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Background

Simulation of quantum systems is expensive:
PSPACE complexity for polynomial circuits.

Feynman: Can we exploit this fact to perform
computations more efficiently?

Shor: Factorisation in quantum polynomial time.

Grover: Blind search in O(n/
√

2)

Can we build a quantum computer?

yes We can run quantum algorithms.

no Nature is classical after all!

Assumption: Nature is fair. . .
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The quantum software crisis

Quantum algorithms are usually presented
using the circuit model.

Nielsen and Chuang, p.7, Coming up with
good quantum algorithms is hard.

Richard Josza, QPL 2004: We need to
develop quantum thinking!
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QML

QML: a functional language for quantum computations
on finite types.

Quantum control and quantum data.

Design guided by denotational semantics

Analogy with classical computation

FCC Finite classical computations

FQC Finite quantum computations

Important issue: control of decoherence

Draft paper available
(Google:Thorsten,functional,quantum)

Compiler under construction (Jonathan)
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Example: Hadamard operation

Matrix

H =
1√
2

(
1 1

1 −1

)

QML

H x : Q2 = if◦ x then {qfalse | (−1)qtrue}
else {qfalse | qtrue}
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Something we know well . . .

Start with classical computations
on finite types.

Quantum mechanics is time-reversible. . .

. . . hence quantum computation is based on reversible
operations.

However: Newtonian mechanics, Maxwellian
electrodynamics is also time-reversible. . .

. . . hence classical computation should be based on
reversible operations.
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Classical computations (FCC)

Given finite sets A (input) and B (output):

A B

φ

h
�

H G
�

a finite set of initial heaps H,

an initial heap h ∈ H,

a finite set of garbage states G,

a bijection φ ∈ A × H ' B × G,
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Composing classical computations

A
φα

B
φβ

C

Hα
�

>>
>>

>>
>>

88
88

88
8 Gα

�

Hβ
�

��������

������� Gβ
�

φβ◦α
Exercise: Define I .
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Extensional equality

Every computation α gives rise to a function
UFCC α ∈ A → B

A × H
φ

// B × G

π1

��
A

(−,h)

OO

UFCC α
// B

α =ext β, if UFCC α = UFCC β

FCC:
Objects finite sets

Morphisms computations / =ext.

Functional Quantum Programming – p. 10/44



Extensional equality
Every computation α gives rise to a function
UFCC α ∈ A → B

A × H
φ

// B × G

π1

��
A

(−,h)

OO

UFCC α
// B

α =ext β, if UFCC α = UFCC β

FCC:
Objects finite sets

Morphisms computations / =ext.

Functional Quantum Programming – p. 10/44



Extensional equality
Every computation α gives rise to a function
UFCC α ∈ A → B

A × H
φ

// B × G

π1

��
A

(−,h)

OO

UFCC α
// B

α =ext β, if UFCC α = UFCC β

FCC:
Objects finite sets

Morphisms computations / =ext.

Functional Quantum Programming – p. 10/44



Extensional equality
Every computation α gives rise to a function
UFCC α ∈ A → B

A × H
φ

// B × G

π1

��
A

(−,h)

OO

UFCC α
// B

α =ext β, if UFCC α = UFCC β

FCC:
Objects finite sets

Morphisms computations / =ext.

Functional Quantum Programming – p. 10/44



UFCC

UFCC I = I

UFCC (β ◦ α) = (UFCC β) ◦ (UFCC α)

UFCC is a functor UFCC : FCC → FinSet.

UFCC is faithful (trivially).

Exercise: UFCC is full!
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Coming next: Quantum computations FQC

Develop FQC analogously to FCC. . .
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Linear algebra revision

Given a finite set A (the base)
C A = A → C is a Hilbert space.
Linear operators:
f ∈ A → B → C induces f̂ ∈ C A → C B.
we write f ∈ A ( B
Norm of a vector:
‖v‖ = Σa∈A(va)∗(va) ∈ R

+,
Unitary operators:
A unitary operator φ ∈ A (unitary B is a linear
isomorphism that preserves the norm.
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Basics of quantum computation

A pure state over A is a vector v ∈ C A with
unit norm ‖v‖ = 1.

A reversible computation is given by a
unitary operator φ ∈ A (unitary B.
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Quantum computations (FQC)

Given finite sets A (input) and B (output):

A B

φ

h
�

H G
�

a finite set H, the base of the space of initial
heaps,

a heap initialisation vector h ∈ C H,

a finite set G, the base of the space of
garbage states,

a unitary operator φ ∈ A ⊗ H (unitary B ⊗ G.
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Extensional equality. . .

. . . is a bit more subtle.

There is no sensible operator replacing π1 on
vector spaces:

A ⊗ H
φ

// B ⊗ G

???

��
A

−⊗h

OO

???
// B

Indeed: Forgetting part of a pure state
results in a mixed state.
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Density Operators

A mixed state on A is given by a density
operator

ρ ∈ A ( A

such that all eigenvalues are positive reals

ρ̂ v = λv =⇒ λ ∈ R
+

and has a unit trace

Σa ∈ A.v a = 1
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Superoperators

A superoperator f ∈ A (super B is a linear
operator on density operators which is
completely positive.

A unitary operator φ ∈ A (unitary B gives rise
to a superoperator φ† ∈ A (super B.

Partial trace:

trA,G ∈ A ⊗ G (super A
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Extensional equality

Every computation α gives rise to a
superoperator U α ∈ A (super B

A ⊗ H
φ̂

// B ⊗ G

trG

��
A

−⊗h̃

OO

UFQC α
// B

α =ext β, if UFQC α = UFQC β

FCC:
Objects finite sets

Morphisms computations / =ext.
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UFQC

UFQC I = I

UFQC (β ◦ α) = (UFQC β) ◦ (UFQC α)

UFQC is a functor UFQC : FQC → Super.

UFQC is faithful (trivially).

UFQC is full!
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Classical vs quantum

classical quantum

finite sets finite dimensional Hilbert spaces

bijections unitary operators

cartesian product (×) tensor product (⊗)

functions superoperators

projections partial trace
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Decoherence

2 • 2

0 � '&%$ !"# �

φδ φπ1

Classically

π1 ◦ δ = I

Quantum

input: { 1√
2
|0〉 + 1√

2
|0〉}

output: 1
2{|0〉} + 1

2{|1〉}
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QML basics

Γ ` t : σ
JtK ∈ FQC JΓK JτK

QML is based on strict linear logic
no weakening but contraction.

QML types: 1, σ ⊗ τ, σ ⊕ τ
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Interpretation of types

|1| = 0

|σ t τ | = max {|σ|, |τ |}
|σ ⊕ τ | = |σ t τ | + 1

|σ ⊗ τ | = |σ| + |τ |

JσK = 2|σ|
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⊗ on contexts

Γ, x : σ ⊗ ∆, x : σ = (Γ ⊗ ∆), x : σ

Γ, x : σ ⊗ ∆ = (Γ ⊗ ∆), x : σ if x /∈ dom ∆

• ⊗ ∆ = ∆

Γ ⊗ ∆
φCΓ,∆

Γ

HΓ,∆
�

∆

Functional Quantum Programming – p. 26/44



⊗ on contexts

Γ, x : σ ⊗ ∆, x : σ = (Γ ⊗ ∆), x : σ

Γ, x : σ ⊗ ∆ = (Γ ⊗ ∆), x : σ if x /∈ dom ∆

• ⊗ ∆ = ∆

Γ ⊗ ∆
φCΓ,∆

Γ

HΓ,∆
�

∆

Functional Quantum Programming – p. 26/44



⊗ on contexts

Γ, x : σ ⊗ ∆, x : σ = (Γ ⊗ ∆), x : σ

Γ, x : σ ⊗ ∆ = (Γ ⊗ ∆), x : σ if x /∈ dom ∆

• ⊗ ∆ = ∆

Γ ⊗ ∆
φCΓ,∆

Γ

HΓ,∆
�

∆

Functional Quantum Programming – p. 26/44



The let-rule

Γ ` t : σ

∆, x : σ ` u : τ
let

Γ ⊗ ∆ ` let x = t in u : τ

Γ ⊗ ∆
φCΓ,∆

Γ

;;
;;

; ∆

φuHΓ,∆
�

∆

�����

φt

σ τ B

Ht
�

;;
;;

;;

99
99

99 Gt
�

Hu
�

������

������ Gu
�
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The var-rule

var
Γ, x : σ ` xdom Γ : σ

Γ
??

??
? σ

σ
����� �
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var
Γ, x : σ ` xdom Γ : σ

Γ
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??
? σ

σ
����� �
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Example

y : Q2 ` let x = y in x{} : Q2

y : Q2 ` let x = y in x{y} : Q2
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⊗-intro

Γ ` t : σ ∆ ` u : τ ⊗ intro
Γ ⊗ ∆ ` (t, u) : σ ⊗ τ

Γ ⊗ ∆
φCΓ,∆

Γ

φt

σ σ

HΓ,∆
�

∆

;;
;;

;

::
::

:: τ

Ht
�

������

φu

τ

����� Gt
�

Hu
� Gu

�
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⊗-elim

Γ ` t : σ ⊗ τ

∆, x : σ, y : τ ` u : C
⊗ elim

Γ ⊗ ∆ ` let (x, y) = t in u : C

Γ ⊗ ∆
φCΓ,∆

Γ

;;
;;

; ∆

φu

HΓ,∆
�

∆

�����

φt

σ

τ C C

Ht
�

;;
;;

;;

;;
;;

;; Gt
�

Hu
�

������

������ Gu
�
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Example

p : Q2 ⊗Q2 ` let (x, y) = p in (y{}, x{}) : Q2 ⊗Q2

p : Q2⊗Q2 ` let (x, y) = p in (y{p}, x{p}) : Q2⊗Q2
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⊕-intro

Γ ` t : A
Γ ` inl t : A ⊕ B

Γ
φt

σ

φPσtτ

∆
>>

>>
> σ t τ σ t τ

Ht−s
�

�����

AA
AA

AA
A Q2

Q2 X
�

}}}}}}} Gt
�
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⊕-elim

Γ ` c : σ ⊕ τ

∆, x : σ ` t : ρ

∆, y : τ ` u : ρ
+ elim

Γ ⊗ ∆ ` case c of {inl x ⇒ t | inr y ⇒ u} : ρ

Γ ⊗ ∆
φCΓ,∆

Γ

::
::

:

φ[t|u]

HΓ,∆
�

∆

�����

φb

σ t τ ρ

Q2 Q2
�

Hb
�

DD
DD

DD G
�

Ht−u
�

zzzzzz Gb
�
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⊕-elim decoherence-free

Γ ` c : σ ⊕ τ

∆, x : σ ` t : ρ

∆, y : τ ` u : ρ, t ⊥ u
+ elim◦

Γ ⊗ ∆ ` case◦ b of {inl x ⇒ t | inr y ⇒ u} : ρ

Γ ⊗ ∆
φCΓ,∆

Γ

::
::

:

φ[f |g]

HΓ,∆
�

∆

�����

φb

σ t τ S

φ⊥

ρ

Q2 Q2

Hb
�

DD
DD

DD G
�

Ht−u
�

zzzzzz Gb
�
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Orthogonality

inl t ⊥ inr u
t ⊥ u

inl t ⊥ inl u inr t ⊥ inr u

t ⊥ u
(t, v) ⊥ (u,w) (v, t) ⊥ (w, u)
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Semantics of ⊥

Jt ⊥ uK = (S, φ, f, g)

S finite set.

φ ∈ Q2 ⊗ S (unitary JσK

f ∈ FQC JΓKS
g ∈ FQC JΓKS

JtK = φ ◦ (true ⊗−) ◦ f ,
JuK = φ ◦ (false ⊗−) ◦ g
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Superpositions

Γ ` t, u : σ t ⊥ u

||λ||2 + ||λ′||2 = 1 λ, λ′ 6= 0

Γ ` {(λ)t | (λ′)u} : σ

≡ if◦ {(λ)qtrue | (λ′)qfalse} then t else u
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Example: Deutsch’s algorithm

Eq a : Q2, b : Q2 = let (x, y) = if◦ {qfalse | (−1)qtrue}

then (qtrue, if a

then {qfalse | (−1)qtrue}

else {qfalse | qtrue})

else (qfalse,if b

then {qfalse | (−1)qtrue}

else {qfalse | qtrue})

in x

: Q2
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Future work

Higher order

High level reasoning principles for QML
programs

Categorical analysis

Infinite or indexed?
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