
Termination Checking
in the Presence of

Nested Inductive and Coinductive Types

Thorsten Altenkirch
(joint work with Nils Anders Danielsson)

School of Computer Science
University of Nottingham

July 16, 2010

Thorsten (Nottingham) PAR 10 July 16, 2010 1 / 19

Context

Dependently typed programming, e.g. Agda, Epigram, Coq, . . .
Totality?

I Soundness as a logic
I Efficient code (don’t run proofs)

Two approaches:
1 Reduce to a total core language

Epigram?, Coq ?
2 Use a partial language and a termination checker

Agda, Coq?

Thorsten (Nottingham) PAR 10 July 16, 2010 2 / 19

This talk

Adding coinductive types to Agda
Mixed inductive-coinductive definitions
Simple but powerful extension of the termination checker
(due to Andreas Abel).
Easy to define inductive types nested inside coinductive types
(νµ).
Impossible to define coinductive types nested inside inductive
types (µν) directly.
Is this a (serious) issue?
If so, how can we fix it?

Thorsten (Nottingham) PAR 10 July 16, 2010 3 / 19

Foetus
Andreas Abel’s master thesis
Closely related to size change termination (N. Jones et al)

mutual
f : N→ N→ N
f m zero = m
f m (suc n) = f m n + g m
g : N→ N
g zero = zero
g (suc n) = f n n

f → f :

(
= <
? <

)
f → g :

(
=
?

)
g→ f :

(
< <

)
Thorsten (Nottingham) PAR 10 July 16, 2010 4 / 19

Coinductive Definitions in Agda
Streams:

data Stream (A : Set) : Set where
:: _ :A→∞(Stream A)→ Stream A

Categorically: Stream A = νX .A× X
Force and Delay:

[: {A : Set }→∞A→ A
]_ : {A : Set }→ A→∞A

Corecursive programs

from : N→ Stream N
from n = n ::]from (suc n)

mapStream : ∀{A B}→ (A→ B)→ Stream A→ Stream B
mapStream f (a :: as) = f a ::](mapStream f ([as))

Thorsten (Nottingham) PAR 10 July 16, 2010 5 / 19

Functional representation of streams

Stream′ : Set → Set
Stream′ A = N→ A

from′ : N→ (Stream′ N)
from′ n 0 = n
from′ n (suc m) = from′ (suc n) m

mapStream′ : {A B : Set }→ (A→ B)→ (Stream′ A)→ (Stream′ B)
mapStream′ f as 0 = f (as 0)
mapStream′ f as (suc n) = mapStream′ f (λ i → as (suc i)) n

Using subsets (Σ) such a representation (as an ω-limit) exists for all

coinductive types.
Thorsten (Nottingham) PAR 10 July 16, 2010 6 / 19

Extending the termination checker

The translation suggests:
Coinductive types introduce an additional (invisible) argument.
Any use of] reduces this argument.
[does not preserve the structural order.

from : N→ Stream N
from n = n ::]from (suc n)

from→ from :
(
< ?

)
mapStream : ∀{A B}→ (A→ B)→ Stream A→ Stream B
mapStream f (a :: as) = f a ::](mapStream f ([as))

mapStream→mapStream :
(
< = ?

)
Thorsten (Nottingham) PAR 10 July 16, 2010 7 / 19

Mixed induction/coinduction

Stream Processors:

data SP (A B : Set) : Set where
get : (A→ SP A B)→ SP A B
put : B→∞(SP A B)→ SP A B

Categorical interpretation:
SP A B = νX .µY .A→ Y + B × X

In general:
data D = F (∞D) D corresponds to
D = νX .µY .F X Y .

Thorsten (Nottingham) PAR 10 July 16, 2010 8 / 19

Semantics of SP

data SP (A B : Set) : Set where
get : (A→ SP A B)→ SP A B
put : B→∞(SP A B)→ SP A B

Semantics of stream processors:

J K : {A B : Set }→ SP A B→ Stream A→ Stream B
J get f K (a :: as) = Jf a K ([as)
J put b sp K as = b ::] J [sp K as

Extended Call graph

J K→ J K :

= = = < ?
< = = ? =
< = = ? ?


Thorsten (Nottingham) PAR 10 July 16, 2010 9 / 19

Composition of SPs
Data driven:

>>>? : ∀{A B C}→ SP A B→ SP B C→ SP A C
get f >>>? tq = get (λ a→ f a >>>? tq)
put a sp >>>? get f = [sp >>>? f a
put a sp >>>? put b tq = put b (]put a sp >>>? [tq)

Demand Driven

>>>! : ∀{A B C}→ SP A B→ SP B C→ SP A C
get g >>>! get f = get (λ a→ g a >>>! get f)
put b sp >>>! get f = [sp >>>! f b
sp >>>! put c tq = put c (](sp >>>! [tq))

Both are accepted by the extended termination checker.
Try to implement them using the categorical combinators.

Thorsten (Nottingham) PAR 10 July 16, 2010 10 / 19

From νµ to µν ?

data ZO : Set where
0, :ZO→ ZO
1, :∞ ZO→ ZO

ZO = νX .µY .(0 : Y) + (1 : X)

01ω : ZO
01ω = 0, (1, (]01ω))

Thorsten (Nottingham) PAR 10 July 16, 2010 11 / 19

From νµ to µν ?

ZO′ = µY .νX .(0 : Y) + (1 : X)

= µY .O X
with O X = νX .0 : Y + 1 : X

data O (X : Set) : Set where
0, :X →O X
1, :∞ (O X)→O X

data ZO′ : Set where
emb : O ZO′→ ZO′

But we can still define:

01ω : ZO′

01ω = emb (1, (]0,01ω))
Thorsten (Nottingham) PAR 10 July 16, 2010 12 / 19

No fold!
mutual

fold : ∀{A}→ (O A→ A)→ ZO′→ A
fold f (emb x) = f (mapfold f x)

mapfold : ∀{A}→ (O A→ A)→O ZO′→O A
mapfold f (0, x) = 0, (fold f x)
mapfold f (1, x) = 1, (]mapfold f ([x))

is not accepted by the termination checker.
The problem is that [doesn’t preserve the structural order.
Otherwise we could derive a diverging program:

foo : O ZO′→ ZO′

foo (0, x) = x
foo (1, x) = emb ([x)

bar : ZO′

bar = fold foo 01ω

Thorsten (Nottingham) PAR 10 July 16, 2010 13 / 19

µν?

Our attempt to define a µν-type by parametrisation fails.
We can define infinite elements which shouldn’t be there.
We cannot define fold (or induction) for the µ-type.
What is going on?

Thorsten (Nottingham) PAR 10 July 16, 2010 14 / 19

Domain-theoretic explanation ?
∞A is interpreted as A⊥ (lifting).
Recursive datatypes as solutions to (strictly positive) domain
equations.
The termination checker identifies the total elements in the
domain.
ZO = νX .µY .0 : Y + 1 : X is interpreted as
recX .recY .0 : Y + 1 : X⊥.
ZO′ = µY .νX .0 : Y + 1 : X is interpreted as
recY .recX .0 : Y + 1 : X⊥.
In general we have
rec X .rec Y .T X Y ' rec Y .rec X .T X Y
Since the domains are isomorphic, they have the same total
elements.
How to define the total elements for a (strictly positive) domain
equation in general?

Thorsten (Nottingham) PAR 10 July 16, 2010 15 / 19

Explanation by translation (simplified)
We can explain parametrized types by mutual types.

data O (X : Set) : Set where
0, :X →O X
1, :∞ (O X)→O X

data ZO′ : Set where
emb : O ZO′→ ZO′

becomes

mutual
data O_ZO′′ : Set where

0, :ZO′′→O_ZO′′

1, :∞ (O_ZO′′)→O_ZO′′

data ZO′′ : Set where
emb : O_ZO′′→ ZO′′

It is easy to see that ZO and ZO′′ are isomorphic.
Thorsten (Nottingham) PAR 10 July 16, 2010 16 / 19

So what?
We cannot easily define µν types.
There are extensionally isomorphic functional encodings.

data Tree : Set where
leaf : Tree
node : Stream Tree→ Tree

can be encoded as

data Tree′ : Set where
leaf : Tree′

node : (N→ Tree′)→ Tree′

This also shows that data types may not preserve extensional
isomorphism.
Maybe Tree should be forbidden by saying that Tree doesn’t
appear strictly positive in Stream Tree.

Thorsten (Nottingham) PAR 10 July 16, 2010 17 / 19

Keiko and Tarmo’s encoding
Coq doesn’t permit nested datatypes at all. (Not even µµ).
To represent νµ they use left Kan extensions. I.e. FD is replaced
by ΣY .(Y → D)× FY .
Can we use the same trick to encode µν in Agda?
(Switching off the universe checker).

data O (X : Set) : Set where
0, :X →O X
1, :∞ (O X)→O X

data ZO : Set where
emb : ∀{X }→ (X → ZO)→O X → ZO

Indeed, fold is definable for this encoding!
But so is 01 ω.
Indeed, Agda’s termination checker is unsound if we allow
impredicativity (unlike Coq’s).

Thorsten (Nottingham) PAR 10 July 16, 2010 18 / 19

The last slide

Nested ν-types are not treated properly by Agda’s termination
checker.
One solution is to outlaw them (we would be still better than Coq).
One can still use an extensionally isomorphic functional encoding.
Or can we fix the termination checker?
One idea is to combine parity games with size change termination.

Thorsten (Nottingham) PAR 10 July 16, 2010 19 / 19

