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Background

Simulation of quantum systems is expensive:
PSPACE complexity for polynomial circuits.

Feynman: Can we exploit this fact to perform
computations more efficiently?

Shor: Factorisation in quantum polynomial time.

Grover: Blind search in

Can we build a quantum computer?

yes We can run quantum algorithms.

no Nature is classical after all!

Assumption: Nature is fair. . .
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The quantum software crisis

Quantum algorithms are usually presented
using the circuit model.

Nielsen and Chuang, p.7, Coming up with
good quantum algorithms is hard.

Richard Josza, QPL 2004: We need to
develop quantum thinking!
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QML

QML: a functional language for quantum computations
on finite types.

Quantum control and quantum data.

Design guided by semantics

Analogy with classical computation

Finite classical computations

Finite quantum computations

Important issue: control of decoherence

Draft paper available
(Google:Thorsten,functional,quantum)

Compiler under construction (Jonathan)
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Example: Hadamard operation

Matrix

QML
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Overview

1. Semantics of finite classical and quantum
computation

2. QML basics

3. Compiling QML

4. Conclusions and further work
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Something we know well . . .

Start with classical computations
on finite types.

Quantum mechanics is time-reversible. . .

. . . hence quantum computation is based on reversible
operations.

However: Newtonian mechanics, Maxwellian
electrodynamics are also time-reversible. . .

. . . hence classical computation should be based on
reversible operations.

Towards aHigh LevelQuantum Programming Language – p.8/36



Something we know well . . .

Start with classical computations
on finite types.

Quantum mechanics is time-reversible. . .

. . . hence quantum computation is based on reversible
operations.

However: Newtonian mechanics, Maxwellian
electrodynamics are also time-reversible. . .

. . . hence classical computation should be based on
reversible operations.

Towards aHigh LevelQuantum Programming Language – p.8/36



Something we know well . . .

Start with classical computations
on finite types.

Quantum mechanics is time-reversible. . .

. . . hence quantum computation is based on reversible
operations.

However: Newtonian mechanics, Maxwellian
electrodynamics are also time-reversible. . .

. . . hence classical computation should be based on
reversible operations.

Towards aHigh LevelQuantum Programming Language – p.8/36



Something we know well . . .

Start with classical computations
on finite types.

Quantum mechanics is time-reversible. . .

. . . hence quantum computation is based on reversible
operations.

However: Newtonian mechanics, Maxwellian
electrodynamics are also time-reversible. . .

. . . hence classical computation should be based on
reversible operations.

Towards aHigh LevelQuantum Programming Language – p.8/36



Something we know well . . .

Start with classical computations
on finite types.

Quantum mechanics is time-reversible. . .

. . . hence quantum computation is based on reversible
operations.

However: Newtonian mechanics, Maxwellian
electrodynamics are also time-reversible. . .

. . . hence classical computation should be based on
reversible operations.

Towards aHigh LevelQuantum Programming Language – p.8/36



Something we know well . . .

Start with classical computations
on finite types.

Quantum mechanics is time-reversible. . .

. . . hence quantum computation is based on reversible
operations.

However: Newtonian mechanics, Maxwellian
electrodynamics are also time-reversible. . .

. . . hence classical computation should be based on
reversible operations.

Towards aHigh LevelQuantum Programming Language – p.8/36



Classical computation ( )

Given finite sets (input) and (output):

� �

a finite set of initial heaps ,

an initial heap ,

a finite set of garbage states ,

a bijection ,
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Semantics

A classical computation

induces a function U by

U

Theorem Any function (on finite
sets ) can be realized by a quantum
computation.
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Composing classical computations
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Coming next: Quantum computations

Develop analogously to . . .
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Linear algebra revision

Given a finite set (the base)
is a Hilbert space.

Linear operators:
induces .

we write
Norm of a vector:

,
Unitary operators:
A unitary operator unitary is a linear iso-
morphism that preserves the norm.
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Basics of quantum computation

A pure state over is a vector with
unit norm .

A reversible computation is given by a
unitary operator unitary .
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Quantum computations ( )

Given finite sets (input) and (output):

� �

a finite set , the base of the space of initial
heaps,

a heap initialisation vector ,

a finite set , the base of the space of
garbage states,

a unitary operator unitary .
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Semantics of quantum computations. . .

. . . is a bit more subtle.

There is no (sensible) operator on vector
spaces, replacing .

Indeed: Forgetting part of a pure state
results in a mixed state.
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Density matrices and superoperators

Mixed states are represented by density
matrices.

Operations on mixed states (i.e. density
matrices) are represented by superoperators.

Every unitary operator gives rise to a
superoperator .

There is an operator

super

called partial trace.
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Semantics

Every quantum computation gives rise to a
superoperator U super

//

��

OO

U
//

Theorem: Every superoperator super

(on finite Hilbert spaces) comes from a quantum
computation.
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Classical vs quantum

classical quantum

finite sets finite dimensional Hilbert spaces

bijections unitary operators

cartesian product ( ) tensor product ( )

functions superoperators

projections partial trace
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Decoherence
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2. QML basics

1. Semantics of finite classical and quantum
computation

2. QML basics

3. Compiling QML

4. Conclusions and further work
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QML basics

QML is a first order functional languages, i.e.
programs are well-typed expressions.

QML types are

Qbits

Qbytes
.
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QML basics . . .

A QML program is an expression in a context
of typed variables, e.g.�k l $� � � ��k l $� � �� � ����� � � � ��� 
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We can compile QML programs into quantum
computations (i.e. quantum circuits).
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Compilation

Correct QML programs are defined by typing
rules, e.g.

For each rule we can construct a quantum
computation, i.e. a circuit.
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-elim t uv � h i
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Compiler

A compiler is currently being implemented by
my student Jonathan Grattage (in Haskell).

The output of the compiler are quantum
circuits which can be simulated by a quantum
circuit simulator.

Amr Sabry and Juliana Vizotti (Indiana
University) embarked on an independent
implementation of QML based on our paper.
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Conclusions

Our semantic ideas proved useful when
designing a quantum programming language,
analogous concepts are modelled by the
same syntactic constructs.

Our analysis also highlights the differences
between classical and quantum
programming.

Quantum programming introduces the
problem of control of decoherence, which we
address by making forgetting variables
explicit and by having different if-then-else
constructs.
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Further work

We have to analyze more quantum programs
to evaluate the practical usefulness of our
approach.

Are we able to come up with completely new
algorithms using QML?

How to deal with higher order programs?

How to deal with infinite datatypes?

Investigate the similarities/differences
between FCC and FQC from a categorical
point of view.
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The end

Thank you for your attention.
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