HoTT Christmas

You guys are both my witnesses... He insinuated that

ZFC set theory is superior to Type Theory!

Thorsten Altenkirch
Functional Programming Laboratory
School of Computer Science



How do we teach Mathematics?

@ Use informal set theory?

@ Definition

ANB:={z|x€ ANz € B}
@ But what is

NNB



More stupid questions
Ax B CP(P(AUB))?

A— BC P(A x B}



What is the problem?

@ In set theory we can ask questions about
the intensional properties of constructions

like N,B, x,—
@ Also their definitions seem quite arbitrary.

@ This is a consequence of the idea that

elements of setfs exist independently of the
set they inhabit.



The alternative

Per Martin-Lof Vladimir Voevodsky

= Homotopy Type Theory (HoTT)



Types come first!

@ In Type Theory elements of a type do not
exist in isolation of the type they inhabit!

@ In Set Theory a € A is a proposition
in Type Theory a: A is a judgment.

@ We cannot define AN B, AUB,A C Bon
arbitrary types.



Univalence

® Because we cannot talk about intensional
properties of constructions ...

@ ... all constructions are invariant under
extensional equivalence.

@ This is expressed formally by Voevodsky's
univalence principle.



Type Theory for
dummies



Constructions in
Type Theory

Functions

o - special case of lltypes
Tuples
AXxB special case of 2 types
B Bool,
special case of a finite type
N natural numbers
special case of a free type
=8 equality types

Typ S¥ universes




Anatomy of a type

Formation How to form a type?

..................................................................................................................................................................................

..................................................................................................................................................................................

éHow to define non-dependent
 functions from a type?

..................................................................................................................................................................................

Non-dependent elimination

How to define dependent
functions from a type?

..................................................................................................................................................................................

Computation How to compute?




Anatomy of a type

Formation How to form a type?

..................................................................................................................................................................................

..................................................................................................................................................................................

How to define dependent
functions from a type?

..................................................................................................................................................................................

Computation How to compute?




Example : tuples

: If
Formation A, B : Type

then
A x B : Type




Example : tuples

_ If
Introduction a . A, b: B
| then
(a,b) : Ax B




Example : tuples

To define

Non-dependent elimination i f Ax B —C
we need

..................................................................................................................................................................................

Computation i (a, b) =qgab




Example : tuples

To define
g Ip. A2 B.Cp

Dependent elimination
we need

C:Ax B — Type Eg Ila : AIlb: B.C (a,b)

..................................................................................................................................................................................

Computation i (a, b) =qgab




Eliminator

® The dependent elimination principle can also
be expressed by an eliminator

Eaxp: HC:AXB—)TypeHg:Ha:AHb:B.C (a,,b)Hp A X Bcp

@ with the computation rule

FaxpCgl(a,b) =gab



Propositions as types

@ Using the idea to identify a proposition with
the type of its proofs

@ we can use dependent elimination to prove
things.

@ E.q. lIp: A X B.(m1p,m2p) =D.

@ where 7; : A1 X As — A; can be defined
using non-dependent elimination



Canonicity

@ The elimination principle makes sure that all
functions applied to canonical elements can
be eliminated.

@ All closed terms of a type are
computationally equal (=) to a term built
from constructors.



Equality for beginners



Example : equality

: If
Formation a,b: A
; then
a=40:Type




Example : equality

| If
Introduction a: A
| then
refla:a =4 a




Example : equality

E To define
éf:Hm:A,a:aj%Pw

Non-dependent elimination
' we need

..................................................................................................................................................................................

Computation f a (reﬂ a) = (




Example : equality

To define

Dependent elimination i ok R

we need

g: Pa(refla)

..................................................................................................................................................................................

P:llx: A.a =z — Type

Computation f a (reﬂ a) = (




The structure of
equality types

@ Using the elimination principle we can show
that all types have the structure of a
groupoid.

reﬂ . HCL:A,CL:CL )\ . Ha,bAHp:a’:bapo(reﬂa,):p
(_)—1 : Ha,b;A,a:b%b:a ek Ha,b:AHpia:b,(reﬂb)Op:p

— ov= MRy T ADT= e — G R G R

@ Each function gives rise to a functor: for
f:A— B we have

Feoa Tl it e (e Ry



The structure of
equality types

@ Using the elimination principle we can show
that all types have the structure of an

w -groupoid.
rel : Ila:A,a=a A Tapallp:a=b,po(refla) =p
(- h s e b S p o Tpallp:a=b,(refib) op =p
— o G b AD =€ — 0= GEERaEEC

@ Each function gives rise to an w-functor: for
f:A— B we have

Feoa Tl it e (e Ry



Univalence for cat lovers



Propositions

@ We say that a type is a proposition (or a
(-1)-type) if all elements are equal.

@ Hence the only observable property of this
type is wether it is inhabited.



Sets

@ We say that a type is a set (or a O-type) if
all its equalities are propositions.

@ In general we say that a type is an (n+1)-
type if all its equalities are n-types



Univalence for propositions

@ We define logical equivalence having
functions in both directions.

A<= B=f:A— B
g:B— A
@ Univalence for propositions implies that
equality for propositions is logically
equivalent to logical equivalence.

FA' =150 — " A ="



Univalence for sets

@ Isomorphism is a refinement of logical
equivalence: A4~ B .—
>f:A— B
g:B— A
n:lla: A,g(fa) =a
e:1lb: B, f(gb) =b
@ Univalence for sets implies that equality for
sets Is isomorphic to isomorphism:

(A =8B ~ (A~ By



Univalence for types

@ Equivalence is a refinement of isomorphism:
AR —

>f:A— B
g:B—> A
n:lla:A,g(fa)=a
e:1lb: B,f(gb) =0
0:1la: A, f~ (na) =¢(fa)
@ Univalence implies that equality for types is
equivalent to equivalence:

(A = Biwasil s By



Canonicity ?

® We add univalence as a constant :
f:A=B—>AZ=HB
uval : isEquivalence f

@ However, this destroys the computational
symmetry of introduction and elimination for
equality types.



What I would have
talked about fo a
more sophisticated

audience



Cubical Type Theory

@ We consider an alternative presentation of
equality types where equality is defined as a
logical relation.

@ Since we have fo deal with dependent types
this we have to use heterogenous equality.

@ This is related to internal parametricity ala
Bernardy and Moulin...

@ ...and Coquand & Hubers work on the
constructive cubical set model.



Back to the future



How should we teach Mathematics?

@ Use informal Type Theory!

@ Encourages sensible use of Mathematics!

@ Given A, B : X — Prop define

ANB: X — Prop
(ANB)x=Ax A Bx

Homotopy
Type Theory




