
Functional Quantum Programming
Thorsten Altenkirch

University of Nottingham

based on joint work with Jonathan Grattage

and discussions with V.P. Belavkin

Functional Quantum Programming – p. 1/44

Background

Simulation of quantum systems is expensive:
PSPACE complexity for polynomial circuits.

Feynman: Can we exploit this fact to perform
computations more efficiently?

Shor: Factorisation in quantum polynomial time.

Grover: Blind search in O(n/
√

2)

Can we build a quantum computer?

yes We can run quantum algorithms.

no Nature is classical after all!

Assumption: Nature is fair. . .

Functional Quantum Programming – p. 2/44

Background
Simulation of quantum systems is expensive:
PSPACE complexity for polynomial circuits.

Feynman: Can we exploit this fact to perform
computations more efficiently?

Shor: Factorisation in quantum polynomial time.

Grover: Blind search in O(n/
√

2)

Can we build a quantum computer?

yes We can run quantum algorithms.

no Nature is classical after all!

Assumption: Nature is fair. . .

Functional Quantum Programming – p. 2/44

Background
Simulation of quantum systems is expensive:
PSPACE complexity for polynomial circuits.

Feynman: Can we exploit this fact to perform
computations more efficiently?

Shor: Factorisation in quantum polynomial time.

Grover: Blind search in O(n/
√

2)

Can we build a quantum computer?

yes We can run quantum algorithms.

no Nature is classical after all!

Assumption: Nature is fair. . .

Functional Quantum Programming – p. 2/44

Background
Simulation of quantum systems is expensive:
PSPACE complexity for polynomial circuits.

Feynman: Can we exploit this fact to perform
computations more efficiently?

Shor: Factorisation in quantum polynomial time.

Grover: Blind search in O(n/
√

2)

Can we build a quantum computer?

yes We can run quantum algorithms.

no Nature is classical after all!

Assumption: Nature is fair. . .

Functional Quantum Programming – p. 2/44

Background
Simulation of quantum systems is expensive:
PSPACE complexity for polynomial circuits.

Feynman: Can we exploit this fact to perform
computations more efficiently?

Shor: Factorisation in quantum polynomial time.

Grover: Blind search in O(n/
√

2)

Can we build a quantum computer?

yes We can run quantum algorithms.

no Nature is classical after all!

Assumption: Nature is fair. . .

Functional Quantum Programming – p. 2/44

Background
Simulation of quantum systems is expensive:
PSPACE complexity for polynomial circuits.

Feynman: Can we exploit this fact to perform
computations more efficiently?

Shor: Factorisation in quantum polynomial time.

Grover: Blind search in O(n/
√

2)

Can we build a quantum computer?

yes We can run quantum algorithms.

no Nature is classical after all!

Assumption: Nature is fair. . .

Functional Quantum Programming – p. 2/44

Background
Simulation of quantum systems is expensive:
PSPACE complexity for polynomial circuits.

Feynman: Can we exploit this fact to perform
computations more efficiently?

Shor: Factorisation in quantum polynomial time.

Grover: Blind search in O(n/
√

2)

Can we build a quantum computer?

yes We can run quantum algorithms.

no Nature is classical after all!

Assumption: Nature is fair. . .

Functional Quantum Programming – p. 2/44

Background
Simulation of quantum systems is expensive:
PSPACE complexity for polynomial circuits.

Feynman: Can we exploit this fact to perform
computations more efficiently?

Shor: Factorisation in quantum polynomial time.

Grover: Blind search in O(n/
√

2)

Can we build a quantum computer?

yes We can run quantum algorithms.

no Nature is classical after all!

Assumption: Nature is fair. . .

Functional Quantum Programming – p. 2/44

Background
Simulation of quantum systems is expensive:
PSPACE complexity for polynomial circuits.

Feynman: Can we exploit this fact to perform
computations more efficiently?

Shor: Factorisation in quantum polynomial time.

Grover: Blind search in O(n/
√

2)

Can we build a quantum computer?

yes We can run quantum algorithms.

no Nature is classical after all!

Assumption: Nature is fair. . .

Functional Quantum Programming – p. 2/44

The quantum software crisis

Quantum algorithms are usually presented
using the circuit model.

Nielsen and Chuang, p.7, Coming up with
good quantum algorithms is hard.

Richard Josza, QPL 2004: We need to
develop quantum thinking!

Functional Quantum Programming – p. 3/44

The quantum software crisis

Quantum algorithms are usually presented
using the circuit model.

Nielsen and Chuang, p.7, Coming up with
good quantum algorithms is hard.

Richard Josza, QPL 2004: We need to
develop quantum thinking!

Functional Quantum Programming – p. 3/44

The quantum software crisis

Quantum algorithms are usually presented
using the circuit model.

Nielsen and Chuang, p.7, Coming up with
good quantum algorithms is hard.

Richard Josza, QPL 2004: We need to
develop quantum thinking!

Functional Quantum Programming – p. 3/44

The quantum software crisis

Quantum algorithms are usually presented
using the circuit model.

Nielsen and Chuang, p.7, Coming up with
good quantum algorithms is hard.

Richard Josza, QPL 2004: We need to
develop quantum thinking!

Functional Quantum Programming – p. 3/44

QML

QML: a functional language for quantum computations
on finite types.

Quantum control and quantum data.

Design guided by denotational semantics

Analogy with classical computation

FCC Finite classical computations

FQC Finite quantum computations

Important issue: control of decoherence

Draft paper available
(Google:Thorsten,functional,quantum)

Compiler under construction (Jonathan)

Functional Quantum Programming – p. 4/44

QML
QML: a functional language for quantum computations
on finite types.

Quantum control and quantum data.

Design guided by denotational semantics

Analogy with classical computation

FCC Finite classical computations

FQC Finite quantum computations

Important issue: control of decoherence

Draft paper available
(Google:Thorsten,functional,quantum)

Compiler under construction (Jonathan)

Functional Quantum Programming – p. 4/44

QML
QML: a functional language for quantum computations
on finite types.

Quantum control and quantum data.

Design guided by denotational semantics

Analogy with classical computation

FCC Finite classical computations

FQC Finite quantum computations

Important issue: control of decoherence

Draft paper available
(Google:Thorsten,functional,quantum)

Compiler under construction (Jonathan)

Functional Quantum Programming – p. 4/44

QML
QML: a functional language for quantum computations
on finite types.

Quantum control and quantum data.

Design guided by denotational semantics

Analogy with classical computation

FCC Finite classical computations

FQC Finite quantum computations

Important issue: control of decoherence

Draft paper available
(Google:Thorsten,functional,quantum)

Compiler under construction (Jonathan)

Functional Quantum Programming – p. 4/44

QML
QML: a functional language for quantum computations
on finite types.

Quantum control and quantum data.

Design guided by denotational semantics

Analogy with classical computation

FCC Finite classical computations

FQC Finite quantum computations

Important issue: control of decoherence

Draft paper available
(Google:Thorsten,functional,quantum)

Compiler under construction (Jonathan)

Functional Quantum Programming – p. 4/44

QML
QML: a functional language for quantum computations
on finite types.

Quantum control and quantum data.

Design guided by denotational semantics

Analogy with classical computation

FCC Finite classical computations

FQC Finite quantum computations

Important issue: control of decoherence

Draft paper available
(Google:Thorsten,functional,quantum)

Compiler under construction (Jonathan)

Functional Quantum Programming – p. 4/44

QML
QML: a functional language for quantum computations
on finite types.

Quantum control and quantum data.

Design guided by denotational semantics

Analogy with classical computation

FCC Finite classical computations

FQC Finite quantum computations

Important issue: control of decoherence

Draft paper available
(Google:Thorsten,functional,quantum)

Compiler under construction (Jonathan)

Functional Quantum Programming – p. 4/44

QML
QML: a functional language for quantum computations
on finite types.

Quantum control and quantum data.

Design guided by denotational semantics

Analogy with classical computation

FCC Finite classical computations

FQC Finite quantum computations

Important issue: control of decoherence

Draft paper available
(Google:Thorsten,functional,quantum)

Compiler under construction (Jonathan)
Functional Quantum Programming – p. 4/44

Example: Hadamard operation

Matrix

H =
1√
2

(
1 1

1 −1

)

QML

H x : Q2 = if◦ x then {qfalse | (−1)qtrue}
else {qfalse | qtrue}

Functional Quantum Programming – p. 5/44

Example: Hadamard operation

Matrix

H =
1√
2

(
1 1

1 −1

)

QML

H x : Q2 = if◦ x then {qfalse | (−1)qtrue}
else {qfalse | qtrue}

Functional Quantum Programming – p. 5/44

Example: Hadamard operation

Matrix

H =
1√
2

(
1 1

1 −1

)

QML

H x : Q2 = if◦ x then {qfalse | (−1)qtrue}
else {qfalse | qtrue}

Functional Quantum Programming – p. 5/44

Related Work

P. Zuliani, 2001, Quantum Programming

S. Abramsky and B. Coecke, 2004, A Categorical Semantics of Quantum Protocols

S-C. Mu and R. S. Bird, 2001, Quantum functional programming

A. Sabry, 2003, Modeling quantum computing in Haskell

J. Karczmarczuk, 2003, Structure and interpretation of quantum mechanics: a
functional framework

P. Selinger, 2002, Towards a Quantum Programming Language

A. van Tonder, 2003, A Lambda Calculus for Quantum Computation

Functional Quantum Programming – p. 6/44

Something we know well . . .

Start with classical computations
on finite types.

Quantum mechanics is time-reversible. . .

. . . hence quantum computation is based on reversible
operations.

However: Newtonian mechanics, Maxwellian
electrodynamics is also time-reversible. . .

. . . hence classical computation should be based on
reversible operations.

Functional Quantum Programming – p. 7/44

Something we know well . . .

Start with classical computations
on finite types.

Quantum mechanics is time-reversible. . .

. . . hence quantum computation is based on reversible
operations.

However: Newtonian mechanics, Maxwellian
electrodynamics is also time-reversible. . .

. . . hence classical computation should be based on
reversible operations.

Functional Quantum Programming – p. 7/44

Something we know well . . .

Start with classical computations
on finite types.

Quantum mechanics is time-reversible. . .

. . . hence quantum computation is based on reversible
operations.

However: Newtonian mechanics, Maxwellian
electrodynamics is also time-reversible. . .

. . . hence classical computation should be based on
reversible operations.

Functional Quantum Programming – p. 7/44

Something we know well . . .

Start with classical computations
on finite types.

Quantum mechanics is time-reversible. . .

. . . hence quantum computation is based on reversible
operations.

However: Newtonian mechanics, Maxwellian
electrodynamics is also time-reversible. . .

. . . hence classical computation should be based on
reversible operations.

Functional Quantum Programming – p. 7/44

Something we know well . . .

Start with classical computations
on finite types.

Quantum mechanics is time-reversible. . .

. . . hence quantum computation is based on reversible
operations.

However: Newtonian mechanics, Maxwellian
electrodynamics is also time-reversible. . .

. . . hence classical computation should be based on
reversible operations.

Functional Quantum Programming – p. 7/44

Something we know well . . .

Start with classical computations
on finite types.

Quantum mechanics is time-reversible. . .

. . . hence quantum computation is based on reversible
operations.

However: Newtonian mechanics, Maxwellian
electrodynamics is also time-reversible. . .

. . . hence classical computation should be based on
reversible operations.

Functional Quantum Programming – p. 7/44

Classical computations (FCC)

Given finite sets A (input) and B (output):

A B

φ

h
�

H G
�

a finite set of initial heaps H,

an initial heap h ∈ H,

a finite set of garbage states G,

a bijection φ ∈ A × H ' B × G,

Functional Quantum Programming – p. 8/44

Classical computations (FCC)

Given finite sets A (input) and B (output):

A B

φ

h
�

H G
�

a finite set of initial heaps H,

an initial heap h ∈ H,

a finite set of garbage states G,

a bijection φ ∈ A × H ' B × G,

Functional Quantum Programming – p. 8/44

Classical computations (FCC)

Given finite sets A (input) and B (output):

A B

φ

h
�

H G
�

a finite set of initial heaps H,

an initial heap h ∈ H,

a finite set of garbage states G,

a bijection φ ∈ A × H ' B × G,

Functional Quantum Programming – p. 8/44

Classical computations (FCC)

Given finite sets A (input) and B (output):

A B

φ

h
�

H G
�

a finite set of initial heaps H,

an initial heap h ∈ H,

a finite set of garbage states G,

a bijection φ ∈ A × H ' B × G,

Functional Quantum Programming – p. 8/44

Classical computations (FCC)

Given finite sets A (input) and B (output):

A B

φ

h
�

H G
�

a finite set of initial heaps H,

an initial heap h ∈ H,

a finite set of garbage states G,

a bijection φ ∈ A × H ' B × G,

Functional Quantum Programming – p. 8/44

Classical computations (FCC)

Given finite sets A (input) and B (output):

A B

φ

h
�

H G
�

a finite set of initial heaps H,

an initial heap h ∈ H,

a finite set of garbage states G,

a bijection φ ∈ A × H ' B × G,

Functional Quantum Programming – p. 8/44

Composing classical computations

A
φα

B
φβ

C

Hα
�

>>
>>

>>
>>

88
88

88
8 Gα

�

Hβ
�

��������

������� Gβ
�

φβ◦α
Exercise: Define I .

Functional Quantum Programming – p. 9/44

Composing classical computations

A
φα

B
φβ

C

Hα
�

>>
>>

>>
>>

88
88

88
8 Gα

�

Hβ
�

��������

������� Gβ
�

φβ◦α

Exercise: Define I .

Functional Quantum Programming – p. 9/44

Composing classical computations

A
φα

B
φβ

C

Hα
�

>>
>>

>>
>>

88
88

88
8 Gα

�

Hβ
�

��������

������� Gβ
�

φβ◦α
Exercise: Define I .

Functional Quantum Programming – p. 9/44

Extensional equality

Every computation α gives rise to a function
UFCC α ∈ A → B

A × H
φ

// B × G

π1

��
A

(−,h)

OO

UFCC α
// B

α =ext β, if UFCC α = UFCC β

FCC:
Objects finite sets

Morphisms computations / =ext.

Functional Quantum Programming – p. 10/44

Extensional equality
Every computation α gives rise to a function
UFCC α ∈ A → B

A × H
φ

// B × G

π1

��
A

(−,h)

OO

UFCC α
// B

α =ext β, if UFCC α = UFCC β

FCC:
Objects finite sets

Morphisms computations / =ext.

Functional Quantum Programming – p. 10/44

Extensional equality
Every computation α gives rise to a function
UFCC α ∈ A → B

A × H
φ

// B × G

π1

��
A

(−,h)

OO

UFCC α
// B

α =ext β, if UFCC α = UFCC β

FCC:
Objects finite sets

Morphisms computations / =ext.

Functional Quantum Programming – p. 10/44

Extensional equality
Every computation α gives rise to a function
UFCC α ∈ A → B

A × H
φ

// B × G

π1

��
A

(−,h)

OO

UFCC α
// B

α =ext β, if UFCC α = UFCC β

FCC:
Objects finite sets

Morphisms computations / =ext.

Functional Quantum Programming – p. 10/44

UFCC

UFCC I = I

UFCC (β ◦ α) = (UFCC β) ◦ (UFCC α)

UFCC is a functor UFCC : FCC → FinSet.

UFCC is faithful (trivially).

Exercise: UFCC is full!

Functional Quantum Programming – p. 11/44

UFCC

UFCC I = I

UFCC (β ◦ α) = (UFCC β) ◦ (UFCC α)

UFCC is a functor UFCC : FCC → FinSet.

UFCC is faithful (trivially).

Exercise: UFCC is full!

Functional Quantum Programming – p. 11/44

UFCC

UFCC I = I

UFCC (β ◦ α) = (UFCC β) ◦ (UFCC α)

UFCC is a functor UFCC : FCC → FinSet.

UFCC is faithful (trivially).

Exercise: UFCC is full!

Functional Quantum Programming – p. 11/44

UFCC

UFCC I = I

UFCC (β ◦ α) = (UFCC β) ◦ (UFCC α)

UFCC is a functor UFCC : FCC → FinSet.

UFCC is faithful (trivially).

Exercise: UFCC is full!

Functional Quantum Programming – p. 11/44

Coming next: Quantum computations FQC

Develop FQC analogously to FCC. . .

Functional Quantum Programming – p. 12/44

Linear algebra revision

Given a finite set A (the base)
C A = A → C is a Hilbert space.
Linear operators:
f ∈ A → B → C induces f̂ ∈ C A → C B.
we write f ∈ A (B
Norm of a vector:
‖v‖ = Σa∈A(va)∗(va) ∈ R

+,
Unitary operators:
A unitary operator φ ∈ A (unitary B is a linear
isomorphism that preserves the norm.

Functional Quantum Programming – p. 13/44

Linear algebra revision

Given a finite set A (the base)
C A = A → C is a Hilbert space.

Linear operators:
f ∈ A → B → C induces f̂ ∈ C A → C B.
we write f ∈ A (B
Norm of a vector:
‖v‖ = Σa∈A(va)∗(va) ∈ R

+,
Unitary operators:
A unitary operator φ ∈ A (unitary B is a linear
isomorphism that preserves the norm.

Functional Quantum Programming – p. 13/44

Linear algebra revision

Given a finite set A (the base)
C A = A → C is a Hilbert space.
Linear operators:
f ∈ A → B → C induces f̂ ∈ C A → C B.
we write f ∈ A (B

Norm of a vector:
‖v‖ = Σa∈A(va)∗(va) ∈ R

+,
Unitary operators:
A unitary operator φ ∈ A (unitary B is a linear
isomorphism that preserves the norm.

Functional Quantum Programming – p. 13/44

Linear algebra revision

Given a finite set A (the base)
C A = A → C is a Hilbert space.
Linear operators:
f ∈ A → B → C induces f̂ ∈ C A → C B.
we write f ∈ A (B
Norm of a vector:
‖v‖ = Σa∈A(va)∗(va) ∈ R

+,

Unitary operators:
A unitary operator φ ∈ A (unitary B is a linear
isomorphism that preserves the norm.

Functional Quantum Programming – p. 13/44

Linear algebra revision

Given a finite set A (the base)
C A = A → C is a Hilbert space.
Linear operators:
f ∈ A → B → C induces f̂ ∈ C A → C B.
we write f ∈ A (B
Norm of a vector:
‖v‖ = Σa∈A(va)∗(va) ∈ R

+,
Unitary operators:
A unitary operator φ ∈ A (unitary B is a linear
isomorphism that preserves the norm.

Functional Quantum Programming – p. 13/44

Basics of quantum computation

A pure state over A is a vector v ∈ C A with
unit norm ‖v‖ = 1.

A reversible computation is given by a
unitary operator φ ∈ A (unitary B.

Functional Quantum Programming – p. 14/44

Basics of quantum computation

A pure state over A is a vector v ∈ C A with
unit norm ‖v‖ = 1.

A reversible computation is given by a
unitary operator φ ∈ A (unitary B.

Functional Quantum Programming – p. 14/44

Basics of quantum computation

A pure state over A is a vector v ∈ C A with
unit norm ‖v‖ = 1.

A reversible computation is given by a
unitary operator φ ∈ A (unitary B.

Functional Quantum Programming – p. 14/44

Quantum computations (FQC)

Given finite sets A (input) and B (output):

A B

φ

h
�

H G
�

a finite set H, the base of the space of initial
heaps,

a heap initialisation vector h ∈ C H,

a finite set G, the base of the space of
garbage states,

a unitary operator φ ∈ A ⊗ H (unitary B ⊗ G.

Functional Quantum Programming – p. 15/44

Quantum computations (FQC)
Given finite sets A (input) and B (output):

A B

φ

h
�

H G
�

a finite set H, the base of the space of initial
heaps,

a heap initialisation vector h ∈ C H,

a finite set G, the base of the space of
garbage states,

a unitary operator φ ∈ A ⊗ H (unitary B ⊗ G.

Functional Quantum Programming – p. 15/44

Quantum computations (FQC)
Given finite sets A (input) and B (output):

A B

φ

h
�

H G
�

a finite set H, the base of the space of initial
heaps,

a heap initialisation vector h ∈ C H,

a finite set G, the base of the space of
garbage states,

a unitary operator φ ∈ A ⊗ H (unitary B ⊗ G.

Functional Quantum Programming – p. 15/44

Quantum computations (FQC)
Given finite sets A (input) and B (output):

A B

φ

h
�

H G
�

a finite set H, the base of the space of initial
heaps,

a heap initialisation vector h ∈ C H,

a finite set G, the base of the space of
garbage states,

a unitary operator φ ∈ A ⊗ H (unitary B ⊗ G.

Functional Quantum Programming – p. 15/44

Quantum computations (FQC)
Given finite sets A (input) and B (output):

A B

φ

h
�

H G
�

a finite set H, the base of the space of initial
heaps,

a heap initialisation vector h ∈ C H,

a finite set G, the base of the space of
garbage states,

a unitary operator φ ∈ A ⊗ H (unitary B ⊗ G.

Functional Quantum Programming – p. 15/44

Quantum computations (FQC)
Given finite sets A (input) and B (output):

A B

φ

h
�

H G
�

a finite set H, the base of the space of initial
heaps,

a heap initialisation vector h ∈ C H,

a finite set G, the base of the space of
garbage states,

a unitary operator φ ∈ A ⊗ H (unitary B ⊗ G.

Functional Quantum Programming – p. 15/44

Composing quantum computations

A
φα

B
φβ

C

Hα
�

>>
>>

>>
>>

88
88

88
8 Gα

�

Hβ
�

��������

������� Gβ
�

φβ◦α

Functional Quantum Programming – p. 16/44

Composing quantum computations

A
φα

B
φβ

C

Hα
�

>>
>>

>>
>>

88
88

88
8 Gα

�

Hβ
�

��������

������� Gβ
�

φβ◦α

Functional Quantum Programming – p. 16/44

Extensional equality. . .

. . . is a bit more subtle.

There is no sensible operator replacing π1 on
vector spaces:

A ⊗ H
φ

// B ⊗ G

???

��
A

−⊗h

OO

???
// B

Indeed: Forgetting part of a pure state
results in a mixed state.

Functional Quantum Programming – p. 17/44

Extensional equality. . .

. . . is a bit more subtle.

There is no sensible operator replacing π1 on
vector spaces:

A ⊗ H
φ

// B ⊗ G

???

��
A

−⊗h

OO

???
// B

Indeed: Forgetting part of a pure state
results in a mixed state.

Functional Quantum Programming – p. 17/44

Extensional equality. . .

. . . is a bit more subtle.

There is no sensible operator replacing π1 on
vector spaces:

A ⊗ H
φ

// B ⊗ G

???

��
A

−⊗h

OO

???
// B

Indeed: Forgetting part of a pure state
results in a mixed state.

Functional Quantum Programming – p. 17/44

Extensional equality. . .

. . . is a bit more subtle.

There is no sensible operator replacing π1 on
vector spaces:

A ⊗ H
φ

// B ⊗ G

???

��
A

−⊗h

OO

???
// B

Indeed: Forgetting part of a pure state
results in a mixed state.

Functional Quantum Programming – p. 17/44

Density Operators

A mixed state on A is given by a density
operator

ρ ∈ A (A

such that all eigenvalues are positive reals

ρ̂ v = λv =⇒ λ ∈ R
+

and has a unit trace

Σa ∈ A.v a = 1

Functional Quantum Programming – p. 18/44

Superoperators

A superoperator f ∈ A (super B is a linear
operator on density operators which is
completely positive.

A unitary operator φ ∈ A (unitary B gives rise
to a superoperator φ† ∈ A (super B.

Partial trace:

trA,G ∈ A ⊗ G (super A

Functional Quantum Programming – p. 19/44

Superoperators

A superoperator f ∈ A (super B is a linear
operator on density operators which is
completely positive.

A unitary operator φ ∈ A (unitary B gives rise
to a superoperator φ† ∈ A (super B.

Partial trace:

trA,G ∈ A ⊗ G (super A

Functional Quantum Programming – p. 19/44

Superoperators

A superoperator f ∈ A (super B is a linear
operator on density operators which is
completely positive.

A unitary operator φ ∈ A (unitary B gives rise
to a superoperator φ† ∈ A (super B.

Partial trace:

trA,G ∈ A ⊗ G (super A

Functional Quantum Programming – p. 19/44

Superoperators

A superoperator f ∈ A (super B is a linear
operator on density operators which is
completely positive.

A unitary operator φ ∈ A (unitary B gives rise
to a superoperator φ† ∈ A (super B.

Partial trace:

trA,G ∈ A ⊗ G (super A

Functional Quantum Programming – p. 19/44

Extensional equality

Every computation α gives rise to a
superoperator U α ∈ A (super B

A ⊗ H
φ̂

// B ⊗ G

trG

��
A

−⊗h̃

OO

UFQC α
// B

α =ext β, if UFQC α = UFQC β

FCC:
Objects finite sets

Morphisms computations / =ext.

Functional Quantum Programming – p. 20/44

Extensional equality
Every computation α gives rise to a
superoperator U α ∈ A (super B

A ⊗ H
φ̂

// B ⊗ G

trG

��
A

−⊗h̃

OO

UFQC α
// B

α =ext β, if UFQC α = UFQC β

FCC:
Objects finite sets

Morphisms computations / =ext.

Functional Quantum Programming – p. 20/44

Extensional equality
Every computation α gives rise to a
superoperator U α ∈ A (super B

A ⊗ H
φ̂

// B ⊗ G

trG

��
A

−⊗h̃

OO

UFQC α
// B

α =ext β, if UFQC α = UFQC β

FCC:
Objects finite sets

Morphisms computations / =ext.

Functional Quantum Programming – p. 20/44

Extensional equality
Every computation α gives rise to a
superoperator U α ∈ A (super B

A ⊗ H
φ̂

// B ⊗ G

trG

��
A

−⊗h̃

OO

UFQC α
// B

α =ext β, if UFQC α = UFQC β

FCC:
Objects finite sets

Morphisms computations / =ext.

Functional Quantum Programming – p. 20/44

UFQC

UFQC I = I

UFQC (β ◦ α) = (UFQC β) ◦ (UFQC α)

UFQC is a functor UFQC : FQC → Super.

UFQC is faithful (trivially).

UFQC is full!

Functional Quantum Programming – p. 21/44

UFQC

UFQC I = I

UFQC (β ◦ α) = (UFQC β) ◦ (UFQC α)

UFQC is a functor UFQC : FQC → Super.

UFQC is faithful (trivially).

UFQC is full!

Functional Quantum Programming – p. 21/44

UFQC

UFQC I = I

UFQC (β ◦ α) = (UFQC β) ◦ (UFQC α)

UFQC is a functor UFQC : FQC → Super.

UFQC is faithful (trivially).

UFQC is full!

Functional Quantum Programming – p. 21/44

UFQC

UFQC I = I

UFQC (β ◦ α) = (UFQC β) ◦ (UFQC α)

UFQC is a functor UFQC : FQC → Super.

UFQC is faithful (trivially).

UFQC is full!

Functional Quantum Programming – p. 21/44

UFQC

UFQC I = I

UFQC (β ◦ α) = (UFQC β) ◦ (UFQC α)

UFQC is a functor UFQC : FQC → Super.

UFQC is faithful (trivially).

UFQC is full!

Functional Quantum Programming – p. 21/44

Classical vs quantum

classical quantum

finite sets finite dimensional Hilbert spaces

bijections unitary operators

cartesian product (×) tensor product (⊗)

functions superoperators

projections partial trace

Functional Quantum Programming – p. 22/44

Classical vs quantum

classical quantum

finite sets finite dimensional Hilbert spaces

bijections unitary operators

cartesian product (×) tensor product (⊗)

functions superoperators

projections partial trace

Functional Quantum Programming – p. 22/44

Classical vs quantum

classical quantum

finite sets

finite dimensional Hilbert spaces

bijections unitary operators

cartesian product (×) tensor product (⊗)

functions superoperators

projections partial trace

Functional Quantum Programming – p. 22/44

Classical vs quantum

classical quantum

finite sets finite dimensional Hilbert spaces

bijections unitary operators

cartesian product (×) tensor product (⊗)

functions superoperators

projections partial trace

Functional Quantum Programming – p. 22/44

Classical vs quantum

classical quantum

finite sets finite dimensional Hilbert spaces

bijections

unitary operators

cartesian product (×) tensor product (⊗)

functions superoperators

projections partial trace

Functional Quantum Programming – p. 22/44

Classical vs quantum

classical quantum

finite sets finite dimensional Hilbert spaces

bijections unitary operators

cartesian product (×) tensor product (⊗)

functions superoperators

projections partial trace

Functional Quantum Programming – p. 22/44

Classical vs quantum

classical quantum

finite sets finite dimensional Hilbert spaces

bijections unitary operators

cartesian product (×)

tensor product (⊗)

functions superoperators

projections partial trace

Functional Quantum Programming – p. 22/44

Classical vs quantum

classical quantum

finite sets finite dimensional Hilbert spaces

bijections unitary operators

cartesian product (×) tensor product (⊗)

functions superoperators

projections partial trace

Functional Quantum Programming – p. 22/44

Classical vs quantum

classical quantum

finite sets finite dimensional Hilbert spaces

bijections unitary operators

cartesian product (×) tensor product (⊗)

functions

superoperators

projections partial trace

Functional Quantum Programming – p. 22/44

Classical vs quantum

classical quantum

finite sets finite dimensional Hilbert spaces

bijections unitary operators

cartesian product (×) tensor product (⊗)

functions superoperators

projections partial trace

Functional Quantum Programming – p. 22/44

Classical vs quantum

classical quantum

finite sets finite dimensional Hilbert spaces

bijections unitary operators

cartesian product (×) tensor product (⊗)

functions superoperators

projections

partial trace

Functional Quantum Programming – p. 22/44

Classical vs quantum

classical quantum

finite sets finite dimensional Hilbert spaces

bijections unitary operators

cartesian product (×) tensor product (⊗)

functions superoperators

projections partial trace

Functional Quantum Programming – p. 22/44

Decoherence

2 • 2

0 � '&%$!"# �

φδ φπ1

Classically

π1 ◦ δ = I

Quantum

input: { 1√
2
|0〉 + 1√

2
|0〉}

output: 1
2{|0〉} + 1

2{|1〉}

Functional Quantum Programming – p. 23/44

Decoherence

2 • 2

0 � '&%$!"# �

φδ φπ1

Classically

π1 ◦ δ = I

Quantum

input: { 1√
2
|0〉 + 1√

2
|0〉}

output: 1
2{|0〉} + 1

2{|1〉}

Functional Quantum Programming – p. 23/44

Decoherence

2 • 2

0 � '&%$!"# �

φδ φπ1

Classically

π1 ◦ δ = I

Quantum

input: { 1√
2
|0〉 + 1√

2
|0〉}

output: 1
2{|0〉} + 1

2{|1〉}

Functional Quantum Programming – p. 23/44

Decoherence

2 • 2

0 � '&%$!"# �

φδ φπ1

Classically

π1 ◦ δ = I

Quantum

input: { 1√
2
|0〉 + 1√

2
|0〉}

output: 1
2{|0〉} + 1

2{|1〉}

Functional Quantum Programming – p. 23/44

Decoherence

2 • 2

0 � '&%$!"# �

φδ φπ1

Classically

π1 ◦ δ = I

Quantum

input: { 1√
2
|0〉 + 1√

2
|0〉}

output: 1
2{|0〉} + 1

2{|1〉}

Functional Quantum Programming – p. 23/44

Decoherence

2 • 2

0 � '&%$!"# �

φδ φπ1

Classically

π1 ◦ δ = I

Quantum

input: { 1√
2
|0〉 + 1√

2
|0〉}

output: 1
2{|0〉} + 1

2{|1〉}

Functional Quantum Programming – p. 23/44

QML basics

Γ ` t : σ
JtK ∈ FQC JΓK JτK

QML is based on strict linear logic
no weakening but contraction.

QML types: 1, σ ⊗ τ, σ ⊕ τ

Functional Quantum Programming – p. 24/44

QML basics

Γ ` t : σ
JtK ∈ FQC JΓK JτK

QML is based on strict linear logic
no weakening but contraction.

QML types: 1, σ ⊗ τ, σ ⊕ τ

Functional Quantum Programming – p. 24/44

QML basics

Γ ` t : σ
JtK ∈ FQC JΓK JτK

QML is based on strict linear logic
no weakening but contraction.

QML types: 1, σ ⊗ τ, σ ⊕ τ

Functional Quantum Programming – p. 24/44

QML basics

Γ ` t : σ
JtK ∈ FQC JΓK JτK

QML is based on strict linear logic
no weakening but contraction.

QML types: 1, σ ⊗ τ, σ ⊕ τ

Functional Quantum Programming – p. 24/44

Interpretation of types

|1| = 0

|σ t τ | = max {|σ|, |τ |}
|σ ⊕ τ | = |σ t τ | + 1

|σ ⊗ τ | = |σ| + |τ |

JσK = 2|σ|

Functional Quantum Programming – p. 25/44

Interpretation of types

|1| = 0

|σ t τ | = max {|σ|, |τ |}
|σ ⊕ τ | = |σ t τ | + 1

|σ ⊗ τ | = |σ| + |τ |

JσK = 2|σ|

Functional Quantum Programming – p. 25/44

Interpretation of types

|1| = 0

|σ t τ | = max {|σ|, |τ |}
|σ ⊕ τ | = |σ t τ | + 1

|σ ⊗ τ | = |σ| + |τ |

JσK = 2|σ|

Functional Quantum Programming – p. 25/44

⊗ on contexts

Γ, x : σ ⊗ ∆, x : σ = (Γ ⊗ ∆), x : σ

Γ, x : σ ⊗ ∆ = (Γ ⊗ ∆), x : σ if x /∈ dom ∆

• ⊗ ∆ = ∆

Γ ⊗ ∆
φCΓ,∆

Γ

HΓ,∆
�

∆

Functional Quantum Programming – p. 26/44

⊗ on contexts

Γ, x : σ ⊗ ∆, x : σ = (Γ ⊗ ∆), x : σ

Γ, x : σ ⊗ ∆ = (Γ ⊗ ∆), x : σ if x /∈ dom ∆

• ⊗ ∆ = ∆

Γ ⊗ ∆
φCΓ,∆

Γ

HΓ,∆
�

∆

Functional Quantum Programming – p. 26/44

⊗ on contexts

Γ, x : σ ⊗ ∆, x : σ = (Γ ⊗ ∆), x : σ

Γ, x : σ ⊗ ∆ = (Γ ⊗ ∆), x : σ if x /∈ dom ∆

• ⊗ ∆ = ∆

Γ ⊗ ∆
φCΓ,∆

Γ

HΓ,∆
�

∆

Functional Quantum Programming – p. 26/44

The let-rule

Γ ` t : σ

∆, x : σ ` u : τ
let

Γ ⊗ ∆ ` let x = t in u : τ

Γ ⊗ ∆
φCΓ,∆

Γ

;;
;;

; ∆

φuHΓ,∆
�

∆

�����

φt

σ τ B

Ht
�

;;
;;

;;

99
99

99 Gt
�

Hu
�

������

������ Gu
�

Functional Quantum Programming – p. 27/44

The let-rule

Γ ` t : σ

∆, x : σ ` u : τ
let

Γ ⊗ ∆ ` let x = t in u : τ

Γ ⊗ ∆
φCΓ,∆

Γ

;;
;;

; ∆

φuHΓ,∆
�

∆

�����

φt

σ τ B

Ht
�

;;
;;

;;

99
99

99 Gt
�

Hu
�

������

������ Gu
�

Functional Quantum Programming – p. 27/44

The let-rule

Γ ` t : σ

∆, x : σ ` u : τ
let

Γ ⊗ ∆ ` let x = t in u : τ

Γ ⊗ ∆
φCΓ,∆

Γ

;;
;;

; ∆

φuHΓ,∆
�

∆

�����

φt

σ τ B

Ht
�

;;
;;

;;

99
99

99 Gt
�

Hu
�

������

������ Gu
�

Functional Quantum Programming – p. 27/44

The var-rule

var
Γ, x : σ ` xdom Γ : σ

Γ
??

??
? σ

σ
����� �

Functional Quantum Programming – p. 28/44

The var-rule

var
Γ, x : σ ` xdom Γ : σ

Γ
??

??
? σ

σ
����� �

Functional Quantum Programming – p. 28/44

The var-rule

var
Γ, x : σ ` xdom Γ : σ

Γ
??

??
? σ

σ
����� �

Functional Quantum Programming – p. 28/44

Example

y : Q2 ` let x = y in x{} : Q2

y : Q2 ` let x = y in x{y} : Q2

Functional Quantum Programming – p. 29/44

Example

y : Q2 ` let x = y in x{} : Q2

y : Q2 ` let x = y in x{y} : Q2

Functional Quantum Programming – p. 29/44

⊗-intro

Γ ` t : σ ∆ ` u : τ ⊗ intro
Γ ⊗ ∆ ` (t, u) : σ ⊗ τ

Γ ⊗ ∆
φCΓ,∆

Γ

φt

σ σ

HΓ,∆
�

∆

;;
;;

;

::
::

:: τ

Ht
�

������

φu

τ

����� Gt
�

Hu
� Gu

�

Functional Quantum Programming – p. 30/44

⊗-intro

Γ ` t : σ ∆ ` u : τ ⊗ intro
Γ ⊗ ∆ ` (t, u) : σ ⊗ τ

Γ ⊗ ∆
φCΓ,∆

Γ

φt

σ σ

HΓ,∆
�

∆

;;
;;

;

::
::

:: τ

Ht
�

������

φu

τ

����� Gt
�

Hu
� Gu

�

Functional Quantum Programming – p. 30/44

⊗-intro

Γ ` t : σ ∆ ` u : τ ⊗ intro
Γ ⊗ ∆ ` (t, u) : σ ⊗ τ

Γ ⊗ ∆
φCΓ,∆

Γ

φt

σ σ

HΓ,∆
�

∆

;;
;;

;

::
::

:: τ

Ht
�

������

φu

τ

����� Gt
�

Hu
� Gu

�

Functional Quantum Programming – p. 30/44

⊗-elim

Γ ` t : σ ⊗ τ

∆, x : σ, y : τ ` u : C
⊗ elim

Γ ⊗ ∆ ` let (x, y) = t in u : C

Γ ⊗ ∆
φCΓ,∆

Γ

;;
;;

; ∆

φu

HΓ,∆
�

∆

�����

φt

σ

τ C C

Ht
�

;;
;;

;;

;;
;;

;; Gt
�

Hu
�

������

������ Gu
�

Functional Quantum Programming – p. 31/44

⊗-elim
Γ ` t : σ ⊗ τ

∆, x : σ, y : τ ` u : C
⊗ elim

Γ ⊗ ∆ ` let (x, y) = t in u : C

Γ ⊗ ∆
φCΓ,∆

Γ

;;
;;

; ∆

φu

HΓ,∆
�

∆

�����

φt

σ

τ C C

Ht
�

;;
;;

;;

;;
;;

;; Gt
�

Hu
�

������

������ Gu
�

Functional Quantum Programming – p. 31/44

⊗-elim
Γ ` t : σ ⊗ τ

∆, x : σ, y : τ ` u : C
⊗ elim

Γ ⊗ ∆ ` let (x, y) = t in u : C

Γ ⊗ ∆
φCΓ,∆

Γ

;;
;;

; ∆

φu

HΓ,∆
�

∆

�����

φt

σ

τ C C

Ht
�

;;
;;

;;

;;
;;

;; Gt
�

Hu
�

������

������ Gu
�

Functional Quantum Programming – p. 31/44

Example

p : Q2 ⊗Q2 ` let (x, y) = p in (y{}, x{}) : Q2 ⊗Q2

p : Q2⊗Q2 ` let (x, y) = p in (y{p}, x{p}) : Q2⊗Q2

Functional Quantum Programming – p. 32/44

Example

p : Q2 ⊗Q2 ` let (x, y) = p in (y{}, x{}) : Q2 ⊗Q2

p : Q2⊗Q2 ` let (x, y) = p in (y{p}, x{p}) : Q2⊗Q2

Functional Quantum Programming – p. 32/44

⊕-intro

Γ ` t : A
Γ ` inl t : A ⊕ B

Γ
φt

σ

φPσtτ

∆
>>

>>
> σ t τ σ t τ

Ht−s
�

�����

AA
AA

AA
A Q2

Q2 X
�

}}}}}}} Gt
�

Functional Quantum Programming – p. 33/44

⊕-intro

Γ ` t : A
Γ ` inl t : A ⊕ B

Γ
φt

σ

φPσtτ

∆
>>

>>
> σ t τ σ t τ

Ht−s
�

�����

AA
AA

AA
A Q2

Q2 X
�

}}}}}}} Gt
�

Functional Quantum Programming – p. 33/44

⊕-intro

Γ ` t : A
Γ ` inl t : A ⊕ B

Γ
φt

σ

φPσtτ

∆
>>

>>
> σ t τ σ t τ

Ht−s
�

�����

AA
AA

AA
A Q2

Q2 X
�

}}}}}}} Gt
�

Functional Quantum Programming – p. 33/44

⊕-elim

Γ ` c : σ ⊕ τ

∆, x : σ ` t : ρ

∆, y : τ ` u : ρ
+ elim

Γ ⊗ ∆ ` case c of {inl x ⇒ t | inr y ⇒ u} : ρ

Γ ⊗ ∆
φCΓ,∆

Γ

::
::

:

φ[t|u]

HΓ,∆
�

∆

�����

φb

σ t τ ρ

Q2 Q2
�

Hb
�

DD
DD

DD G
�

Ht−u
�

zzzzzz Gb
�

Functional Quantum Programming – p. 34/44

⊕-elim

Γ ` c : σ ⊕ τ

∆, x : σ ` t : ρ

∆, y : τ ` u : ρ
+ elim

Γ ⊗ ∆ ` case c of {inl x ⇒ t | inr y ⇒ u} : ρ

Γ ⊗ ∆
φCΓ,∆

Γ

::
::

:

φ[t|u]

HΓ,∆
�

∆

�����

φb

σ t τ ρ

Q2 Q2
�

Hb
�

DD
DD

DD G
�

Ht−u
�

zzzzzz Gb
�

Functional Quantum Programming – p. 34/44

⊕-elim

Γ ` c : σ ⊕ τ

∆, x : σ ` t : ρ

∆, y : τ ` u : ρ
+ elim

Γ ⊗ ∆ ` case c of {inl x ⇒ t | inr y ⇒ u} : ρ

Γ ⊗ ∆
φCΓ,∆

Γ

::
::

:

φ[t|u]

HΓ,∆
�

∆

�����

φb

σ t τ ρ

Q2 Q2
�

Hb
�

DD
DD

DD G
�

Ht−u
�

zzzzzz Gb
�

Functional Quantum Programming – p. 34/44

⊕-elim decoherence-free

Γ ` c : σ ⊕ τ

∆, x : σ ` t : ρ

∆, y : τ ` u : ρ, t ⊥ u
+ elim◦

Γ ⊗ ∆ ` case◦ b of {inl x ⇒ t | inr y ⇒ u} : ρ

Γ ⊗ ∆
φCΓ,∆

Γ

::
::

:

φ[f |g]

HΓ,∆
�

∆

�����

φb

σ t τ S

φ⊥

ρ

Q2 Q2

Hb
�

DD
DD

DD G
�

Ht−u
�

zzzzzz Gb
�

Functional Quantum Programming – p. 35/44

⊕-elim decoherence-free

Γ ` c : σ ⊕ τ

∆, x : σ ` t : ρ

∆, y : τ ` u : ρ, t ⊥ u
+ elim◦

Γ ⊗ ∆ ` case◦ b of {inl x ⇒ t | inr y ⇒ u} : ρ

Γ ⊗ ∆
φCΓ,∆

Γ

::
::

:

φ[f |g]

HΓ,∆
�

∆

�����

φb

σ t τ S

φ⊥

ρ

Q2 Q2

Hb
�

DD
DD

DD G
�

Ht−u
�

zzzzzz Gb
�

Functional Quantum Programming – p. 35/44

⊕-elim decoherence-free

Γ ` c : σ ⊕ τ

∆, x : σ ` t : ρ

∆, y : τ ` u : ρ, t ⊥ u
+ elim◦

Γ ⊗ ∆ ` case◦ b of {inl x ⇒ t | inr y ⇒ u} : ρ

Γ ⊗ ∆
φCΓ,∆

Γ

::
::

:

φ[f |g]

HΓ,∆
�

∆

�����

φb

σ t τ S

φ⊥

ρ

Q2 Q2

Hb
�

DD
DD

DD G
�

Ht−u
�

zzzzzz Gb
�

Functional Quantum Programming – p. 35/44

Orthogonality

inl t ⊥ inr u
t ⊥ u

inl t ⊥ inl u inr t ⊥ inr u

t ⊥ u
(t, v) ⊥ (u,w) (v, t) ⊥ (w, u)

Functional Quantum Programming – p. 36/44

Semantics of ⊥

Jt ⊥ uK = (S, φ, f, g)

S finite set.

φ ∈ Q2 ⊗ S (unitary JσK

f ∈ FQC JΓKS
g ∈ FQC JΓKS

JtK = φ ◦ (true ⊗−) ◦ f ,
JuK = φ ◦ (false ⊗−) ◦ g

Functional Quantum Programming – p. 37/44

Superpositions

Γ ` t, u : σ t ⊥ u

||λ||2 + ||λ′||2 = 1 λ, λ′ 6= 0

Γ ` {(λ)t | (λ′)u} : σ

≡ if◦ {(λ)qtrue | (λ′)qfalse} then t else u

Functional Quantum Programming – p. 38/44

Example: Deutsch’s algorithm

Eq a : Q2, b : Q2 = let (x, y) = if◦ {qfalse | (−1)qtrue}

then (qtrue, if a

then {qfalse | (−1)qtrue}

else {qfalse | qtrue})

else (qfalse,if b

then {qfalse | (−1)qtrue}

else {qfalse | qtrue})

in x

: Q2

Functional Quantum Programming – p. 39/44

Future work

Higher order

High level reasoning principles for QML
programs

Categorical analysis

Infinite or indexed?

Functional Quantum Programming – p. 40/44

Future work

Higher order

High level reasoning principles for QML
programs

Categorical analysis

Infinite or indexed?

Functional Quantum Programming – p. 40/44

Future work

Higher order

High level reasoning principles for QML
programs

Categorical analysis

Infinite or indexed?

Functional Quantum Programming – p. 40/44

Future work

Higher order

High level reasoning principles for QML
programs

Categorical analysis

Infinite or indexed?

Functional Quantum Programming – p. 40/44

Future work

Higher order

High level reasoning principles for QML
programs

Categorical analysis

Infinite or indexed?

Functional Quantum Programming – p. 40/44

	Background
	Background
	Background
	Background
	Background
	Background
	Background
	Background
	Background

	The quantum software crisis
	The quantum software crisis
	The quantum software crisis
	The quantum software crisis

	QML
	QML
	QML
	QML
	QML
	QML
	QML
	QML

	Example: Hadamard operation
	Example: Hadamard operation
	Example: Hadamard operation

	Related Work
	Something we know well dots
	Something we know well dots
	Something we know well dots
	Something we know well dots
	Something we know well dots
	Something we know well dots

	Classical computations ($FCC $)
	Classical computations ($FCC $)
	Classical computations ($FCC $)
	Classical computations ($FCC $)
	Classical computations ($FCC $)
	Classical computations ($FCC $)

	Composing classical computations
	Composing classical computations
	Composing classical computations

	Extensional equality
	Extensional equality
	Extensional equality
	Extensional equality

	$�orgetC $
	$�orgetC $
	$�orgetC $
	$�orgetC $

	Coming next: Quantum computations $FQC $
	Linear algebra revision
	Linear algebra revision
	Linear algebra revision
	Linear algebra revision
	Linear algebra revision

	Basics of quantum computation
	Basics of quantum computation
	Basics of quantum computation

	Quantum computations ($FQC $)
	Quantum computations ($FQC $)
	Quantum computations ($FQC $)
	Quantum computations ($FQC $)
	Quantum computations ($FQC $)
	Quantum computations ($FQC $)

	Composing quantum computations
	Composing quantum computations

	Extensional equalitydots
	Extensional equalitydots
	Extensional equalitydots
	Extensional equalitydots

	Density Operators
	Superoperators
	Superoperators
	Superoperators
	Superoperators

	Extensional equality
	Extensional equality
	Extensional equality
	Extensional equality

	$�orgetQ $
	$�orgetQ $
	$�orgetQ $
	$�orgetQ $
	$�orgetQ $

	Classical vs quantum
	Classical vs quantum
	Classical vs quantum
	Classical vs quantum
	Classical vs quantum
	Classical vs quantum
	Classical vs quantum
	Classical vs quantum
	Classical vs quantum
	Classical vs quantum
	Classical vs quantum
	Classical vs quantum

	Decoherence
	Decoherence
	Decoherence
	Decoherence
	Decoherence
	Decoherence

	QML basics
	QML basics
	QML basics
	QML basics

	Interpretation of types
	Interpretation of types
	Interpretation of types

	$otimes $ on contexts
	$otimes $ on contexts
	$otimes $ on contexts

	The let-rule
	The let-rule
	The let-rule

	The var-rule
	The var-rule
	The var-rule

	Example
	Example

	$otimes $-intro
	$otimes $-intro
	$otimes $-intro

	$otimes $-elim
	$otimes $-elim
	$otimes $-elim

	Example
	Example

	$oplus $-intro
	$oplus $-intro
	$oplus $-intro

	$oplus $-elim
	$oplus $-elim
	$oplus $-elim

	$oplus $-elim decoherence-free
	$oplus $-elim decoherence-free
	$oplus $-elim decoherence-free

	Orthogonality
	Semantics of $perp $
	Superpositions
	Example: Deutsch's algorithm
	Future work
	Future work
	Future work
	Future work
	Future work

