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General recursion

gcd’ ∈ Nat → Nat → Nat

gcd’ m n
| m==n = m
| m<n = gcd’ (m-n) n
| n<m = gcd’ m (n-m)
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General recursion . . .

Paulson 86, Nordström 88

f ∈ Πa ∈ A.(Πb ∈ A.(b < a) → B) → B

fix(f) ∈ Πa ∈ A.(Acc < a) → B

where Acc is defined inductively:

Πb ∈ A.(b < a) → Acc < b

Acc < a
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Better general recursion

Bove and Capretta
Define a specific termination predicate for
each recursive function.

McBride and McKinna
Turn recursive programs into structurally
recursive ones.
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nats ?

nats ∈ Nat → [Nat]

nats n = n : (nats (n+1))
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nats !

nats cannot be defined by well-founded
recursion.

nats can be defined using coiteration.

nats can be defined by guarded corecursion
(Coquand 94).
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ham ?

merge ∈ [Nat] → [Nat] → [Nat]

merge (as @ (a:as’)) (bs @ (b:bs’))

| a<b = a:(merge as’ bs)

| b<a = b:(merge as bs’)

| a==b = a:(merge as’ bs’)

ham ∈ [Nat]

ham = 2 : (merge (map (λ i → 2*i) ham)

(map (λ i → 3*i) ham))
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ham ?

ham cannot be defined by well-founded
recursion.

It is not obvious how to use coiteration to
define ham.

ham is not guarded!
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primes ??

sieve ∈ [Nat] → [Nat] → [Nat]

sieve (ns @ (n:ns’)) (ps @ (p:ps’))

| n < p*p = n:(sieve ns’ primes)

| mod n p == 0 = sieve ns’ primes

| otherwise = sieve ns ps’

primes ∈ [Nat]

primes = 2 : (sieve (nats 3) primes)
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Generalized general recursion

John Matthews (2001)
Generalizing well-founded recursion to coinductive
domains

Fixpoints of contractive maps using converging
equivalence relations (CERs) ≈ filtered limits.

Fixpoints of functions with coinductive codomains
which are total even though they are not guarded.

Wellfounded recursion (general recursion) arises as a
special case.

Developed in a classical setting (Isabelle,HOL).
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Questions

Applicable in (extensional) Type Theory ?

More interesting examples ?

Practical ?
(i.e. better generalized general recursion)

Categorical semantics ?

Discovered before ?
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nth

nth ∈ [a] → Nat → a

nth (a:as) 0 = a
nth (a:as) (n+1) = nth as n
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The stream CER

CER = Converging equivalence relations.

We define a CER on [a]

(here Streams over a).

We define a family of equivalence relations

i ∈ Nat x, y ∈ [a]

x ≈i y ∈ Prop

i ∈ Nat x, y ∈ [a]

x ≈i y

⇐⇒ ∀j ∈ Nat.(i < j) → nth x j = nth y j
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The stream CER . . .

chain

i < j x ≈j y

x ≈i y

0

⊥ ∈ [a] ∀x ∈ [a].x ≈0 ⊥

global limit

h ∈ Nat → [a] ∀j < j ′.h j ≈j h j ′

lim(h) ∈ [a]

∀i ∈ Nat.lim(h) ≈i h i

(∀i ∈ Nat.x ≈i h i) → x = lim(h)
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CERs in general

A CER on a set A is given by

An index set I with a well-founded relation <

i, j ∈ I

i < j ∈ Prop

A collection of equivalence relations

i ∈ I x, y ∈ A

x ≈i y ∈ Prop
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CERs in general . . .

chain
i < j x ≈j y

x ≈i y

local limit

h ∈ I → A ∀j < j ′ < i.h j ≈j h j ′
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∀k < i.limi(h) ≈k h k
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Differences to Matthews

Matthews hasn’t got the uniqueness
conditions for limit and global limit.

(∀j.¬(j < i)) → x ≈i y (4)
derivable from local limit.

(∀j.x ≈j y) → x = y (6)
derivable from global limit.
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A CER on Nat → [Nat]

i ∈ Nat f, g ∈ Nat → [a]

f ≈i g

⇐⇒ ∀j ∈ Nat.(j < i) →

∀n ∈ Nat.nth (f n) j = nth (g n) j

This shows how to lift a CER on B to A → B.
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Contractive functions

Given a CER on A a function f ∈ A → A is
contractive, iff

∀j < i.x ≈j y

f x ≈i f y

Theorem (Matthews): A contractive function
f ∈ A → A has a unique fixpoint fix(f) ∈ A
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Proof sketch

Define h ∈ I → A using well founded recursion:

h i = f(limih)

and show that

h i ≈i f(h i)

then define

fix(f) = lim(h)
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nats

f∈ (Nat → [Nat]) → (Nat → [Nat])

f nats = n : (nats (n+1))

Observation: f is contractive.
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ham

f ∈ [Nat] → [Nat]

f ham = 2 : (merge (map (λ i → 2*i) ham)

(map (λ i → 3*i) ham))

Observation: f is contractive.
Lemma:

h ≈i h′

map g h ≈i map g h′

Lemma:
h ≈i h′ g ≈i g′

merge h g ≈i merge h′ g′
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primes

sieve ∈ [Nat] → [Nat] → [Nat]

sieve (ns @ (n:ns’)) (ps @ (p:ps’))

| n < p*p = n:(sieve ns’ primes)

| mod n p == 0 = sieve ns’ primes

| otherwise = sieve ns ps’

primes ∈ [Nat]

primes = 2 : (sieve (nats 3) primes)

Left as an exercise.
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Wellfounded recursion

Given:
A → B

where (A,<) is well-ordered.

We define a CER on A → B:

a ∈ A f, g ∈ A → B

f ≈ g ⇐⇒ ∀x < a.f x = g x

Local and global limits:

lim(h) = λa.h a a
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Wellfounded recursion . . .

f ∈ (A → B) → (A → B)

f contractive:

∀a < b.h ≈a h′

fh ≈b fh′

means
∀x < a < b.h x = h′ x

∀x < b.f h x = f h′ x

that f uses h only on smaller arguments.
Hence : Contractive =⇒ Wellfounded.
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Back to Questions

Applicable in (extensional) Type Theory ?

More interesting examples ?

Practical ? (i.e. better generalized general
recursion)

Categorical semantics ?

Discovered before ?
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