On Inductive Types

Thorsten Altenkirch

Functional Programming Laboratory
School of Computer Science
University of Nottingham

December 19, 2019

Thorsten Altenkirch (Nottingham) Inductive Types

NS
Types of types

@ Inductive Types
@ Coinductive Types

@ Universes

Thorsten Altenkirch (Nottingham) Inductive Types

Simple inductive types

The type of ordinal notations 2 : Set is given by the following
constructors:

0:Q
suc: Q — Q
lim: (N— Q) —Q

Thorsten Altenkirch (Nottingham) Inductive Types

W-types

Given S : Set (shapes) and P : S — Set we define W : Set by the
following constructor:

sup: (s:S)(f: Ps— W) —->W
All strictly positive simple inductive types can be reduced to W-types.

Example Q

S = {zero, suc, lim}

Pzero =0
Psuc=1
Plim = Nat

W-types are the initial algebras of (non-dependent, unary) containers /
polynomial functors.

Thorsten Altenkirch (Nottingham) Inductive Types December 19, 2019 4 /32

Simple Inductive Types

References

Representing Inductively Defined Sets by Wellorderings in
Martin-Lof’s Type Theory

Peter Dybjer. TCS 1997

Categories of Containers
Michael Gordon Abbott, Thorsten Altenkirch, Neil Ghani . FoSSaCS 2003)

Categories of Containers
Michael Gordon Abbott. PhD thesis. 2003

Containers: Constructing strictly positive types
Michael Gordon Abbott, Thorsten Altenkirch, Neil Ghani TCS 2005

Thorsten Altenkirch (Nottingham) Inductive Types December 19, 2019 5/32

Inductive Families

Inductive Families

Given inductive defintions Ty : Set generated from o : Ty and
_= _:Ty — Ty — Ty and Con : Set with constructors e : Con and
_,—: Con — Ty — Con we define

Tm : Con — Ty — Set

as given by the following constructors

zero : (I': Con)(A: Ty) — Tm (I, A) A

suc: (I: Con)(AB:Ty) - TmlIA— Tm(l,B)A

app: (I : Con)(AB:Ty) - TmlN (A= B) - TmlA— Tml B
lam : (I : Con)(AB: Ty) - Tm (I, A) B — TmTl (A= B)

Thorsten Altenkirch (Nottingham) Inductive Types December 19, 2019 6 /32

Indexed W-Types

Given

| : Set
S:] — Set
P:(i:l)—Si—1|— Set

we define WI: | — Set as given by
sup: (i)(s:S(F:(:1)— Pisj— WIj)— WIi

Inductive Families can be reduced to indexed W-types.

Indexed W-types are initial algebras of indexed containers / dependent
polynomial functors.

Thorsten Altenkirch (Nottingham) Inductive Types December 19, 2019

7/32

Inductive Families

Indexed W-types can be reduced to W-types

Given
I : Set
S: 1 — Set
P:(i:l)—Si—1— Set
we define
S : Set
S=%i:15i
P:S5— Set

Thorsten Altenkirch (Nottingham) Inductive Types December 19, 2019

8 /32

Inductive Families

up: Wop — Wy
down: Wy — 1 —> W
up (sup (/,s) f) = sup ((/, (i,s)),up o f)
down (sup (i,s) f)j = sup (j, (i, 5)) AU, p).down j (f (j, p))

WI: | — Set
WIi=2YXw: Wop.upw = downiw

Needs UIP!

Thorsten Altenkirch (Nottingham) Inductive Types December 19, 2019

9/32

Observation by C.Sattler

up: Wop — Wy
down: Wy — 1 > W
up (sup (7,s) f) = sup ((/, (i,s)),up o f)
down (sup (i,s) f)j = sup (j, (i, 5)) AU, p).down j (f (j, p))

WI: | — Set
WIi=%w,w : Wo.upw = down iw’

Correct without UIP.

Thorsten Altenkirch (Nottingham) Inductive Types December 19, 2019

10 / 32

Inductive Families

References

Inductive Families
Peter Dybjer. Formal Asp. Comput. (1994)

Wellfounded Trees and Dependent Polynomial Functors
Nicola Gambino, Martin Hyland: TYPES 2003: 210-225

Indexed Containers
Thorsten Altenkirch, Peter Morris: LICS 2009: 277-285

Indexed containers
Thorsten Altenkirch, Neil Ghani, Peter Hancock, Conor McBride, Peter
Morris: J. Funct. Program. 25 (2015)

Thorsten Altenkirch (Nottingham) Inductive Types December 19, 2019 11 /32

Inductive-Inductive Types

Inductive-Inductive types
Mutual inductive types, where one type depends upon another.

Arise for example when defining dependently typed syntax.

Con : Set
Ty : Con — Set

o : Con
o -:(I:Con) — Tyl — Con

(F:Con) — Tyl

T (M: Con)(A: TylN)(B:Ty(l,A) — Tyl

We can reduce Inductive-Inductive types to inductive families.
Thorsten Altenkirch (Nottingham) Inductive Types December 19, 2019

12 /32

Inductive-Inductive Types

1. Preterms

COIIO
Ty

Thorsten Altenkirch (Nottingham)

®0

0-"

Uo

o

: Set
: Set

. Cono

Cong — Tyy — Cong

: Cong — Ty,
. Cono — TyO — TyO — TyO

Inductive Types

2. Well-typedness

Cong :
Tyl .

o]

1o

u1

Cong — Set
Cong — Tyy — Set

: Conj eg

{l: Cong} — Cony ' - {A: Ty} — Ty; T A — Cony ([0 A)

:{l: Cong} — ConyI — Tyq (ugl)
:{l: Cong} — Cony ' — {A: Tyg} — Ty, TA

—{B:Tyg} = Ty; (loA)B— Ty, (miAB)

Thorsten Altenkirch (Nottingham) Inductive Types December 19, 2019 14 / 32

3. The 2-construction

Con : Set
Con = XTI : Cong.Con;y Gy
Ty : Con — Set
Ty (I, T) = XA : Ty, Ty, T A

We can derive all the constructors for the specified inductive-inductive
types, e.g.

,_:(F:Con) = Tyl — Con
(r’ I:)v (A,A) = (raO A, |=,1 /Z\)

Thorsten Altenkirch (Nottingham) Inductive Types December 19, 2019

15 / 32

Initiality

But how can we show initiality / derive the eliminator?

Given an algebra C : Set, T : C — Set, ... we have to mutually define

fcon : Con — C
=~ (I': Cong) — Cony I — C
fry - (M : Con) = Tyl — T (foon)
= (A: Tyg)(T : Cong)

—(M:Cony N — Ty, TA
— T (foon I'T)

Which seems impossible to do directly.

Thorsten Altenkirch (Nottingham) Inductive Types December 19, 2019

16 / 32

Inductive-Inductive Types

Initiality using relations (A.Kovacs)
We inductively define the graph of the functions:

Cony : Cong — C — Set
Ty, : Tyg — (¢ : C) = Tc — Set

and show mutually (but non-dependently) :

(I : Cong) — Con; I' — isContractible (Xc : C.Cony I ¢)
(A: Tyq)(I : Cony)
— (T :Cony M) — Ty, T A
— isContractible (Xc: C,t: Tc.Conp ¢ x Ty, Act)
where isContractible X = Xx: X.(y : X) = x =y

From this we can extract fcon and fry and show initiality.

This construction requires UIP. We should be able to exploit Jasper
Hugunin's construction to avoid this.

Thorsten Altenkirch (Nottingham) Inductive Types December 19, 2019 17 / 32

Reducing Inductive-Inductive Types

Can we do this in general?

What does this mean? What is a general notion of Inductive-Inductive
Types?

There is no simple functorial semantics. We can’t understand
Inductive-Inductive types as an initial algebra of a functor.

Thorsten Altenkirch (Nottingham) Inductive Types December 19, 2019 18 / 32

Inductive-Inductive Types

References

Inductive-inductive definitions
Fredrik Nordvall Forsberg. PhD thesis. 2013.

Constructing Inductive-Inductive Types in Cubical Type Theory
Jasper Hugunin. FoSSaCS 20109:

For Induction-Induction, Induction is Enough

Ambrus Kaposi, Andras Kovacs. Ambroise Lafont. Submitted to TYPES
2019 postproceedings.

Higher Inductive Types, Inductive Families, and Inductive-Inductive
Types
Jakob von Raumer. PhD thesis. 2019+

Thorsten Altenkirch (Nottingham) Inductive Types December 19, 2019 19 / 32

QITs and HITs

Quotient Inductive Types (QITs)

Given P : Set we define Tree : Set (permutable P-branching trees)
inductively:

leaf : Tree
node : (P — Tree) — Tree
perm : (7 : P = P)(f : P — Tree) — node f = node (f o)

QITs are a special case of HITs (Higher Inductive Types) in a truncated
setting (with UIP).

Alternatively we can view them as HITs with a truncation constructor, e.g.

trunc : (tu: Tree P)(pg:t=u) - p=gq

We know that it is impossible to reduce QITs to W-types and quotients.

Combining inductive-inductive types and QITs lead to Quotient
Inductive-Inductive Types (QIT

Thorsten Altenkirch (Nottingham) Inductive Types December 19, 2019 20 / 32

What is a QIIT exactly?

We define a universal QIIT: the theory of signatures.

We define the intrinsic syntax of type theory as a QIIT.

Con : Set

Ty : Con — Set

Tm : (I: Con) — Tyl — Set
Tms : Con — Con — Set

such that the algebras correspond to categories with families (CwFs)

Thorsten Altenkirch (Nottingham) Inductive Types December 19, 2019 21 /32

QITs and HITs

We add the following features:

A universe

u:{l:Con} — Tyl
el : {l': Con} - Tmlu— Tyl

lN-types with small domains
m:{l:Con} — (a: Tmlu) — (Ty([,ela)) » Tyl

with app but no A.
Equality types with small arguments

eq:{l:Con} - TmlMu— Tmlu— Tyl

with refl but no eliminator.

Thorsten Altenkirch (Nottingham) Inductive Types December 19, 2019 22 /32

QITs and HITs

Contexts in this theory correspond to QIITs, e.g. we can define the natural
numbers as the following context 'y : Con:

N:u,z:elN,s:7(x:N)(elN)

To be able also to define types and constructors with external parameters
(such as lists or vectors) we add:

[N-types over meta-level types

M:{r:Con}(X:Set) = (X - Tyl — Tyl

Thorsten Altenkirch (Nottingham) Inductive Types December 19, 2019 23 /32

QITs and HITs

Semantics of the theory of signatures

We can define the semantics of QIITs by induction over the syntax. | only
give the types for [: Con here:

Algebras

A Set

M=%XN:Set,z:N,s: N—> N

Algebra morphisms

™ .TA 5 TA s Set

(N, zs)(N,Z,s) =
YF:N—=N fz=2 (x:N)— f(sx)=5(fx)

Thorsten Altenkirch (Nottingham) Inductive Types December 19, 2019 24 / 32

QITs and HITs

Displayed algebras
o4 - Set

(N, z5) =
IM:N—Set,Mz,(x:N)— Mx — M(sx)

Sections of displayed algebras

(AT -5 TP A Set

(N, z,s) (N, 2Z,s) =
Yf:i(x:N)—= Nx,fz=2,
(x: N)(X' : N'x) = f(sx)=5"xx

Thorsten Altenkirch (Nottingham) Inductive Types December 19, 2019

25 /32

QITs and HITs

Initiality vs eliminator

We say an algebra A : ' is initial if for all algebras X : ' the type
' A X is contractible.

An algebra A : T has an eliminator if for all displayed algebras M : [P A
has a section I'* A M.

We can show that the two notions are equivalent.

Thorsten Altenkirch (Nottingham) Inductive Types December 19, 2019 26 / 32

QITs and HITs

Universality

We can actually construct initial algebras for all QlITs definable in the
theory of signatures using the theory of signatures itself.

So for example we can construct the initial algebra for natural numbers:

UN - FI@
pn = (TmTy N, z, A\t.st)

Thorsten Altenkirch (Nottingham) Inductive Types December 19, 2019 27 / 32

Infinitely branching QIITs

However, we can only define finitely branching QIITs in the theory
presented so far.

To construct infinitely branching QIITs we need to add

Small TM-types over external sets

M:{l: Con}(X:Set) - (X - Tmlu) - Tmlu

However, in this case our proof doesn't work (we need univalence and set
truncation at the same time).

Thorsten Altenkirch (Nottingham) Inductive Types December 19, 2019 28 / 32

From QIITs to HIITs

Conservative 2-level type theory:
strict types Type® with a strict equality ().
fibrant types Type with a univalent equality (=).

We define the theory of codes as an Type® QIIT.

The interpretation I etc maps into fibrant types.

However, we cannot prove the equivalence of induction and elimination
because it relies on truncation.

Current work (C.Sattler): use complete Segal types (in a semisimplicial
setting). The universe is interpreted by left fibrations.

Thorsten Altenkirch (Nottingham) Inductive Types December 19, 2019 29 /32

QITs and HITs

References

Type theory in type theory using quotient inductive types
Thorsten Altenkirch, Ambrus Kaposi. POPL 2016

Extending Homotopy Type Theory with Strict Equality
Thorsten Altenkirch, Paolo Capriotti, Nicolai Kraus. CSL 2016

Quotient Inductive-Inductive Types

Thorsten Altenkirch, Paolo Capriotti, Gabe Dijkstra, Nicolai Kraus, Fredrik
Nordvall Forsberg. FoSSaCS 2018

v

A Syntax for Higher Inductive-Inductive Types
Ambrus Kaposi, Andrs Kovcs. FSCD 2018

Constructing quotient inductive-inductive types
Ambrus Kaposi, Andrs Kovcs, Thorsten Altenkirch. POPL 2019

Thorsten Altenkirch (Nottingham) Inductive Types December 19, 2019 30/ 32

Discussion

A map of inductive types

W
Wi “ gl
{\ i = el Sutle
IF
[\ 5
.

o oWT

T

Thorsten Altenkirch (Nottingham) Inductive Types

Discussion

Open questions

Reduce infinitary inductive-inductive types to W-types.

Define a universal QIIT with infinitary branching trees.
(A. Kovacs is working on this)

Extend the results for QIITs to HIITs.
Find simple universal types for QITs (QW) and HITs (HW).

Thorsten Altenkirch (Nottingham) Inductive Types December 19, 2019 32/32

	Simple Inductive Types
	Inductive Families
	Inductive-Inductive Types
	QITs and HITs
	Discussion

