � �� � � �

�� ��� �� c � � � � � �

�� ��� �� � � � �� � � � ���� � � � +, � �

$ � � � % c �� � �� ��� � $ � �� � % � � �

�� � � � � � � � � � �$ �� � %?� $ � � %# � � � � � � �� � � �

MGS Xmas 04 – p.18/??

Reversible quantum operations

Reversible operations on pure quantum
values are given by unitary operators.

On finite dimensional vector spaces:
unitary = norm preserving linear iso.

The inverse is given by the adjoint:

MGS Xmas 04 – p.19/??

Reversible quantum operations

Reversible operations on pure quantum
values are given by unitary operators.

On finite dimensional vector spaces:
unitary = norm preserving linear iso.

The inverse is given by the adjoint:

MGS Xmas 04 – p.19/??

Reversible quantum operations

Reversible operations on pure quantum
values are given by unitary operators.

On finite dimensional vector spaces:
unitary = norm preserving linear iso.

The inverse is given by the adjoint:

MGS Xmas 04 – p.19/??

Reversible quantum operations

Reversible operations on pure quantum
values are given by unitary operators.

On finite dimensional vector spaces:
unitary = norm preserving linear iso.

The inverse is given by the adjoint:�
� c $ � � � � % � �� �

�
� � � � � � � �¡ � � � $ � � %

MGS Xmas 04 – p.19/??

Quantum computations ()

Given finite sets (input) and (output):

� �

a finite set , the base of the space of initial
heaps,

a heap initialisation vector ,

a finite set , the base of the space of
garbage states,

a unitary operator unitary .

MGS Xmas 04 – p.20/??

Quantum computations ()
Given finite sets (input) and (output):

\]^_ � ` a �

a finite set , the base of the space of initial
heaps,

a heap initialisation vector ,

a finite set , the base of the space of
garbage states,

a unitary operator unitary .

MGS Xmas 04 – p.20/??

Quantum computations ()
Given finite sets (input) and (output):

\]^_ � ` a �

a finite set , the base of the space of initial
heaps,

a heap initialisation vector

�b c ,

a finite set , the base of the space of
garbage states,

a unitary operator c �

unitary .
MGS Xmas 04 – p.20/??

Composing quantum computations

�

>>
>>

>>
>>

88
88

88
8 �

�

��������

������� �

MGS Xmas 04 – p.21/??

Composing quantum computations

g] hg �

>>
>>

>>
>>

88
88

88
8 g�

h �

��������

������� h�

h � g

MGS Xmas 04 – p.21/??

Extensional equality?

. . . is a bit more subtle.

There is no (sensible) operator on vector
spaces replacing .

Indeed: Forgetting part of a pure state
results in a mixed state.

MGS Xmas 04 – p.22/??

Extensional equality?

. . . is a bit more subtle.

There is no (sensible) operator on vector
spaces replacing .

Indeed: Forgetting part of a pure state
results in a mixed state.

MGS Xmas 04 – p.22/??

Extensional equality?

. . . is a bit more subtle.

There is no (sensible) operator on vector
spaces replacing w x c e .

Indeed: Forgetting part of a pure state
results in a mixed state.

MGS Xmas 04 – p.22/??

Extensional equality?

. . . is a bit more subtle.

There is no (sensible) operator on vector
spaces replacing w x c e .

Indeed: Forgetting part of a pure state
results in a mixed state.

MGS Xmas 04 – p.22/??

Density operators

Mixed states are represented by density
operators (positive operators with
unit trace).

is interpreted as the system is in the
pure state with probability .

MGS Xmas 04 – p.23/??

Density operators

Mixed states are represented by density
operators ¢c � (positive operators with
unit trace).

is interpreted as the system is in the
pure state with probability .

MGS Xmas 04 – p.23/??

Density operators

Mixed states are represented by density
operators ¢c � (positive operators with
unit trace).¢ ��� � � ��� is interpreted as the system is in the
pure state

��� with probability

�
.

MGS Xmas 04 – p.23/??

Superoperators

Morphisms on mixed states are completely
positive linear operators on the space of
density operators, called superoperators.

Every unitary operator gives rise to a
superoperator .

There is an operator

super

called partial trace.

MGS Xmas 04 – p.24/??

Superoperators

Morphisms on mixed states are completely
positive linear operators on the space of
density operators, called superoperators.

Every unitary operator gives rise to a
superoperator .

There is an operator

super

called partial trace.

MGS Xmas 04 – p.24/??

Superoperators

Morphisms on mixed states are completely
positive linear operators on the space of
density operators, called superoperators.

Every unitary operator gives rise to a
superoperator

£
.

There is an operator

super

called partial trace.

MGS Xmas 04 – p.24/??

Superoperators

Morphisms on mixed states are completely
positive linear operators on the space of
density operators, called superoperators.

Every unitary operator gives rise to a
superoperator

£
.

There is an operator&'¥¤ r ¦ c �

super

called partial trace.

MGS Xmas 04 – p.24/??

Extensional equality

A quantum computation gives
rise to a superoperator U super

//

��

OO

U
//

We say that two computations are
extensionally equivalent, if they give rise to
the same superoperator.

MGS Xmas 04 – p.25/??

Extensional equality

A quantum computation i c gives
rise to a superoperator U i c �

super

§k //

¨z©ª

��

p « ¬ tOO

U g //

We say that two computations are
extensionally equivalent, if they give rise to
the same superoperator.

MGS Xmas 04 – p.25/??

Extensional equality

A quantum computation i c gives
rise to a superoperator U i c �

super

§k //

¨z©ª

��

p « ¬ tOO

U g //

We say that two computations are
extensionally equivalent, if they give rise to
the same superoperator.

MGS Xmas 04 – p.25/??

Extensional equality . . .

Theorem:

U

$ v i % �$ U

% v$ U i %

Hence, quantum computations upto extensional
equality give rise to the category .

Theorem: Every superoperator super

(on finite Hilbert spaces) comes from a quantum
computation.
(U is full and faithful).

MGS Xmas 04 – p.26/??

Extensional equality . . .

Theorem:

U

$ v i % �$ U

% v$ U i %

Hence, quantum computations upto extensional
equality give rise to the category .

Theorem: Every superoperator super

(on finite Hilbert spaces) comes from a quantum
computation.
(U is full and faithful).

MGS Xmas 04 – p.26/??

Extensional equality . . .

Theorem:

U

$ v i % �$ U

% v$ U i %

Hence, quantum computations upto extensional
equality give rise to the category .

Theorem: Every superoperator

c �

super

(on finite Hilbert spaces) comes from a quantum
computation.

(U is full and faithful).

MGS Xmas 04 – p.26/??

Extensional equality . . .

Theorem:

U

$ v i % �$ U

% v$ U i %

Hence, quantum computations upto extensional
equality give rise to the category .

Theorem: Every superoperator

c �

super

(on finite Hilbert spaces) comes from a quantum
computation.
(U is full and faithful).

MGS Xmas 04 – p.26/??

Classical vs quantum

classical () quantum ()

finite sets finite dimensional Hilbert spaces

bijections unitary operators

cartesian product () tensor product ()

functions superoperators

projections partial trace

MGS Xmas 04 – p.27/??

Classical vs quantum

classical (

� � �

) quantum (
� �

)

finite sets finite dimensional Hilbert spaces

bijections unitary operators

cartesian product () tensor product ()

functions superoperators

projections partial trace

MGS Xmas 04 – p.27/??

Classical vs quantum

classical (

� � �

) quantum (
� �

)

finite sets

finite dimensional Hilbert spaces

bijections unitary operators

cartesian product () tensor product ()

functions superoperators

projections partial trace

MGS Xmas 04 – p.27/??

Classical vs quantum

classical (

� � �

) quantum (
� �

)

finite sets finite dimensional Hilbert spaces

bijections unitary operators

cartesian product () tensor product ()

functions superoperators

projections partial trace

MGS Xmas 04 – p.27/??

Classical vs quantum

classical (

� � �

) quantum (
� �

)

finite sets finite dimensional Hilbert spaces

bijections

unitary operators

cartesian product () tensor product ()

functions superoperators

projections partial trace

MGS Xmas 04 – p.27/??

Classical vs quantum

classical (

� � �

) quantum (
� �

)

finite sets finite dimensional Hilbert spaces

bijections unitary operators

cartesian product () tensor product ()

functions superoperators

projections partial trace

MGS Xmas 04 – p.27/??

Classical vs quantum

classical (

� � �

) quantum (
� �

)

finite sets finite dimensional Hilbert spaces

bijections unitary operators

cartesian product (­)

tensor product ()

functions superoperators

projections partial trace

MGS Xmas 04 – p.27/??

Classical vs quantum

classical (

� � �

) quantum (
� �

)

finite sets finite dimensional Hilbert spaces

bijections unitary operators

cartesian product (­) tensor product (®)

functions superoperators

projections partial trace

MGS Xmas 04 – p.27/??

Classical vs quantum

classical (

� � �

) quantum (
� �

)

finite sets finite dimensional Hilbert spaces

bijections unitary operators

cartesian product (­) tensor product (®)
functions

superoperators

projections partial trace

MGS Xmas 04 – p.27/??

Classical vs quantum

classical (

� � �

) quantum (
� �

)

finite sets finite dimensional Hilbert spaces

bijections unitary operators

cartesian product (­) tensor product (®)
functions superoperators

projections partial trace

MGS Xmas 04 – p.27/??

Classical vs quantum

classical (

� � �

) quantum (
� �

)

finite sets finite dimensional Hilbert spaces

bijections unitary operators

cartesian product (­) tensor product (®)
functions superoperators

projections

partial trace

MGS Xmas 04 – p.27/??

Classical vs quantum

classical (

� � �

) quantum (
� �

)

finite sets finite dimensional Hilbert spaces

bijections unitary operators

cartesian product (­) tensor product (®)
functions superoperators

projections partial trace

MGS Xmas 04 – p.27/??

� ¯ , classically

wsx v �� � �

� '&%$!"# �

MGS Xmas 04 – p.28/??

� ¯ , classically

wsx v �� � �
� � � � � � �

� � � � '&%$!"# �

^±° ^}|~

MGS Xmas 04 – p.28/??

� ¯ , classically

wsx v �� � �
� � � � � � �

� � � � '&%$!"# �

^±° ^}|~
²

� �

MGS Xmas 04 – p.28/??

� ¯ , quantum

� � � � � � �

� � � � '&%$!"# �

^³° ^´|~

input:

output:

Decoherence!

MGS Xmas 04 – p.29/??

� ¯ , quantum

� � � � � � �

� � � � '&%$!"# �

^³° ^´|~
input:

� x µ � # � ¶ xµ � # � ¶ *

output:

Decoherence!

MGS Xmas 04 – p.29/??

� ¯ , quantum

� � � � � � �

� � � � '&%$!"# �

^³° ^´|~
input:

� x µ � # � ¶ xµ � # � ¶ *
output:

x � � # � ¶ * x � � # � ¶ *

Decoherence!

MGS Xmas 04 – p.29/??

� ¯ , quantum

� � � � � � �

� � � � '&%$!"# �

^³° ^´|~
input:

� x µ � # � ¶ xµ � # � ¶ *
output:

x � � # � ¶ * x � � # � ¶ *
Decoherence!

MGS Xmas 04 – p.29/??

Control of decoherence

QML is based on strict linear logic

Contraction is implicit and realized by .

Weakening is explicit and leads to
decoherence.

MGS Xmas 04 – p.30/??

Control of decoherence

QML is based on strict linear logic

Contraction is implicit and realized by .

Weakening is explicit and leads to
decoherence.

MGS Xmas 04 – p.30/??

Control of decoherence

QML is based on strict linear logic

Contraction is implicit and realized by �.

Weakening is explicit and leads to
decoherence.

MGS Xmas 04 – p.30/??

Control of decoherence

QML is based on strict linear logic

Contraction is implicit and realized by �.
Weakening is explicit and leads to
decoherence.

MGS Xmas 04 – p.30/??

3. QML

1. Finite classical computation

2. Finite quantum computation

3. QML

4. Conclusions and further work

MGS Xmas 04 – p.31/??

QML overview

Types

Terms

MGS Xmas 04 – p.32/??

QML overview

Types · � � # · ¸ # · ¸

Terms

MGS Xmas 04 – p.32/??

QML overview

Types · � � # · ¸ # · ¸
Terms � �� # +� �� � � �� � # � ��¹# $ % #$ � j � % # +� �$ � j { % � � �� �# � º¼» � # � º » ' �# � ½, � �(¾ � ��� º » � � # � º » ' { � ¿ *# � ½, � � �(¾ � ��� º » � � # � º » ' { � ¿ *# �$ À % � # $�Á % � *

MGS Xmas 04 – p.32/??

Qbits

� � � �

� &') " � � º¼» $ %

� ��� �!" � � º¼» ' $ %

�� � ����� � � +, � � ¿

�� ½, � ��� º » � # � º » ' � ¿ *

�� � � ���� � � � +, � � ¿

�� ½, � � ��� º » � # � º » ' � ¿ *

MGS Xmas 04 – p.33/??

QML overview . . .

Typing judgements
programs

strict programs

Semantics

MGS Xmas 04 – p.34/??

QML overview . . .

Typing judgementsÂ ÃÄ � · programsÂ Ã � Ä � · strict programs

Semantics

MGS Xmas 04 – p.34/??

QML overview . . .

Typing judgementsÂ ÃÄ � · programsÂ Ã � Ä � · strict programs

Semantics Â ÃÄ � ·ÅÄ Æ c Å Â Æ Å · Æ

Â Ã � Ä � ·ÅÄ Æ c � Å Â Æ Å · Æ

MGS Xmas 04 – p.34/??

The let-rule

Â ÃÄ � ·
j � � · Ã�Ç � ¸ " &Â ÃÉÈ Ê Ë � �Ä ÌÎÍ Ç � ¸

;;
;;

;

�

�����

�

;;
;;

;;

99
99

99
�

�

������

������ �

MGS Xmas 04 – p.35/??

The let-rule

Â ÃÄ � ·
j � � · Ã�Ç � ¸ " &Â ÃÉÈ Ê Ë � �Ä ÌÎÍ Ç � ¸

Â ÏÑÐÓÒ Ô Õ
;;

;;
;

Ö
×Ør Ù � Ö ����� Ú Û Ü

Ú �

;;
;;

;;

99
99

99 Ú�

× �

������

������ ×�

MGS Xmas 04 – p.35/??

on contexts

if dom

�

MGS Xmas 04 – p.36/??

on contexts

Â j � � · j � � · � $ Â % j � � ·Â j � � · � $ Â % j � � · if � Ýc

dom� �

�

MGS Xmas 04 – p.36/??

on contexts

Â j � � · j � � · � $ Â % j � � ·Â j � � · � $ Â % j � � · if � Ýc

dom� �
Â ÏÑÐÓÒ Ô Â

Ør Ù �

MGS Xmas 04 – p.36/??

Another source of decoherence

mentions

but doesn’t use it.

Hence, it has to measure it!

MGS Xmas 04 – p.37/??

Another source of decoherence

 �¡ � �

mentions� �¡ � �� � � �

 �¡ � �� � �� � ����� � &') " � +, � � &(') "

but doesn’t use it.

Hence, it has to measure it!

MGS Xmas 04 – p.37/??

Another source of decoherence

 �¡ � �

mentions� �¡ � �� � � �

 �¡ � �� � �� � ����� � &') " � +, � � &(') "

but doesn’t use it.

Hence, it has to measure it!

MGS Xmas 04 – p.37/??

Another source of decoherence

 �¡ � �

mentions� �¡ � �� � � �

 �¡ � �� � �� � ����� � &') " � +, � � &(') "

but doesn’t use it.

Hence, it has to measure it!

MGS Xmas 04 – p.37/??

-elim

::
::

:

�

�����

�

�

DD
DD

DD
�

�

zzzzzz �

MGS Xmas 04 – p.38/??

-elim

Þ ßáàâ ã äæåçè éâ ã ßêâ ëçè ìâ å ßáí â ë îðï ñòôóÞnõ ç ßáö÷ øù à ú û üþýÿ � é �ê � ýÿ � ì � í �â ë

::
::

:

�

�����

�

�

DD
DD

DD
�

�

zzzzzz �

MGS Xmas 04 – p.38/??

-elim

Þ ßáàâ ã äæåçè éâ ã ßêâ ëçè ìâ å ßáí â ë îðï ñòôóÞnõ ç ßáö÷ øù à ú û üþýÿ � é �ê � ýÿ � ì � í �â ë

Þõ ç ���
	��

�

::
::

:

���� ��� �

� ��� � � � �����

���
� ��� ë

�
 !#"�

�� �

DD
DD

DD

$�

��
% � �

zzzzzz

$&��

MGS Xmas 04 – p.38/??

-elim decoherence-free

::
::

:

�

�����

�

DD
DD

DD

�

zzzzzz �

MGS Xmas 04 – p.39/??

-elim decoherence-free

Þ ß' àâ ã ä åçè éâ ã ß(êâ ëçè ìâ å ß(í â ë ê)í ä+* ï ñòôó (Þõ ç ß' ö÷ ø ù (à ú û üþýÿ � é �ê � ý ÿ � ì � í �â ë

::
::

:

�

�����

�

DD
DD

DD

�

zzzzzz �

MGS Xmas 04 – p.39/??

-elim decoherence-free

Þ ß' àâ ã ä åçè éâ ã ß(êâ ëçè ìâ å ß(í â ë ê)í ä+* ï ñòôó (Þõ ç ß' ö÷ ø ù (à ú û üþýÿ � é �ê � ý ÿ � ì � í �â ë

Þõ ç ���
	��

�

::
::

:

���, ��- �

� ��� � � � �����

�/.
� ��� 0 �� 1�

ë

�2 �2

�. �

DD
DD

DD�, % - �

zzzzzz

$3.�

MGS Xmas 04 – p.39/??

4 5

This program has a type error, because
.

This program typechecks, because
.

MGS Xmas 04 – p.40/??

4 5

678 9 : ;=< > ? >

678 9 : ;�@ A BC D @ E FHGI J KMLN O G PHQ G J KMLN O

This program has a type error, because
.

This program typechecks, because
.

MGS Xmas 04 – p.40/??

4 5

678 9 : ;=< > ? >

678 9 : ;�@ A BC D @ E FHGI J KMLN O G PHQ G J KMLN O

This program has a type error, becauseR SUTV W R S TV W.

This program typechecks, because
.

MGS Xmas 04 – p.40/??

4 5

678 9 : ;=< > ? >

678 9 : ;�@ A BC D @ E FHGI J KMLN O G PHQ G J KMLN O

This program has a type error, becauseR SUTV W R S TV W.

XY 6 : < > ? >

XY 6 : @ A BC D @ E FHGI J Z\[]H^ O G PHQ G J KMLN O

This program typechecks, because
.

MGS Xmas 04 – p.40/??

4 5

678 9 : ;=< > ? >

678 9 : ;�@ A BC D @ E FHGI J KMLN O G PHQ G J KMLN O

This program has a type error, becauseR SUTV W R S TV W.

XY 6 : < > ? >

XY 6 : @ A BC D @ E FHGI J Z\[]H^ O G PHQ G J KMLN O

This program typechecks, becauseR _�` aMb W R SUTV W.
MGS Xmas 04 – p.40/??

4. QML

1. Finite classical computation

2. Finite quantum computation

3. QML

4. Conclusions and further work

MGS Xmas 04 – p.41/??

Conclusions

Our semantic ideas proved useful when
designing a quantum programming language,
analogous concepts are modelled by the
same syntactic constructs.

Our analysis also highlights the differences
between classical and quantum
programming.

Quantum programming introduces the
problem of control of decoherence, which we
address by making forgetting variables
explicit and by having different if-then-else
constructs.

MGS Xmas 04 – p.42/??

Conclusions
Our semantic ideas proved useful when
designing a quantum programming language,
analogous concepts are modelled by the
same syntactic constructs.

Our analysis also highlights the differences
between classical and quantum
programming.

Quantum programming introduces the
problem of control of decoherence, which we
address by making forgetting variables
explicit and by having different if-then-else
constructs.

MGS Xmas 04 – p.42/??

Conclusions
Our semantic ideas proved useful when
designing a quantum programming language,
analogous concepts are modelled by the
same syntactic constructs.

Our analysis also highlights the differences
between classical and quantum
programming.

Quantum programming introduces the
problem of control of decoherence, which we
address by making forgetting variables
explicit and by having different if-then-else
constructs.

MGS Xmas 04 – p.42/??

Conclusions
Our semantic ideas proved useful when
designing a quantum programming language,
analogous concepts are modelled by the
same syntactic constructs.

Our analysis also highlights the differences
between classical and quantum
programming.

Quantum programming introduces the
problem of control of decoherence, which we
address by making forgetting variables
explicit and by having different if-then-else
constructs.

MGS Xmas 04 – p.42/??

Further work

We have to analyze more quantum programs
to evaluate the practical usefulness of our
approach.

Are we able to come up with completely new
algorithms using QML?

How to deal with higher order programs?

How to deal with infinite datatypes?

Investigate the similarities/differences
between FCC and FQC from a categorical
point of view.

MGS Xmas 04 – p.43/??

Further work

We have to analyze more quantum programs
to evaluate the practical usefulness of our
approach.

Are we able to come up with completely new
algorithms using QML?

How to deal with higher order programs?

How to deal with infinite datatypes?

Investigate the similarities/differences
between FCC and FQC from a categorical
point of view.

MGS Xmas 04 – p.43/??

Further work

We have to analyze more quantum programs
to evaluate the practical usefulness of our
approach.

Are we able to come up with completely new
algorithms using QML?

How to deal with higher order programs?

How to deal with infinite datatypes?

Investigate the similarities/differences
between FCC and FQC from a categorical
point of view.

MGS Xmas 04 – p.43/??

Further work

We have to analyze more quantum programs
to evaluate the practical usefulness of our
approach.

Are we able to come up with completely new
algorithms using QML?

How to deal with higher order programs?

How to deal with infinite datatypes?

Investigate the similarities/differences
between FCC and FQC from a categorical
point of view.

MGS Xmas 04 – p.43/??

Further work

We have to analyze more quantum programs
to evaluate the practical usefulness of our
approach.

Are we able to come up with completely new
algorithms using QML?

How to deal with higher order programs?

How to deal with infinite datatypes?

Investigate the similarities/differences
between FCC and FQC from a categorical
point of view.

MGS Xmas 04 – p.43/??

Further work

We have to analyze more quantum programs
to evaluate the practical usefulness of our
approach.

Are we able to come up with completely new
algorithms using QML?

How to deal with higher order programs?

How to deal with infinite datatypes?

Investigate the similarities/differences
between FCC and FQC from a categorical
point of view.

MGS Xmas 04 – p.43/??

The end

Thank you for your attention.

Draft paper: quant-ph/0409065 from arxiv.org

MGS Xmas 04 – p.44/??

	Background
	The quantum software crisis
	QML
	Example: Hadamard operation
	Deutsch algorithm
	Overview
	1. Finite classical computation
	Classical computations on finite types
	Classical computation ($FCC $)
	Composing computations
	Extensional equality
	Extensional equality dots
	Example ensuremath {pi _1} :
	Example ensuremath {delta } :
	2. Finite quantum computation
	Pure quantum values
	Vector spaces as a monad
	Reversible quantum operations
	Quantum computations ($FQC $)
	Composing quantum computations
	Extensional equality?
	Density operators
	Superoperators
	Extensional equality
	Extensional equality dots
	Classical vs quantum
	ensuremath {pi _1mathbin {circ }delta }, classically
	ensuremath {pi _1mathbin {circ }delta }, quantum
	Control of decoherence
	3. QML
	QML overview
	Qbits
	QML overview dots
	The let-rule
	$otimes $ on contexts
	Another source of decoherence
	$oplus $-elim
	$oplus $-elim decoherence-free
	ensuremath {mathbf {if}^circ }
	4. QML
	Conclusions
	Further work
	The end

