
QML design ideas
QML semantics

Higher order?
An algebra of quantum programs

The quantum IO monad
The End

Functional Quantum Programming

Thorsten Altenkirch

School of Computer Science and IT
University of Nottingham

April 26, 2007

Thorsten Altenkirch qics07

QML design ideas
QML semantics

Higher order?
An algebra of quantum programs

The quantum IO monad
The End

People at Nottingham

Jonathan Grattage
recently successfully defended his PhD on QML
A Quantum Programming Language

Alex Green
works on quantum programming in a functional
setting.

Slava Belavkin
Prof in Mathematical Physics,
Quantum Information Theory

Thorsten Altenkirch qics07

QML design ideas
QML semantics

Higher order?
An algebra of quantum programs

The quantum IO monad
The End

Where do we come from . . .

Functional Programming
e.g. functional treatment of concurrency
Type Theory
e.g. Epigram: program+specify+prove
Category Theory
e.g. Containers for generic programming
Quantum Programming
e.g. QML, QIO monad

Thorsten Altenkirch qics07

QML design ideas
QML semantics

Higher order?
An algebra of quantum programs

The quantum IO monad
The End

What is functional programming? And why?

Based on function abstraction and application (λ calculus).
Ease of building abstractions, reasoning about programs
Programming ∼ constructive mathematics.
Popular functional language: Haskell

Thorsten Altenkirch qics07

QML design ideas
QML semantics

Higher order?
An algebra of quantum programs

The quantum IO monad
The End

Functional Quantum Programming?

QML - a quantum programming language
Design ideas
Operational and denotational semantics
An algebra of quantum programs

The QIO monad in Haskell
Questions for QICS

Thorsten Altenkirch qics07

QML design ideas
QML semantics

Higher order?
An algebra of quantum programs

The quantum IO monad
The End

QPL, . . .

Starting point: Selinger’s QPL
or Simon Perdrix’s quantum programming language.
Simple language with a nice mathematical semantics
(Superoperators)
Unitary operators are represented as combinatorical
expressions
built up from some primitives, e.g. Hadmard, CNOT, etc
Slogan: Quantum data — classical control.
Quantum variables can only be used in a linear fashion
(no contraction).

Thorsten Altenkirch qics07

QML design ideas
QML semantics

Higher order?
An algebra of quantum programs

The quantum IO monad
The End

QML

Contraction by sharing
Explicit weakening by measurement
Reversible if◦ and irreversible if
Quantum data and control.
No while loops.

Thorsten Altenkirch qics07

QML design ideas
QML semantics

Higher order?
An algebra of quantum programs

The quantum IO monad
The End

Contraction by sharing

δ ∈ Q2 (Q2 ⊗Q2

δ x = (x , x)

δ (false +Q true) 6≡ (false +Q true, false +Q true)
δ (false +Q true) ≡ (false, false) +Q (true, true)

Thorsten Altenkirch qics07

QML design ideas
QML semantics

Higher order?
An algebra of quantum programs

The quantum IO monad
The End

Explicit weakening by measurement

π1 ∈ Q2 ⊗Q2 (Q2

π1 (x , y) = x ↑ {y }

π1 (δ x) ≡ x?
π1 (δ (false +Q true)) ≡ false +P true

Thorsten Altenkirch qics07

QML design ideas
QML semantics

Higher order?
An algebra of quantum programs

The quantum IO monad
The End

Reversible if◦ and irreversible if

¬ ∈ Q2 (Q2

¬ x = if◦ x then false else true

¬ (¬ x) ≡ x

¬c ∈ Q2 (Q2

¬c x = if x then false else true

¬c (¬c (false +Q true)) ≡ false +P true

Thorsten Altenkirch qics07

QML design ideas
QML semantics

Higher order?
An algebra of quantum programs

The quantum IO monad
The End

Why do we need if?

cswap ∈ Q2 (Q2 ⊗Q2 (Q2 ⊗Q2

cswap x (y , z) = if◦ x then (z, y) else (y , z)

is not well-typed, because we cannot show (z, y) ⊥ (y , z).

cswap′ ∈ Q2 (Q2 ⊗Q2 (Q2 ⊗Q2

cswap′ x (y , z) = if x then (z, y) else (y , z)

is well-typed, since if does not require orthogonality.

Thorsten Altenkirch qics07

QML design ideas
QML semantics

Higher order?
An algebra of quantum programs

The quantum IO monad
The End

QML’s type system

We introduce the following judgements:
Programs

Γ ` t : σ

Pure programs
Γ `◦ t : σ

programs without weakening and if.
Orthogonality

t ⊥ u

given that Γ `◦ t , u : σ.

Thorsten Altenkirch qics07

QML design ideas
QML semantics

Higher order?
An algebra of quantum programs

The quantum IO monad
The End

QML’s operational semantics

Given (non-empty) finite sets A (input) and B (output), we
define FQC(A, B) as:

A B
φ

h � H G �

a finite set H, the base of the space of initial heaps,
a heap initialisation vector ~h ∈ CH ,
a finite set G, the base of the space of garbage states,
a unitary operator φ ∈ A⊗ H (unitary B ⊗G.

Thorsten Altenkirch qics07

QML design ideas
QML semantics

Higher order?
An algebra of quantum programs

The quantum IO monad
The End

QML’s operational semantics

We write:
FQC(A, B) quantum circuits with heap and garbage.

FQC◦(A, B) quantum circuits with heap but no garbage.

Γ ` t : σ

JtKop ∈ FQC(JΓK, JσK)

Γ `◦ t : σ

JtKop ∈ FQC◦(JΓK, JσK)

Thorsten Altenkirch qics07

QML design ideas
QML semantics

Higher order?
An algebra of quantum programs

The quantum IO monad
The End

QML’s denotational semantics

We write:
Super(A, B) Superoperators
Isom(A, B) Isometries

Γ ` t : σ

JtKden ∈ Super(JΓK, JσK)

Γ `◦ t : σ

JtKden ∈ Isom(JΓK, JσK)

Thorsten Altenkirch qics07

QML design ideas
QML semantics

Higher order?
An algebra of quantum programs

The quantum IO monad
The End

Relating operational and denotational semantics

We can assign denotations to circuits:

c ∈ FQC◦(A, B)

D(c) ∈ Isom(A, B)

c ∈ FQC(A, B)

D(c) ∈ Super(A, B)

and state soundness of the operational semantics:

D(JtKop) = JtKden

for Γ ` t : σ (Γ `◦ t : σ).
Thorsten Altenkirch qics07

QML design ideas
QML semantics

Higher order?
An algebra of quantum programs

The quantum IO monad
The End

QUICS questions

Can we extend QML by classical coproducts
(corresponding to biproducts)?
Can we extend QML by quantum views (corresponding to
change of base)?
Can we extend QML by higher order types?

Thorsten Altenkirch qics07

QML design ideas
QML semantics

Higher order?
An algebra of quantum programs

The quantum IO monad
The End

Higher Order ?

It may seem that higher order is no problem because in
every compact closed category:

C(A⊗ B, C) ' C(A, B∗ ⊗ C)

But is this the right structure?
Superoperators are not compact closed
(but completely positive maps are).
The category of relations

Rel(A, B) = A→ P(B)

is compact closed, but

Rel<ω(A, B) = A→ P<ω(B)

is not.
Thorsten Altenkirch qics07

QML design ideas
QML semantics

Higher order?
An algebra of quantum programs

The quantum IO monad
The End

Day’s construction

For any category C the category of presheaves PSh(C) is
given by:

Objects Contravariant functors from C to Set.
Morphisms Natural transformations.
There is an embedding Y (the Yoneda embedding) from C
to PSh(C)

Y(A) = C(−, A)

A monoidal structure on C induces a monoidal structure in
PSh(C):

(F ⊗G)(X) =

∫ A,B
F (A)×G(B)× C(X , A⊗ B)

Y preserves the monoidal structure.
Thorsten Altenkirch qics07

QML design ideas
QML semantics

Higher order?
An algebra of quantum programs

The quantum IO monad
The End

Day’s construction

This structure is always closed:

(F (G)(X) = Nat(Y(X)⊗ F , G)

This is semantically the interpretations of higher order
computations as chunks (delayed computations).

Thorsten Altenkirch qics07

QML design ideas
QML semantics

Higher order?
An algebra of quantum programs

The quantum IO monad
The End

An algebra of quantum programs ?

joint work with Amr Sabry and Juliana Vizotto.

QPL 2005: restricted to the pure fragment
(no weakening, no if)
Denotational semantics: isometries
Extends the rules for the classical sublanguage
(no superpositions, if and if◦ behave the same)
Denotational semantics: sets and (injective) functions
Sound and complete.
Completeness also gives rise to a normalisation algorithm
(Normalisation by evaluation).

Thorsten Altenkirch qics07

QML design ideas
QML semantics

Higher order?
An algebra of quantum programs

The quantum IO monad
The End

Equations for if◦

β
if◦ false then t else u ≡ u
if◦ true then t else u ≡ t

η
if◦ t then true else false ≡ t

Commuting conversion
let p = if◦ t then u0 else u1
in e
≡ if◦ t then (let p = u0 in e)

else (let p = u1 in e)

Thorsten Altenkirch qics07

QML design ideas
QML semantics

Higher order?
An algebra of quantum programs

The quantum IO monad
The End

Equations for let

ValC ::= x | () | false | true | (val1, val2)

β
let p = val in u ≡ u [val / p]

η
let x = t in x ≡ t

Commuting conversion
let p = t in let q = u in e

≡ let q = u in let p = t in e

Thorsten Altenkirch qics07

QML design ideas
QML semantics

Higher order?
An algebra of quantum programs

The quantum IO monad
The End

Quantum equations

(if◦)
if◦ (t0 + t1) then u0 else u1
≡ (if◦ t0 then u0 else u1)
+ (if◦ t1 then u0 else u1)

if◦ (λ ∗ t) then u0 else u1
≡ λ ∗ (if◦ t then u0 else u1)

(superpositions)
t + u ≡ u + t
t +
−→
0 ≡ t

t + (u + v) ≡ (t + u) + v
λ ∗ (t + u) ≡ λ ∗ t + λ ∗ u
λ ∗ t + κ ∗ t ≡ (λ + κ) ∗ t
0 ∗ t ≡

−→
0

Thorsten Altenkirch qics07

QML design ideas
QML semantics

Higher order?
An algebra of quantum programs

The quantum IO monad
The End

QUICS questions

Relation to the linear λ calculus by Paolo and Gilles ?
Extend the theory to the full language (including
measurements).
related to Ross’s question?
Higher order?!

Thorsten Altenkirch qics07

QML design ideas
QML semantics

Higher order?
An algebra of quantum programs

The quantum IO monad
The End

Motivation

Explain quantum programming to (functional)
programmers.
Sell functional programming to people in quantum
computing..
Provide an intermediate language for the implementation
of high level quantum languages (like QML).
Framework to discover and implement patterns for
quantum programming.

Thorsten Altenkirch qics07

QML design ideas
QML semantics

Higher order?
An algebra of quantum programs

The quantum IO monad
The End

Haskell

Pure functional programming language.
Close to constructive Mathematics (terminating fragment).
go further: Type Theory (Epigram).
Effects (e.g. Input/Output, State, Concurrency, . . .) are
encapsulated in the IO monad.
Proposal: Use Functional specifications of IO to reason
about programs with IO.

Thorsten Altenkirch qics07

QML design ideas
QML semantics

Higher order?
An algebra of quantum programs

The quantum IO monad
The End

Monads in Haskell
class Monad m where

(>>=) ∈ m a→ (a→ m b)→ m b
return ∈ a→ m a

Equations:

return a >>= f = f a
c >>= return = c

(c >>= f) >>= g = c >>= λa→ f a >>= g

Computations are represented by morphisms in the Kleisli
category

a→Kleisli b = a→ m b
Thorsten Altenkirch qics07

QML design ideas
QML semantics

Higher order?
An algebra of quantum programs

The quantum IO monad
The End

Haskell’s IO monad

instance Monad IO

getChar ∈ IO Char
putChar ∈ Char → IO ()

echo ∈ IO ()
echo = getChar >>= λc → putChar c >>= λx → echo

echo = do c ← getChar
putChar c
echo

Thorsten Altenkirch qics07

QML design ideas
QML semantics

Higher order?
An algebra of quantum programs

The quantum IO monad
The End

QIO

type Qbit

type QIO a
type U

instance Monad QIO
mkQbit ∈ Bool → QIO Qbit
applyU ∈ U → QIO ()
meas ∈ Qbit → QIO Bool

Thorsten Altenkirch qics07

QML design ideas
QML semantics

Higher order?
An algebra of quantum programs

The quantum IO monad
The End

Reversible Ops

instance Monoid U

unot ∈ Qbit → U
uhad ∈ Qbit → U
uphase ∈ Qbit → R→ U
swap ∈ Qbit → Qbit → U
cond ∈ Qbit → (Bool → U)→ U

cond x (λb → if b then unot x else mempty)
leads to a runtime error!

Thorsten Altenkirch qics07

QML design ideas
QML semantics

Higher order?
An algebra of quantum programs

The quantum IO monad
The End

run or sim

run embeds QIO into IO using a random number
generator:

run ∈ QIO a→ IO a
or a real quantum computer. . .
sim calculates the probability distribution of possible
answers:

sim ∈ QIO a→ Prob a
where

data Prob a = Prob (Vec R a)

Thorsten Altenkirch qics07

QML design ideas
QML semantics

Higher order?
An algebra of quantum programs

The quantum IO monad
The End

Example: a random bit
qran ∈ QIO Qbit
qran = do qb ← mkQbit True

applyU (uhad qb)
return qb

test_qran ∈ QIO Bool
test_qran = do qb ← qran

meas qb

∗Qio > run test_qran
False
∗Qio > run test_qran
True
∗Qio > sim test_qran
[(True, 0.5), (False, 0.5)]

Thorsten Altenkirch qics07

QML design ideas
QML semantics

Higher order?
An algebra of quantum programs

The quantum IO monad
The End

The Bell state

share ∈ Qbit → QIO Qbit
share qa = do qb ← mkQbit False

applyU (cond qaλa→ if a
then unot qb
else mempty)

return qb

bell ∈ QIO (Qbit , Qbit)
bell = do qa← qran

qb ← share qa
return (qa, qb)

Thorsten Altenkirch qics07

QML design ideas
QML semantics

Higher order?
An algebra of quantum programs

The quantum IO monad
The End

QUICS questions

Measurement Calculus→ QIO, or vice versa.
Formal reasoning about QIO (factor through
superoperators).

Thorsten Altenkirch qics07

QML design ideas
QML semantics

Higher order?
An algebra of quantum programs

The quantum IO monad
The End

Hypotheses

Interesting interactions between functional and quantum
prgramming
Design programming language as a vehicle to express
high level patterns of quantum programming.
Denotational semantics reflect our understanding of
quantum programming.

Thorsten Altenkirch qics07

	QML design ideas
	QML semantics
	Higher order?
	An algebra of quantum programs
	The quantum IO monad
	The End

