Is Intuitionistic Logic relevant for
Computer Science?

Thorsten Altenkirch

School of Computer Science
University of Nottingham

March 3, 2008

Thorsten Altenkirch OASIS 08

Introduction

Birth of Modern Mathematics

Isaac Newton (1642 - 1727)

1687: Philosophiae Naturalis Principia Mathematica)

Thorsten Altenkirch OASIS 08

Introduction

19/20th century: Foundations?

Frege (1848-1925) Russell (1872-1970)

Thorsten Altenkirch OASIS 08

Introduction

~ 1925: ZF set theory

N

Zermelo (1871-1953) Fraenkel (1891-1965)

End of story ? J

Thorsten Altenkirch OASIS 08

Introduction

Overview

@ Introduction

@ From BHK to Martin-Lof

© Classical logic and the axiom of choice
e Partial functions and continuity

@ Discussion

Thorsten Altenkirch OASIS 08

From BHK to Martin-L&f

AN(BV C)— (AANB)V (AN C), classically

A B|C|I=AANBVC)|r=AANBVAANC |I—T
F|F|F F F T
F|F|T F F T
F|T|F F F T
F|T|T F F T
T|F|F F F T
TIF|T T T T
T|T|F T T T
T|T|T T T T

@ The same truth table shows that
AAN(BVC) < (AANB)V(AAC)

Thorsten Altenkirch OASIS 08

From BHK to Martin-L&f

BHK: Programs are evidence

Brouwer Heyting Kolmogorov
(1881-1966) (1898-1980) (1903-1987)

Thorsten Altenkirch OASIS 08

From BHK to Martin-L&f

BHK in Haskell

@ Evidence for A A B is given by pairs:
type ANB= (A B)

@ Evidence for AV B is tagged evidence for A or B.
data AV B=InlA|Inr B

@ Evidence for A — Bis a program
computing evidence for B from evidence for A.

Thorsten Altenkirch OASIS 08

From BHK to Martin-L&f

AN(BV C)— (AAB)V (AN C), constructively

fe AN(BVC)— (AANB)V(AAC)
f(a, Inl b) = Inl (a, b)
f(a,lnrc)=Inr(a,c)
@ The program is invertible, because the right hand sides are
patterns.

@ This shows that the propositions are not only logically
equivalent but isomorphic.

Thorsten Altenkirch OASIS 08

From BHK to Martin-L&f

Predicate logic

@ Evidence for ¥x € S.P x is a function f
which assigns to each s € S evidence for P s.

@ Evidence for 3x € S.P x is a pair (s, p)
where se Sand p € Ps.

@ We need dependent types!

Thorsten Altenkirch OASIS 08

From BHK to Martin-L&f

Propositions = Types

- ‘ %
Curry (1900-1982) Howard (1926-) Martin-L6f (1942-)

Implementations of Type Theory
NUPRL, Coq, Agda, Epigram ...

Thorsten Altenkirch OASIS 08

From BHK to Martin-L&f

(Ix € SPxVvQ@Qx)— (Ixe S.Px)V(Ix € S.Qx)

fe(@xeS((Px)v(Qx))— (3xeS.Px)Vv(3IxeS.Qx)
f(s,Inl p) = Inl (s,p)
f(s,Inrq) = Inr(s,q)

@ Finite explanation
@ Logical equivalence, also isomorphism.

@ Try to do the same for
(Vx € SPxAQx)— (Vx: S.Px)A(Vx € S.Qx).

Thorsten Altenkirch OASIS 08

Classical logic and the axiom of choice

@ We cannot prove AV —A, where —A= A — (),
for an undecided proposition A.

@ Vn € N.Prime nV —Prime n
is provable, i.e. Prime is decidable.

@ Indeed, the proof is the program which decides Prime.

@ Vn € N.HaltnV —Haltn
is not provable, because Halt is undecidable.

Thorsten Altenkirch OASIS 08

Classical logic and the axiom of choice

Decidability of equality of natural numbers

eqevVm,ne N.(m=n)V(m#n)
eqo0 0 = Inl Refl
eq 0 (n+ 1) = Inr (\p — case p)
eq(m+1)0 = Inr (\p — case p)
eq(m+1) (n+1)=case eq mn of
Inl Refl — Inl Refl
Inrh — Inr (\q — h Refl)
@ |dealized Agda/Epigram.
@ Equality is given by
data _=_¢ N — N — Type
where Refl € Vpeyn=n
@ Compare this to
eq € N— N — Bool

Thorsten Altenkirch OASIS 08

Classical logic and the axiom of choice

The classical Babelfish

Classical reasoner says: \ Babelfish translates to:
Av B —(-A A —=B)
Ix: S.Px -Vx : S.—-Px
@ Negative translation
@ AV —-Ais translated to =(—A A =—A)
which is constructively provable.

@ A classical reasoner is somebody who is unable to say
anything positive.

Thorsten Altenkirch OASIS 08

Classical logic and the axiom of choice

The axiom of choice ?

@ Source of non-constructive reasoning ?

°
gevVxe Sdye T.Rxy

acgedfe S— T.vx e S.Rx(fx)

@ Definable in Type Theory:

acg = (mog,mog)

Thorsten Altenkirch OASIS 08

Classical logic and the axiom of choice

The classical axiom of choice

Vx e S3ye T.Rxy AC
feS— TVxe S.Rx(fx)

Vx e S—-Vye T.-Rxy
-Vfe S — T.-vx € S.Rx(fx)

@ Apply negative translation.
@ Not provable constructively:
R C N x Bool

Rmb = Haltsm < (b=T)
@ Incompatible with Church’s thesis:

All functions are computable
Thorsten Altenkirch OASIS 08

Partial functions and continuity

Partial Type Theory ?

@ Partial function: a function which may fail to return a result.

@ Funtions returning an infinite result (e.g. a stream) are not
partial.

@ Partial Type Theory is logically inconsistent. 1 € ().
@ Do we actually need partial functions?

Thorsten Altenkirch OASIS 08

Partial functions and continuity

A genuinely partial function

dataSK=S | K| SK: @SK

nf € SK — SK
nf S =S
nf K =K

nf (t: @u) = (nf t)O(nf u)
(@) € SK — SK — SK

K Ot =K:0t
(K:0@1) Qu=t
S Ot =S:0t

(S:@t1) Qu=(S:0¢t):Qu
((S:@t): Qu)@v = (t0v)0(udv)

Thorsten Altenkirch OASIS 08

Partial functions and continuity

A monad for partiality

@ Haskell (a pure functional languages)
models effects using a monad (the 10 monad).
@ A monad M € Type — Type is given by
returne A—-M A
(>=)eMA) —-(A—-MB)—-MB
subject to some equations.
@ We introduce a monad P for partiality.
(based on joint but yet unpublished work
with Venanzio Capretta and Tarmo Uustalu).

@ Unlike Haskell where 10 is opaque, we define P explicitely.

Thorsten Altenkirch OASIS 08

Partial functions and continuity

The Delay monad

codata D a = Now a | Later (D a)

instance Monad D where
return = Now
Nowa>=k =k a
Later d >= k = Later (d >= k)

1leDA
1 = Later L

Thorsten Altenkirch OASIS 08

Partial functions and continuity

Recursion with Delay

recc((A—-—DB)—-—(A—-DB))—-A—DB

rec ¢ a=aux (A\-— 1)
where auxc (A—DB)—- DB
aux k = race (k a) (Later (aux (¢ k)))

race € (D A) — (D A) — (D A)
race (Now a) _ = Now a

race (Later _) (Now @) = Now a
race (Later d) (Later d') = Later (race d d’)

Thorsten Altenkirch OASIS 08

Partial functions and continuity

From Delay to Partial

@ D is too intensional. ..
@ We can observe how fast a function terminates.
@ Hence rec f # f (rec f)
@ We define
PA=DA/~
whered~d =VacAd|a < d' | a
@ We have to show that >= preserves ~.

Thorsten Altenkirch OASIS 08

Partial functions and continuity

Continuity

@ P Aand hence also A — P B are w-CPOs.

@ To show that rec preserves ~ and that rec f # f (rec f) we
need that f is w-continuous.

@ All f we can construct have this property!

@ Reminiscient of Brouwer’s continuity principle:
All (constructive) functions on R are continuous.

Thorsten Altenkirch OASIS 08

Partial functions and continuity

Type Theory with continuity

@ Consider (N — N) — N.

@ Functions in this type can be given by games:
data G = Put N | Get (N — G)

@ Assign a function to a game:
evale G— (N—N)—N

eval (Putn)f=n
eval (Get h) f = eval (h (f0)) (fo (+1))
@ Identify extensionally equivalent games:
g~g <= evalg=-eval g
@ Continuity = eval has an inverse:
quote € (N— N) - N) - G/ ~

Thorsten Altenkirch OASIS 08

Partial functions and continuity

Type Theory with continuity . . .

@ Can we interpret all types by games? E.g.
(N—N)—N)—N

@ Can we construct a non-trivial type D such that
D~D—-D?

@ Here non-trivial means that there is an injection:
Bool — D.

@ Not, that there is a surjection:
D — Bool.

Thorsten Altenkirch OASIS 08

Discussion

Last slide

@ Type Theory is at the same time:
e Alogic
e A programming language
o A set theory
@ Overcome the ASCII - greek dichotomy in Computer
Science.

@ Applications in natural sciences?

Thorsten Altenkirch OASIS 08

	Introduction
	From BHK to Martin-Löf
	Classical logic and the axiom of choice
	Partial functions and continuity
	Discussion

