
Towards a
High Level

Quantum Programming Language
Thorsten Altenkirch

University of Nottingham

based on joint work with Jonathan Grattage

and discussions with V.P. Belavkin

Towards aHigh LevelQuantum Programming Language – p.1/36

Background

Simulation of quantum systems is expensive:
PSPACE complexity for polynomial circuits.

Feynman: Can we exploit this fact to perform
computations more efficiently?

Shor: Factorisation in quantum polynomial time.

Grover: Blind search in

Can we build a quantum computer?

yes We can run quantum algorithms.

no Nature is classical after all!

Assumption: Nature is fair. . .

Towards aHigh LevelQuantum Programming Language – p.2/36

Background
Simulation of quantum systems is expensive:
PSPACE complexity for polynomial circuits.

Feynman: Can we exploit this fact to perform
computations more efficiently?

Shor: Factorisation in quantum polynomial time.

Grover: Blind search in

Can we build a quantum computer?

yes We can run quantum algorithms.

no Nature is classical after all!

Assumption: Nature is fair. . .

Towards aHigh LevelQuantum Programming Language – p.2/36

Background
Simulation of quantum systems is expensive:
PSPACE complexity for polynomial circuits.

Feynman: Can we exploit this fact to perform
computations more efficiently?

Shor: Factorisation in quantum polynomial time.

Grover: Blind search in

Can we build a quantum computer?

yes We can run quantum algorithms.

no Nature is classical after all!

Assumption: Nature is fair. . .

Towards aHigh LevelQuantum Programming Language – p.2/36

Background
Simulation of quantum systems is expensive:
PSPACE complexity for polynomial circuits.

Feynman: Can we exploit this fact to perform
computations more efficiently?

Shor: Factorisation in quantum polynomial time.

Grover: Blind search in

Can we build a quantum computer?

yes We can run quantum algorithms.

no Nature is classical after all!

Assumption: Nature is fair. . .

Towards aHigh LevelQuantum Programming Language – p.2/36

Background
Simulation of quantum systems is expensive:
PSPACE complexity for polynomial circuits.

Feynman: Can we exploit this fact to perform
computations more efficiently?

Shor: Factorisation in quantum polynomial time.

Grover: Blind search in
� � � �

Can we build a quantum computer?

yes We can run quantum algorithms.

no Nature is classical after all!

Assumption: Nature is fair. . .

Towards aHigh LevelQuantum Programming Language – p.2/36

Background
Simulation of quantum systems is expensive:
PSPACE complexity for polynomial circuits.

Feynman: Can we exploit this fact to perform
computations more efficiently?

Shor: Factorisation in quantum polynomial time.

Grover: Blind search in
� � � �

Can we build a quantum computer?

yes We can run quantum algorithms.

no Nature is classical after all!

Assumption: Nature is fair. . .

Towards aHigh LevelQuantum Programming Language – p.2/36

Background
Simulation of quantum systems is expensive:
PSPACE complexity for polynomial circuits.

Feynman: Can we exploit this fact to perform
computations more efficiently?

Shor: Factorisation in quantum polynomial time.

Grover: Blind search in
� � � �

Can we build a quantum computer?

yes We can run quantum algorithms.

no Nature is classical after all!

Assumption: Nature is fair. . .

Towards aHigh LevelQuantum Programming Language – p.2/36

Background
Simulation of quantum systems is expensive:
PSPACE complexity for polynomial circuits.

Feynman: Can we exploit this fact to perform
computations more efficiently?

Shor: Factorisation in quantum polynomial time.

Grover: Blind search in
� � � �

Can we build a quantum computer?

yes We can run quantum algorithms.

no Nature is classical after all!

Assumption: Nature is fair. . .

Towards aHigh LevelQuantum Programming Language – p.2/36

Background
Simulation of quantum systems is expensive:
PSPACE complexity for polynomial circuits.

Feynman: Can we exploit this fact to perform
computations more efficiently?

Shor: Factorisation in quantum polynomial time.

Grover: Blind search in
� � � �

Can we build a quantum computer?

yes We can run quantum algorithms.

no Nature is classical after all!

Assumption: Nature is fair. . .

Towards aHigh LevelQuantum Programming Language – p.2/36

The quantum software crisis

Quantum algorithms are usually presented
using the circuit model.

Nielsen and Chuang, p.7, Coming up with
good quantum algorithms is hard.

Richard Josza, QPL 2004: We need to
develop quantum thinking!

Towards aHigh LevelQuantum Programming Language – p.3/36

The quantum software crisis

Quantum algorithms are usually presented
using the circuit model.

Nielsen and Chuang, p.7, Coming up with
good quantum algorithms is hard.

Richard Josza, QPL 2004: We need to
develop quantum thinking!

Towards aHigh LevelQuantum Programming Language – p.3/36

The quantum software crisis

Quantum algorithms are usually presented
using the circuit model.

Nielsen and Chuang, p.7, Coming up with
good quantum algorithms is hard.

Richard Josza, QPL 2004: We need to
develop quantum thinking!

Towards aHigh LevelQuantum Programming Language – p.3/36

The quantum software crisis

Quantum algorithms are usually presented
using the circuit model.

Nielsen and Chuang, p.7, Coming up with
good quantum algorithms is hard.

Richard Josza, QPL 2004: We need to
develop quantum thinking!

Towards aHigh LevelQuantum Programming Language – p.3/36

QML

QML: a functional language for quantum computations
on finite types.

Quantum control and quantum data.

Design guided by semantics

Analogy with classical computation

Finite classical computations

Finite quantum computations

Important issue: control of decoherence

Draft paper available
(Google:Thorsten,functional,quantum)

Compiler under construction (Jonathan)

Towards aHigh LevelQuantum Programming Language – p.4/36

QML
QML: a functional language for quantum computations
on finite types.

Quantum control and quantum data.

Design guided by semantics

Analogy with classical computation

Finite classical computations

Finite quantum computations

Important issue: control of decoherence

Draft paper available
(Google:Thorsten,functional,quantum)

Compiler under construction (Jonathan)

Towards aHigh LevelQuantum Programming Language – p.4/36

QML
QML: a functional language for quantum computations
on finite types.

Quantum control and quantum data.

Design guided by semantics

Analogy with classical computation

Finite classical computations

Finite quantum computations

Important issue: control of decoherence

Draft paper available
(Google:Thorsten,functional,quantum)

Compiler under construction (Jonathan)

Towards aHigh LevelQuantum Programming Language – p.4/36

QML
QML: a functional language for quantum computations
on finite types.

Quantum control and quantum data.

Design guided by semantics

Analogy with classical computation

Finite classical computations

Finite quantum computations

Important issue: control of decoherence

Draft paper available
(Google:Thorsten,functional,quantum)

Compiler under construction (Jonathan)

Towards aHigh LevelQuantum Programming Language – p.4/36

QML
QML: a functional language for quantum computations
on finite types.

Quantum control and quantum data.

Design guided by semantics

Analogy with classical computation� � �

Finite classical computations� �

Finite quantum computations

Important issue: control of decoherence

Draft paper available
(Google:Thorsten,functional,quantum)

Compiler under construction (Jonathan)

Towards aHigh LevelQuantum Programming Language – p.4/36

QML
QML: a functional language for quantum computations
on finite types.

Quantum control and quantum data.

Design guided by semantics

Analogy with classical computation� � �

Finite classical computations� �

Finite quantum computations

Important issue: control of decoherence

Draft paper available
(Google:Thorsten,functional,quantum)

Compiler under construction (Jonathan)

Towards aHigh LevelQuantum Programming Language – p.4/36

QML
QML: a functional language for quantum computations
on finite types.

Quantum control and quantum data.

Design guided by semantics

Analogy with classical computation� � �

Finite classical computations� �

Finite quantum computations

Important issue: control of decoherence

Draft paper available
(Google:Thorsten,functional,quantum)

Compiler under construction (Jonathan)

Towards aHigh LevelQuantum Programming Language – p.4/36

QML
QML: a functional language for quantum computations
on finite types.

Quantum control and quantum data.

Design guided by semantics

Analogy with classical computation� � �

Finite classical computations� �

Finite quantum computations

Important issue: control of decoherence

Draft paper available
(Google:Thorsten,functional,quantum)

Compiler under construction (Jonathan)Towards aHigh LevelQuantum Programming Language – p.4/36

Example: Hadamard operation

Matrix

QML

Towards aHigh LevelQuantum Programming Language – p.5/36

Example: Hadamard operation

Matrix

� �
�

� �
� 	 �

QML

Towards aHigh LevelQuantum Programming Language – p.5/36

Example: Hadamard operation

Matrix

� �
�

� �
� 	 �

QML
��
�� � � �
��
�� � �� � ������ ��� � ��� !" 	 � # � $&%' (

�)�* � ��� � ��� ! � $&%' (

Towards aHigh LevelQuantum Programming Language – p.5/36

Overview

1. Semantics of finite classical and quantum
computation

2. QML basics

3. Compiling QML

4. Conclusions and further work

Towards aHigh LevelQuantum Programming Language – p.6/36

1. Semantics

1. Semantics of finite classical and quantum
computation

2. QML basics

3. Compiling QML

4. Conclusions and further work

Towards aHigh LevelQuantum Programming Language – p.7/36

Something we know well . . .

Start with classical computations
on finite types.

Quantum mechanics is time-reversible. . .

. . . hence quantum computation is based on reversible
operations.

However: Newtonian mechanics, Maxwellian
electrodynamics are also time-reversible. . .

. . . hence classical computation should be based on
reversible operations.

Towards aHigh LevelQuantum Programming Language – p.8/36

Something we know well . . .

Start with classical computations
on finite types.

Quantum mechanics is time-reversible. . .

. . . hence quantum computation is based on reversible
operations.

However: Newtonian mechanics, Maxwellian
electrodynamics are also time-reversible. . .

. . . hence classical computation should be based on
reversible operations.

Towards aHigh LevelQuantum Programming Language – p.8/36

Something we know well . . .

Start with classical computations
on finite types.

Quantum mechanics is time-reversible. . .

. . . hence quantum computation is based on reversible
operations.

However: Newtonian mechanics, Maxwellian
electrodynamics are also time-reversible. . .

. . . hence classical computation should be based on
reversible operations.

Towards aHigh LevelQuantum Programming Language – p.8/36

Something we know well . . .

Start with classical computations
on finite types.

Quantum mechanics is time-reversible. . .

. . . hence quantum computation is based on reversible
operations.

However: Newtonian mechanics, Maxwellian
electrodynamics are also time-reversible. . .

. . . hence classical computation should be based on
reversible operations.

Towards aHigh LevelQuantum Programming Language – p.8/36

Something we know well . . .

Start with classical computations
on finite types.

Quantum mechanics is time-reversible. . .

. . . hence quantum computation is based on reversible
operations.

However: Newtonian mechanics, Maxwellian
electrodynamics are also time-reversible. . .

. . . hence classical computation should be based on
reversible operations.

Towards aHigh LevelQuantum Programming Language – p.8/36

Something we know well . . .

Start with classical computations
on finite types.

Quantum mechanics is time-reversible. . .

. . . hence quantum computation is based on reversible
operations.

However: Newtonian mechanics, Maxwellian
electrodynamics are also time-reversible. . .

. . . hence classical computation should be based on
reversible operations.

Towards aHigh LevelQuantum Programming Language – p.8/36

Classical computation ()

Given finite sets (input) and (output):

� �

a finite set of initial heaps ,

an initial heap ,

a finite set of garbage states ,

a bijection ,

Towards aHigh LevelQuantum Programming Language – p.9/36

Classical computation ()

Given finite sets (input) and (output):

+ ,-. � / 0 �

a finite set of initial heaps ,

an initial heap ,

a finite set of garbage states ,

a bijection ,

Towards aHigh LevelQuantum Programming Language – p.9/36

Classical computation ()

Given finite sets (input) and (output):

+ ,-. � / 0 �

a finite set of initial heaps ,

an initial heap ,

a finite set of garbage states ,

a bijection ,

Towards aHigh LevelQuantum Programming Language – p.9/36

Classical computation ()

Given finite sets (input) and (output):

+ ,-. � / 0 �

a finite set of initial heaps ,

an initial heap
132 ,

a finite set of garbage states ,

a bijection ,

Towards aHigh LevelQuantum Programming Language – p.9/36

Classical computation ()

Given finite sets (input) and (output):

+ ,-. � / 0 �

a finite set of initial heaps ,

an initial heap
132 ,

a finite set of garbage states ,

a bijection ,

Towards aHigh LevelQuantum Programming Language – p.9/36

Classical computation ()

Given finite sets (input) and (output):

+ ,-. � / 0 �

a finite set of initial heaps ,

an initial heap
132 ,

a finite set of garbage states ,

a bijection 2 4 5 4 ,

Towards aHigh LevelQuantum Programming Language – p.9/36

Semantics

A classical computation

induces a function U by

U

Theorem Any function (on finite
sets) can be realized by a quantum
computation.

Towards aHigh LevelQuantum Programming Language – p.10/36

Semantics

A classical computation6 �" 7 7 7 1 2 7 7 2 4 5 4 #

induces a function U 6 2 by

U 68 � 9;: " 1 7 8 #

Theorem Any function (on finite
sets) can be realized by a quantum
computation.

Towards aHigh LevelQuantum Programming Language – p.10/36

Semantics

A classical computation6 �" 7 7 7 1 2 7 7 2 4 5 4 #

induces a function U 6 2 by

U 68 � 9;: " 1 7 8 #

Theorem Any function 2 (on finite
sets 7) can be realized by a quantum
computation.

Towards aHigh LevelQuantum Programming Language – p.10/36

Composing classical computations

�

>>
>>

>>
>>

88
88

88
8 �

�

��������

������� �

Theorem:
U U U

Towards aHigh LevelQuantum Programming Language – p.11/36

Composing classical computations

< , =< �

>>
>>

>>
>>

88
88

88
8 <�

= �

��������

������� =�

= � <

Theorem:
U U U

Towards aHigh LevelQuantum Programming Language – p.11/36

Composing classical computations

< , =< �

>>
>>

>>
>>

88
88

88
8 <�

= �

��������

������� =�

= � <
Theorem:

U

" > 6 # �" U

>" U 6

Towards aHigh LevelQuantum Programming Language – p.11/36

Coming next: Quantum computations

Develop analogously to . . .

Towards aHigh LevelQuantum Programming Language – p.12/36

Linear algebra revision

Given a finite set (the base)
is a Hilbert space.

Linear operators:
induces .

we write
Norm of a vector:

,
Unitary operators:
A unitary operator unitary is a linear iso-
morphism that preserves the norm.

Towards aHigh LevelQuantum Programming Language – p.13/36

Linear algebra revision

Given a finite set (the base)� is a Hilbert space.

Linear operators:
induces .

we write
Norm of a vector:

,
Unitary operators:
A unitary operator unitary is a linear iso-
morphism that preserves the norm.

Towards aHigh LevelQuantum Programming Language – p.13/36

Linear algebra revision

Given a finite set (the base)� is a Hilbert space.
Linear operators:2 induces

?2 .
we write 2 �

Norm of a vector:
,

Unitary operators:
A unitary operator unitary is a linear iso-
morphism that preserves the norm.

Towards aHigh LevelQuantum Programming Language – p.13/36

Linear algebra revision

Given a finite set (the base)� is a Hilbert space.
Linear operators:2 induces

?2 .
we write 2 �
Norm of a vector:@�A @ � B C D" A 8 # E" A 8 # 2 F

,

Unitary operators:
A unitary operator unitary is a linear iso-
morphism that preserves the norm.

Towards aHigh LevelQuantum Programming Language – p.13/36

Linear algebra revision

Given a finite set (the base)� is a Hilbert space.
Linear operators:2 induces

?2 .
we write 2 �
Norm of a vector:@�A @ � B C D" A 8 # E" A 8 # 2 F

,
Unitary operators:
A unitary operator 2 �

unitary is a linear iso-
morphism that preserves the norm.

Towards aHigh LevelQuantum Programming Language – p.13/36

Basics of quantum computation

A pure state over is a vector with
unit norm .

A reversible computation is given by a
unitary operator unitary .

Towards aHigh LevelQuantum Programming Language – p.14/36

Basics of quantum computation

A pure state over is a vector A 2 with
unit norm

@�A @ � �

.

A reversible computation is given by a
unitary operator unitary .

Towards aHigh LevelQuantum Programming Language – p.14/36

Basics of quantum computation

A pure state over is a vector A 2 with
unit norm

@�A @ � �

.

A reversible computation is given by a
unitary operator 2 �

unitary .

Towards aHigh LevelQuantum Programming Language – p.14/36

Quantum computations ()

Given finite sets (input) and (output):

� �

a finite set , the base of the space of initial
heaps,

a heap initialisation vector ,

a finite set , the base of the space of
garbage states,

a unitary operator unitary .

Towards aHigh LevelQuantum Programming Language – p.15/36

Quantum computations ()
Given finite sets (input) and (output):

+ ,-. � / 0 �

a finite set , the base of the space of initial
heaps,

a heap initialisation vector ,

a finite set , the base of the space of
garbage states,

a unitary operator unitary .

Towards aHigh LevelQuantum Programming Language – p.15/36

Quantum computations ()
Given finite sets (input) and (output):

+ ,-. � / 0 �

a finite set , the base of the space of initial
heaps,

a heap initialisation vector ,

a finite set , the base of the space of
garbage states,

a unitary operator unitary .

Towards aHigh LevelQuantum Programming Language – p.15/36

Quantum computations ()
Given finite sets (input) and (output):

+ ,-. � / 0 �

a finite set , the base of the space of initial
heaps,

a heap initialisation vector

1 2 ,

a finite set , the base of the space of
garbage states,

a unitary operator unitary .

Towards aHigh LevelQuantum Programming Language – p.15/36

Quantum computations ()
Given finite sets (input) and (output):

+ ,-. � / 0 �

a finite set , the base of the space of initial
heaps,

a heap initialisation vector

1 2 ,

a finite set , the base of the space of
garbage states,

a unitary operator unitary .

Towards aHigh LevelQuantum Programming Language – p.15/36

Quantum computations ()
Given finite sets (input) and (output):

+ ,-. � / 0 �

a finite set , the base of the space of initial
heaps,

a heap initialisation vector

1 2 ,

a finite set , the base of the space of
garbage states,

a unitary operator 2 �

unitary .
Towards aHigh LevelQuantum Programming Language – p.15/36

Composing quantum computations

�

>>
>>

>>
>>

88
88

88
8 �

�

��������

������� �

Towards aHigh LevelQuantum Programming Language – p.16/36

Composing quantum computations

< , =< �

>>
>>

>>
>>

88
88

88
8 <�

= �

��������

������� =�

= � <

Towards aHigh LevelQuantum Programming Language – p.16/36

Semantics of quantum computations. . .

. . . is a bit more subtle.

There is no (sensible) operator on vector
spaces, replacing .

Indeed: Forgetting part of a pure state
results in a mixed state.

Towards aHigh LevelQuantum Programming Language – p.17/36

Semantics of quantum computations. . .

. . . is a bit more subtle.

There is no (sensible) operator on vector
spaces, replacing .

Indeed: Forgetting part of a pure state
results in a mixed state.

Towards aHigh LevelQuantum Programming Language – p.17/36

Semantics of quantum computations. . .

. . . is a bit more subtle.

There is no (sensible) operator on vector
spaces, replacing 9 : 2 4 .

Indeed: Forgetting part of a pure state
results in a mixed state.

Towards aHigh LevelQuantum Programming Language – p.17/36

Semantics of quantum computations. . .

. . . is a bit more subtle.

There is no (sensible) operator on vector
spaces, replacing 9 : 2 4 .

Indeed: Forgetting part of a pure state
results in a mixed state.

Towards aHigh LevelQuantum Programming Language – p.17/36

Density matrices and superoperators

Mixed states are represented by density
matrices.

Operations on mixed states (i.e. density
matrices) are represented by superoperators.

Every unitary operator gives rise to a
superoperator .

There is an operator

super

called partial trace.

Towards aHigh LevelQuantum Programming Language – p.18/36

Density matrices and superoperators

Mixed states are represented by density
matrices.

Operations on mixed states (i.e. density
matrices) are represented by superoperators.

Every unitary operator gives rise to a
superoperator .

There is an operator

super

called partial trace.

Towards aHigh LevelQuantum Programming Language – p.18/36

Density matrices and superoperators

Mixed states are represented by density
matrices.

Operations on mixed states (i.e. density
matrices) are represented by superoperators.

Every unitary operator gives rise to a
superoperator .

There is an operator

super

called partial trace.

Towards aHigh LevelQuantum Programming Language – p.18/36

Density matrices and superoperators

Mixed states are represented by density
matrices.

Operations on mixed states (i.e. density
matrices) are represented by superoperators.

Every unitary operator gives rise to a
superoperator

G
.

There is an operator

super

called partial trace.

Towards aHigh LevelQuantum Programming Language – p.18/36

Density matrices and superoperators

Mixed states are represented by density
matrices.

Operations on mixed states (i.e. density
matrices) are represented by superoperators.

Every unitary operator gives rise to a
superoperator

G
.

There is an operatorHJILKNM O 2 �

super

called partial trace.
Towards aHigh LevelQuantum Programming Language – p.18/36

Semantics

Every quantum computation gives rise to a
superoperator U super

//

��

OO

U
//

Theorem: Every superoperator super

(on finite Hilbert spaces) comes from a quantum
computation.

Towards aHigh LevelQuantum Programming Language – p.19/36

Semantics

Every quantum computation 6 gives rise to a
superoperator U 6 2 �

super

PRQ //
S;TU

��

V W XZYOO

U < //

Theorem: Every superoperator super

(on finite Hilbert spaces) comes from a quantum
computation.

Towards aHigh LevelQuantum Programming Language – p.19/36

Semantics

Every quantum computation 6 gives rise to a
superoperator U 6 2 �

super

PRQ //
S;TU

��

V W XZYOO

U < //

Theorem: Every superoperator 2 �

super

(on finite Hilbert spaces) comes from a quantum
computation.

Towards aHigh LevelQuantum Programming Language – p.19/36

Classical vs quantum

classical quantum

finite sets finite dimensional Hilbert spaces

bijections unitary operators

cartesian product () tensor product ()

functions superoperators

projections partial trace

Towards aHigh LevelQuantum Programming Language – p.20/36

Classical vs quantum

classical quantum

finite sets finite dimensional Hilbert spaces

bijections unitary operators

cartesian product () tensor product ()

functions superoperators

projections partial trace

Towards aHigh LevelQuantum Programming Language – p.20/36

Classical vs quantum

classical quantum

finite sets

finite dimensional Hilbert spaces

bijections unitary operators

cartesian product () tensor product ()

functions superoperators

projections partial trace

Towards aHigh LevelQuantum Programming Language – p.20/36

Classical vs quantum

classical quantum

finite sets finite dimensional Hilbert spaces

bijections unitary operators

cartesian product () tensor product ()

functions superoperators

projections partial trace

Towards aHigh LevelQuantum Programming Language – p.20/36

Classical vs quantum

classical quantum

finite sets finite dimensional Hilbert spaces

bijections

unitary operators

cartesian product () tensor product ()

functions superoperators

projections partial trace

Towards aHigh LevelQuantum Programming Language – p.20/36

Classical vs quantum

classical quantum

finite sets finite dimensional Hilbert spaces

bijections unitary operators

cartesian product () tensor product ()

functions superoperators

projections partial trace

Towards aHigh LevelQuantum Programming Language – p.20/36

Classical vs quantum

classical quantum

finite sets finite dimensional Hilbert spaces

bijections unitary operators

cartesian product ([)

tensor product ()

functions superoperators

projections partial trace

Towards aHigh LevelQuantum Programming Language – p.20/36

Classical vs quantum

classical quantum

finite sets finite dimensional Hilbert spaces

bijections unitary operators

cartesian product ([) tensor product (\)

functions superoperators

projections partial trace

Towards aHigh LevelQuantum Programming Language – p.20/36

Classical vs quantum

classical quantum

finite sets finite dimensional Hilbert spaces

bijections unitary operators

cartesian product ([) tensor product (\)
functions

superoperators

projections partial trace

Towards aHigh LevelQuantum Programming Language – p.20/36

Classical vs quantum

classical quantum

finite sets finite dimensional Hilbert spaces

bijections unitary operators

cartesian product ([) tensor product (\)
functions superoperators

projections partial trace

Towards aHigh LevelQuantum Programming Language – p.20/36

Classical vs quantum

classical quantum

finite sets finite dimensional Hilbert spaces

bijections unitary operators

cartesian product ([) tensor product (\)
functions superoperators

projections

partial trace

Towards aHigh LevelQuantum Programming Language – p.20/36

Classical vs quantum

classical quantum

finite sets finite dimensional Hilbert spaces

bijections unitary operators

cartesian product ([) tensor product (\)
functions superoperators

projections partial trace

Towards aHigh LevelQuantum Programming Language – p.20/36

Decoherence

� '&%$!"# �

Classically

Quantum

input:

output:

Towards aHigh LevelQuantum Programming Language – p.21/36

Decoherence

�] �

^ � '&%$!"# �

-`_ -bac

Classically

Quantum

input:

output:

Towards aHigh LevelQuantum Programming Language – p.21/36

Decoherence

�] �

^ � '&%$!"# �

-`_ -bac
Classically 9L: > d � e

Quantum

input:

output:

Towards aHigh LevelQuantum Programming Language – p.21/36

Decoherence

�] �

^ � '&%$!"# �

-`_ -bac
Classically 9L: > d � e

Quantum

input:

output:

Towards aHigh LevelQuantum Programming Language – p.21/36

Decoherence

�] �

^ � '&%$!"# �

-`_ -bac
Classically 9L: > d � e

Quantum

input:

� :f � ! ^ g : f � ! ^ g (

output:

Towards aHigh LevelQuantum Programming Language – p.21/36

Decoherence

�] �

^ � '&%$!"# �

-`_ -bac
Classically 9L: > d � e

Quantum

input:

� :f � ! ^ g : f � ! ^ g (

output:
: � � ! ^ g (: � � ! � g (

Towards aHigh LevelQuantum Programming Language – p.21/36

2. QML basics

1. Semantics of finite classical and quantum
computation

2. QML basics

3. Compiling QML

4. Conclusions and further work

Towards aHigh LevelQuantum Programming Language – p.22/36

QML basics

QML is a first order functional languages, i.e.
programs are well-typed expressions.

QML types are

Qbits

Qbytes
.

Towards aHigh LevelQuantum Programming Language – p.23/36

QML basics

QML is a first order functional languages, i.e.
programs are well-typed expressions.

QML types are

Qbits

Qbytes
.

Towards aHigh LevelQuantum Programming Language – p.23/36

QML basics

QML is a first order functional languages, i.e.
programs are well-typed expressions.

QML types are

� 7 h i 7 h i

Qbits

Qbytes
.

Towards aHigh LevelQuantum Programming Language – p.23/36

QML basics

QML is a first order functional languages, i.e.
programs are well-typed expressions.

QML types are

� 7 h i 7 h i
Qbits � � � �

Qbytes
.

Towards aHigh LevelQuantum Programming Language – p.23/36

QML basics

QML is a first order functional languages, i.e.
programs are well-typed expressions.

QML types are

� 7 h i 7 h i
Qbits � � � �
Qbytesj� � � � � � � � � �.

Towards aHigh LevelQuantum Programming Language – p.23/36

QML basics . . .

A QML program is an expression in a context
of typed variables, e.g.�k l $� � � ��k l $� � �� � ����� � � � ���

�)* � � $&%'

We can compile QML programs into quantum
computations (i.e. quantum circuits).

Towards aHigh LevelQuantum Programming Language – p.24/36

QML basics . . .

A QML program is an expression in a context
of typed variables, e.g.�k l $� � � ��k l $� � �� � ����� � � � ���

�)* � � $&%'
We can compile QML programs into quantum
computations (i.e. quantum circuits).

Towards aHigh LevelQuantum Programming Language – p.24/36

QML basics . . .

Forgetting variables has to be explicit.

E.g.

is illegal,
but

is ok.

Towards aHigh LevelQuantum Programming Language – p.25/36

QML basics . . .

Forgetting variables has to be explicit.
E.g.� � $m� � � � �� � $" � 7 n # � �

is illegal,

but

is ok.

Towards aHigh LevelQuantum Programming Language – p.25/36

QML basics . . .

Forgetting variables has to be explicit.
E.g.� � $m� � � � �� � $" � 7 n # � �

is illegal,
but � � $m� � � � �� � $" � 7 n # � � � n (

is ok.

Towards aHigh LevelQuantum Programming Language – p.25/36

QML basics . . .
There are two different if-then-else (or more
generally case) constructs.

is just the identity, but

introduces a measurement (end hence
decoherence).

Towards aHigh LevelQuantum Programming Language – p.26/36

QML basics . . .
There are two different if-then-else (or more
generally case) constructs.o
 � � � �o
 � � � � � ������ � $&%'

�)* � � � � �
is just the identity,

but

introduces a measurement (end hence
decoherence).

Towards aHigh LevelQuantum Programming Language – p.26/36

QML basics . . .
There are two different if-then-else (or more
generally case) constructs.o
 � � � �o
 � � � � � ������ � $&%'

�)* � � � � �
is just the identity, butp � � � � � �p � � � � �� � ���� � � $&%'

�)�* � � � ���

introduces a measurement (end hence
decoherence). Towards aHigh LevelQuantum Programming Language – p.26/36

QML basics . . .
Using

�� �

is only allowed, if the branches are
orthogonal, i.e. observable different.

is illegal, but

is ok.

Towards aHigh LevelQuantum Programming Language – p.27/36

QML basics . . .
Using

�� �

is only allowed, if the branches are
orthogonal, i.e. observable different.q �r �s � � � � � � � �q �r �s " � 7 n # q � �� � q���� � " n 7� #

�)* � " � 7 n #
is illegal,

but

is ok.

Towards aHigh LevelQuantum Programming Language – p.27/36

QML basics . . .
Using

�� �

is only allowed, if the branches are
orthogonal, i.e. observable different.q �r �s � � � � � � � �q �r �s " � 7 n # q � �� � q���� � " n 7� #

�)* � " � 7 n #
is illegal, butq �r �s � � � � � � � " � � #q �r �s " � 7 n # q � �� � q���� � " � $&%' 7" n 7� # #

�)* � " � � � � 7" � 7 n # #

is ok.
Towards aHigh LevelQuantum Programming Language – p.27/36

QML basics . . .

We can introduce superpositions, e.g.
��
�� � � �
��
�� � �� � ������ ��� � ��� !" 	 � # � $&%' (

�)�* � ��� � ��� ! � $&%' (

However, the terms in the superposition have
to be orthogonal.

Towards aHigh LevelQuantum Programming Language – p.28/36

QML basics . . .

We can introduce superpositions, e.g.
��
�� � � �
��
�� � �� � ������ ��� � ��� !" 	 � # � $&%' (

�)�* � ��� � ��� ! � $&%' (

However, the terms in the superposition have
to be orthogonal.

Towards aHigh LevelQuantum Programming Language – p.28/36

3. Compiling QML

1. Semantics of finite classical and quantum
computation

2. QML basics

3. Compiling QML

4. Conclusions and further work

Towards aHigh LevelQuantum Programming Language – p.29/36

Compilation

Correct QML programs are defined by typing
rules, e.g.

For each rule we can construct a quantum
computation, i.e. a circuit.

Towards aHigh LevelQuantum Programming Language – p.30/36

Compilation

Correct QML programs are defined by typing
rules, e.g.

t uv � h i

7 w � h 7 x � i u�y � z {|~}t u�� � � " w 7 x # �v ��� y �

For each rule we can construct a quantum
computation, i.e. a circuit.

Towards aHigh LevelQuantum Programming Language – p.30/36

Compilation

Correct QML programs are defined by typing
rules, e.g.

t uv � h i

7 w � h 7 x � i u�y � z {|~}t u�� � � " w 7 x # �v ��� y �

For each rule we can construct a quantum
computation, i.e. a circuit.

Towards aHigh LevelQuantum Programming Language – p.30/36

-elim t uv � h i

7 w � h 7 x � i u�y � z { |}t u�� � � " w 7 x # �v � � y �

;;
;;

;

�

�����

�

;;
;;

;;

;;
;;

;;
�

�

������

������ �

Towards aHigh LevelQuantum Programming Language – p.31/36

-elim t uv � h i

7 w � h 7 x � i u�y � z { |}t u�� � � " w 7 x # �v � � y �

t ����� � �

;;
;;

;
�

��M � � � �����
�

�
� �

� �

;;
;;

;;

;;
;;

;; ��

� �

������

������ ��

Towards aHigh LevelQuantum Programming Language – p.31/36

Compiler

A compiler is currently being implemented by
my student Jonathan Grattage (in Haskell).

The output of the compiler are quantum
circuits which can be simulated by a quantum
circuit simulator.

Amr Sabry and Juliana Vizotti (Indiana
University) embarked on an independent
implementation of QML based on our paper.

Towards aHigh LevelQuantum Programming Language – p.32/36

Compiler

A compiler is currently being implemented by
my student Jonathan Grattage (in Haskell).

The output of the compiler are quantum
circuits which can be simulated by a quantum
circuit simulator.

Amr Sabry and Juliana Vizotti (Indiana
University) embarked on an independent
implementation of QML based on our paper.

Towards aHigh LevelQuantum Programming Language – p.32/36

Compiler

A compiler is currently being implemented by
my student Jonathan Grattage (in Haskell).

The output of the compiler are quantum
circuits which can be simulated by a quantum
circuit simulator.

Amr Sabry and Juliana Vizotti (Indiana
University) embarked on an independent
implementation of QML based on our paper.

Towards aHigh LevelQuantum Programming Language – p.32/36

Compiler

A compiler is currently being implemented by
my student Jonathan Grattage (in Haskell).

The output of the compiler are quantum
circuits which can be simulated by a quantum
circuit simulator.

Amr Sabry and Juliana Vizotti (Indiana
University) embarked on an independent
implementation of QML based on our paper.

Towards aHigh LevelQuantum Programming Language – p.32/36

4. Conclusions

1. Semantics of finite classical and quantum
computation

2. QML basics

3. Compiling QML

4. Conclusions and further work

Towards aHigh LevelQuantum Programming Language – p.33/36

Conclusions

Our semantic ideas proved useful when
designing a quantum programming language,
analogous concepts are modelled by the
same syntactic constructs.

Our analysis also highlights the differences
between classical and quantum
programming.

Quantum programming introduces the
problem of control of decoherence, which we
address by making forgetting variables
explicit and by having different if-then-else
constructs.

Towards aHigh LevelQuantum Programming Language – p.34/36

Conclusions
Our semantic ideas proved useful when
designing a quantum programming language,
analogous concepts are modelled by the
same syntactic constructs.

Our analysis also highlights the differences
between classical and quantum
programming.

Quantum programming introduces the
problem of control of decoherence, which we
address by making forgetting variables
explicit and by having different if-then-else
constructs.

Towards aHigh LevelQuantum Programming Language – p.34/36

Conclusions
Our semantic ideas proved useful when
designing a quantum programming language,
analogous concepts are modelled by the
same syntactic constructs.

Our analysis also highlights the differences
between classical and quantum
programming.

Quantum programming introduces the
problem of control of decoherence, which we
address by making forgetting variables
explicit and by having different if-then-else
constructs.

Towards aHigh LevelQuantum Programming Language – p.34/36

Conclusions
Our semantic ideas proved useful when
designing a quantum programming language,
analogous concepts are modelled by the
same syntactic constructs.

Our analysis also highlights the differences
between classical and quantum
programming.

Quantum programming introduces the
problem of control of decoherence, which we
address by making forgetting variables
explicit and by having different if-then-else
constructs.

Towards aHigh LevelQuantum Programming Language – p.34/36

Further work

We have to analyze more quantum programs
to evaluate the practical usefulness of our
approach.

Are we able to come up with completely new
algorithms using QML?

How to deal with higher order programs?

How to deal with infinite datatypes?

Investigate the similarities/differences
between FCC and FQC from a categorical
point of view.

Towards aHigh LevelQuantum Programming Language – p.35/36

Further work

We have to analyze more quantum programs
to evaluate the practical usefulness of our
approach.

Are we able to come up with completely new
algorithms using QML?

How to deal with higher order programs?

How to deal with infinite datatypes?

Investigate the similarities/differences
between FCC and FQC from a categorical
point of view.

Towards aHigh LevelQuantum Programming Language – p.35/36

Further work

We have to analyze more quantum programs
to evaluate the practical usefulness of our
approach.

Are we able to come up with completely new
algorithms using QML?

How to deal with higher order programs?

How to deal with infinite datatypes?

Investigate the similarities/differences
between FCC and FQC from a categorical
point of view.

Towards aHigh LevelQuantum Programming Language – p.35/36

Further work

We have to analyze more quantum programs
to evaluate the practical usefulness of our
approach.

Are we able to come up with completely new
algorithms using QML?

How to deal with higher order programs?

How to deal with infinite datatypes?

Investigate the similarities/differences
between FCC and FQC from a categorical
point of view.

Towards aHigh LevelQuantum Programming Language – p.35/36

Further work

We have to analyze more quantum programs
to evaluate the practical usefulness of our
approach.

Are we able to come up with completely new
algorithms using QML?

How to deal with higher order programs?

How to deal with infinite datatypes?

Investigate the similarities/differences
between FCC and FQC from a categorical
point of view.

Towards aHigh LevelQuantum Programming Language – p.35/36

Further work

We have to analyze more quantum programs
to evaluate the practical usefulness of our
approach.

Are we able to come up with completely new
algorithms using QML?

How to deal with higher order programs?

How to deal with infinite datatypes?

Investigate the similarities/differences
between FCC and FQC from a categorical
point of view.

Towards aHigh LevelQuantum Programming Language – p.35/36

The end

Thank you for your attention.

Towards aHigh LevelQuantum Programming Language – p.36/36

	Background
	The quantum software crisis
	QML
	Example: Hadamard operation
	Overview
	1. Semantics
	Something we know well dots
	Classical computation ($FCC $)
	Semantics
	Composing classical computations
	Coming next: Quantum computations $FQC $
	Linear algebra revision
	Basics of quantum computation
	Quantum computations ($FQC $)
	Composing quantum computations
	Semantics of quantum computationsdots
	Density matrices and superoperators
	Semantics
	Classical vs quantum
	Decoherence
	2. QML basics
	QML basics
	QML basics dots
	QML basics dots
	QML basics dots
	QML basics dots
	QML basics dots
	3. Compiling QML
	Compilation
	$otimes $-elim
	Compiler
	4. Conclusions
	Conclusions
	Further work
	The end

