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Simple inductive types

The type of ordinal notations 2 : Set is given by the following
constructors:

0:Q
suc: Q — Q
lim: (N— Q) —Q
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W-types

Given S : Set (shapes) and P : S — Set we define W : Set by the
following constructor:

sup: (s:S)(f: Ps— W) —->W
All strictly positive simple inductive types can be reduced to W-types.

Example Q

S = {zero, suc, lim}

Pzero =0
Psuc=1
Plim = Nat

W-types are the initial algebras of (non-dependent, unary) containers /
polynomial functors.
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Simple Inductive Types

References

Representing Inductively Defined Sets by Wellorderings in
Martin-Lof’s Type Theory

Peter Dybjer. TCS 1997

Categories of Containers
Michael Gordon Abbott, Thorsten Altenkirch, Neil Ghani . FoSSaCS 2003 )

Categories of Containers
Michael Gordon Abbott. PhD thesis. 2003

Containers: Constructing strictly positive types
Michael Gordon Abbott, Thorsten Altenkirch, Neil Ghani TCS 2005

Thorsten Altenkirch (Nottingham) Inductive Types December 19, 2019 5/32



Inductive Families

Inductive Families

Given inductive defintions Ty : Set generated from o : Ty and
_= _:Ty — Ty — Ty and Con : Set with constructors e : Con and
_,—: Con — Ty — Con we define

Tm : Con — Ty — Set

as given by the following constructors

zero : (I': Con)(A: Ty) — Tm (I, A) A

suc: (I: Con)(AB:Ty) - TmlIA— Tm(l,B)A

app: (I : Con)(AB:Ty) - TmlN (A= B) - TmlA— Tml B
lam : (I : Con)(AB: Ty) - Tm (I, A) B — TmTl (A= B)
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Indexed W-Types

Given

| : Set
S: ] — Set
P:(i:l)—Si—1|— Set

we define WI: | — Set as given by
sup: (i )(s:S(F:(:1)— Pisj— WIj)— WIi

Inductive Families can be reduced to indexed W-types.

Indexed W-types are initial algebras of indexed containers / dependent
polynomial functors.
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Inductive Families

Indexed W-types can be reduced to W-types

Given
I : Set
S: 1 — Set
P:(i:l)—Si—1— Set
we define
S : Set
S=%i:15i
P:S5— Set
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Inductive Families

up: Wop — Wy
down: Wy — 1 —> W
up (sup (/,s) f) = sup ((/, (i,s)),up o f)
down (sup (i,s) f)j = sup (j, (i, 5)) AU, p).down j (f (j, p))

WI: | — Set
WIi=2YXw: Wop.upw = downiw

Needs UIP!
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Observation by C.Sattler

up: Wop — Wy
down: Wy — 1 > W
up (sup (7,s) f) = sup ((/, (i,s)),up o f)
down (sup (i,s) f)j = sup (j, (i, 5)) AU, p).down j (f (j, p))

WI: | — Set
WIi=%w,w : Wo.upw = down iw’

Correct without UIP.
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Inductive Families
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Inductive-Inductive Types

Inductive-Inductive types
Mutual inductive types, where one type depends upon another.

Arise for example when defining dependently typed syntax.

Con : Set
Ty : Con — Set

o : Con
o -:(I:Con) — Tyl — Con

(F:Con) — Tyl

T (M: Con)(A: TylN)(B:Ty(l,A) — Tyl

We can reduce Inductive-Inductive types to inductive families.
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Inductive-Inductive Types

1. Preterms

COIIO
Ty
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2. Well-typedness

Cong :
Tyl .

o]

1o

u1

Cong — Set
Cong — Tyy — Set

: Conj eg

{l: Cong} — Cony ' - {A: Ty} — Ty; T A — Cony ([0 A)

:{l: Cong} — ConyI — Tyq (ugl)
:{l: Cong} — Cony ' — {A: Tyg} — Ty, TA

—{B:Tyg} = Ty; (loA)B— Ty, (miAB)
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3. The 2-construction

Con : Set
Con = XTI : Cong.Con;y Gy
Ty : Con — Set
Ty (I, T) = XA : Ty, Ty, T A

We can derive all the constructors for the specified inductive-inductive
types, e.g.

,_:(F:Con) = Tyl — Con
(r’ I:)v (A,A) = (raO A, |=,1 /Z\)
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Initiality

But how can we show initiality / derive the eliminator?

Given an algebra C : Set, T : C — Set, ... we have to mutually define

fcon : Con — C
=~ (I': Cong) — Cony I — C
fry - (M : Con) = Tyl — T (foon )
= (A: Tyg)(T : Cong)

—(M:Cony N — Ty, TA
— T (foon I'T)

Which seems impossible to do directly.
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Inductive-Inductive Types

Initiality using relations (A.Kovacs)
We inductively define the graph of the functions:

Cony : Cong — C — Set
Ty, : Tyg — (¢ : C) = Tc — Set

and show mutually (but non-dependently) :

(I : Cong) — Con; I' — isContractible (Xc : C.Cony I ¢)
(A: Tyq)(I : Cony)
— (T :Cony M) — Ty, T A
— isContractible (Xc: C,t: Tc.Conp ¢ x Ty, Act)
where isContractible X = Xx: X.(y : X) = x =y

From this we can extract fcon and fry and show initiality.

This construction requires UIP. We should be able to exploit Jasper
Hugunin's construction to avoid this.
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Reducing Inductive-Inductive Types

Can we do this in general?

What does this mean? What is a general notion of Inductive-Inductive
Types?

There is no simple functorial semantics. We can’t understand
Inductive-Inductive types as an initial algebra of a functor.

Thorsten Altenkirch (Nottingham) Inductive Types December 19, 2019 18 / 32



Inductive-Inductive Types
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QITs and HITs

Quotient Inductive Types (QITs)

Given P : Set we define Tree : Set (permutable P-branching trees)
inductively:

leaf : Tree
node : (P — Tree) — Tree
perm : (7 : P = P)(f : P — Tree) — node f = node (f o)

QITs are a special case of HITs (Higher Inductive Types) in a truncated
setting (with UIP).

Alternatively we can view them as HITs with a truncation constructor, e.g.

trunc : (tu: Tree P)(pg:t=u) - p=gq

We know that it is impossible to reduce QITs to W-types and quotients.

Combining inductive-inductive types and QITs lead to Quotient
Inductive-Inductive Types (QIT
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What is a QIIT exactly?

We define a universal QIIT: the theory of signatures.

We define the intrinsic syntax of type theory as a QIIT.

Con : Set

Ty : Con — Set

Tm : (I: Con) — Tyl — Set
Tms : Con — Con — Set

such that the algebras correspond to categories with families (CwFs)
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QITs and HITs

We add the following features:

A universe

u:{l:Con} — Tyl
el : {l': Con} - Tmlu— Tyl

lN-types with small domains
m:{l:Con} — (a: Tmlu) — (Ty([,ela)) » Tyl

with app but no A.
Equality types with small arguments

eq:{l:Con} - TmlMu— Tmlu— Tyl

with refl but no eliminator.
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QITs and HITs

Contexts in this theory correspond to QIITs, e.g. we can define the natural
numbers as the following context 'y : Con:

N:u,z:elN,s:7(x:N)(elN)

To be able also to define types and constructors with external parameters
(such as lists or vectors) we add:

[N-types over meta-level types

M:{r:Con}(X:Set) = (X - Tyl — Tyl
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QITs and HITs

Semantics of the theory of signatures

We can define the semantics of QIITs by induction over the syntax. | only
give the types for [ : Con here:

Algebras

A Set

M=%XN:Set,z:N,s: N—> N

Algebra morphisms

™ .TA 5 TA s Set

(N, zs)(N,Z,s) =
YF:N—=N fz=2 (x:N)— f(sx)=5(fx)
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QITs and HITs

Displayed algebras
o4 - Set

(N, z5) =
IM:N—Set,Mz,(x:N)— Mx — M(sx)

Sections of displayed algebras

(AT -5 TP A Set

(N, z,s) (N, 2Z,s) =
Yf:i(x:N)—= Nx,fz=2,
(x: N)(X' : N'x) = f(sx)=5"xx
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QITs and HITs

Initiality vs eliminator

We say an algebra A : ' is initial if for all algebras X : ' the type
' A X is contractible.

An algebra A : T has an eliminator if for all displayed algebras M : [P A
has a section I'* A M.

We can show that the two notions are equivalent.
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QITs and HITs

Universality

We can actually construct initial algebras for all QlITs definable in the
theory of signatures using the theory of signatures itself.

So for example we can construct the initial algebra for natural numbers:

UN - FI@
pn = (TmTy N, z, A\t.st)
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Infinitely branching QIITs

However, we can only define finitely branching QIITs in the theory
presented so far.

To construct infinitely branching QIITs we need to add

Small TM-types over external sets

M:{l: Con}(X:Set) - (X - Tmlu) - Tmlu

However, in this case our proof doesn't work (we need univalence and set
truncation at the same time).
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From QIITs to HIITs

Conservative 2-level type theory:
strict types Type® with a strict equality ().
fibrant types Type with a univalent equality (=).

We define the theory of codes as an Type® QIIT.

The interpretation I etc maps into fibrant types.

However, we cannot prove the equivalence of induction and elimination
because it relies on truncation.

Current work (C.Sattler): use complete Segal types (in a semisimplicial
setting). The universe is interpreted by left fibrations.
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QITs and HITs
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Discussion

A map of inductive types

W
Wi “ gl
{\ i = el Sutle
IF
[\ 5
.

o oWT

T
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Discussion

Open questions

Reduce infinitary inductive-inductive types to W-types.

Define a universal QIIT with infinitary branching trees.
(A. Kovacs is working on this)

Extend the results for QIITs to HIITs.
Find simple universal types for QITs (QW) and HITs (HW).
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