eral recursion

Altenkirch

f Nottingham

General recursion

gcd’ € Nat — Nat — Nat

gcd” mn

MmE=n = m

nkn = gcd’ (mn) n
n<Km = gcd’” m(n-m

General recursion ...

Paulson 86, Nordstrom 88

fellae A(llbe A(b<a) — B)— B
fix(f) € Ila € A.(Acc < a) — B

where Acc Is defined inductively:

[Ib e A.(b<a) — Acc < b
Acc < a

Better general recursion

Bove and Capretta
Define a specific termination predicate for
each recursive function.

Better general recursion

Bove and Capretta
Define a specific termination predicate for
each recursive function.

McBride and McKinna
Turn recursive programs into structurally
recursive ones.

nats ?

(n+1))

nat s !

nat s cannot be defined by well-founded
recursion.

................................

nat s !

nat s cannot be defined by well-founded
recursion.

nat s can be defined using coiteration.

................................

nat s !

nat s cannot be defined by well-founded
recursion.

nat s can be defined using coiteration.

nat s can be defined by guarded corecursion
(Coguand 94).

................................

ham?

nerge € [Nat] — [Nat] — [Nat]
nerge (as @(a:as’)) (bs @(b:bs’))

a<b = a:(nerge as’ bs)

b<a = b:(nerge as bs’)

a==b = a:(nerge as’ bs’)
ham € [Nat]

ham= 2 : (nerge (map (A1 — 2*i) ham
(map (A1 — 3*i) han))

P LN B T ———

ham?

hamcannot be defined by well-founded
recursion.

ham?

hamcannot be defined by well-founded
recursion.

It IS not obvious how to use coiteration to
define ham

P LN B T

ham?

hamcannot be defined by well-founded
recursion.

It IS not obvious how to use coiteration to
define ham

hamis not guarded!

................................

prines ??

sieve € [Nat] — [Nat] — [Nat]
sieve (ns @(n:ns’)) (ps @(p:ps’))

n < p*p = n:(slieve ns’ prines)
nmod n p == = sieve ns’ prines
ot herw se = Sieve ns ps’

prinmes € [Nat]
prines = 2 . (sieve (nats 3) prines)

P LN B T

Generalized general recursion

John Matthews (2001)
Generalizing well-founded recursion to coinductive
domains

Generalized general recursion

John Matthews (2001)

Generalizing well-founded recursion to coinductive
domains

Fixpoints of contractive maps using converging
equivalence relations (CERS) = fi ltered limits.

DY L B T D

Generalized general recursion

John Matthews (2001)

Generalizing well-founded recursion to coinductive
domains

Fixpoints of contractive maps using converging
equivalence relations (CERS) = fi ltered limits.

Fixpoints of functions with coinductive codomains
which are total even though they are not guarded.

DY L B T D

Generalized general recursion

John Matthews (2001)
Generalizing well-founded recursion to coinductive
domains

Fixpoints of contractive maps using converging
equivalence relations (CERS) = fi ltered limits.

Fixpoints of functions with coinductive codomains
which are total even though they are not guarded.

Wellfounded recursion (general recursion) arises as a
special case.

Generalized general recursion

John Matthews (2001)
Generalizing well-founded recursion to coinductive
domains

Fixpoints of contractive maps using converging
equivalence relations (CERS) = fi ltered limits.

Fixpoints of functions with coinductive codomains
which are total even though they are not guarded.

Wellfounded recursion (general recursion) arises as a
special case.

Developed in a classical setting (Isabelle,HOL).

B LN Y T D

Questions

Questions

Applicable in (extensional) Type Theory ?

Questions

Applicable in (extensional) Type Theory ?
More interesting examples ?

Questions

Applicable in (extensional) Type Theory ?
More interesting examples ?

Practical ?
(l.e. better generalized general recursion)

.................................

Questions

Applicable in (extensional) Type Theory ?
More interesting examples ?

Practical ?
(l.e. better generalized general recursion)

Categorical semantics ?

B LN Y T D

Questions

Applicable in (extensional) Type Theory ?
More interesting examples ?

Practical ?
(l.e. better generalized general recursion)

Categorical semantics ?
Discovered before ?

B LN Y T D

nt h

nth € [a] — Nat — a

nth (a:as) 0 = a
nth (a:as) (n+l) = nth as n

.................................

Thestream CER

CER = Converging equivalence relations.

Thestream CER

CER = Converging equivalence relations.

We define a CER on [4]
(here Streams over a).

Thestream CER

CER = Converging equivalence relations.

We define a CER on [4]
(here Streams over a).

We defi ne a family of equivalence relations

. € Nat xr,y €[a]
r ~; Yy € Prop

D L B T e

Thestream CER

CER = Converging equivalence relations.

We define a CER on [4]
(here Streams over a).

We defi ne a family of equivalence relations

. € Nat xr,y €[a]
r ~; Yy € Prop

. € Nat xr,y €[a]

Tr=;Yy

Thestream CER

Q?%jy

Q?%jy

i Y

T € |al.x g L

Thestream CER -

Q?%jy

~; Y

Vo € lal.x =y L

Thestream CER ...

chain | .
1 <) xRy
T~
0
1 e[a] Vo € |al.x =y L
global limit

h € Nat — [a] Vi<j.hj=;hj
i mh) €[a]
Vi € Nat .l i mh) ~; hi
(Vi € Nat .x ~; hi) -z =11mh)

n by

CERsIn general

A CER on a set A Is given by
An Index set [/ with a well-founded relation <

1,9 €1
1 < 7 € Prop

CERsIn general

A CER on a set A Is given by
An Index set [/ with a well-founded relation <

1,9 €1
1 < 7 € Prop

A collection of equivalence relations

1€ 1 T,y €A
x ~;y € Prop

CERsIn general .

CERsiIn general ...

chain
T =~; Y
hel — A Vi<j <ihj=;hj
lini(h) e A
local limit

Vk < ilim(h) ~ hk
(Vk <ix~p hk)— x=;ini(h)

CERsiIn general ...

1 <9 xRy

chain
T~y
hel — A Vi<j <ihj=;hj
lini(h) e A
local limit -
Vk < il imi(h) ~, hk
(Vk < i.x =, hk) — x=; | inm(h)
hel A VYj<j.hj=;hj
limh) e A
global limit

VE e Ilimh) ~; hk
(Vk e .o = hk) — x=1imh)

Differencesto M at-

Differencesto M atthews

Matthews hasn’t got the uniqueness
conditions for limit and global limit.

Differencesto M atthews

Matthews hasn’t got the uniqueness
conditions for limit and global limit.

(Vi—(<i) —x=~y (4)
derivable from local limit.

Differencesto M atthews

Matthews hasn’t got the uniqueness
conditions for limit and global limit.

(Vi <i) mz~iy (4)
derivable from local limit.

(Vjxmjy) —xz=y (6)
derivable from global limit.

DY L Y T D pe———

A CER on Nat

A CER on Nat — [Nat |

i € Nat f.g € Nat — [a]
f~ig
< VjeNat.(j <i)—
Vn eNat.nth(fn)j=nth(gn)j

A CER on Nat — [Nat |

i € Nat f.g € Nat — [a]
f~ig
< VjeNat.(j <i)—
Vn eNat.nth(fn)j=nth(gn)j

This shows how to lifta CER on Bto A — B.

Contractive functions

Given a CERon Aafunction fe A — Als
contractive, Iff

Jr=ify

Contractive functions

Givena CER on A afunction f € A — Als
contractive, Iff

Jrz=ify

Theorem (Matthews): A contractive function
f € A — A has a unique fixpoint fix(f) € A

DY L B T

Proof sketch

Proof sketch

Define h € I — A using well founded recursion:

hi= f(lim'h)

Proof sketch

Define h € I — A using well founded recursion:

hi= f(lim'h)
and show that

Proof sketch

Define h € I — A using well founded recursion:

hi= f(lim'h)
and show that

then define

fix(f) = lim(h)

nat s

fe (Nt — [Nat]) — (Nat — [Nat])
f nats = n : (nats (n+l))

Observation: f Is contractive.

.................................

ham

f € [Nat] — [Nat]
f ham=2 : (nerge (map (A1 — 2*1) ham
(map (A1 — 3*i) hanm))

Observation: f Is contractive.
Lemma:
h ~; h'
map g h ~; map g h’

Lemma;
h ~; h' g =i 9/

merge h g ~; merge h' ¢’

B LN Y T =y

pri Nes

sieve € [Nat] — [Nat] — [Nat]
sieve (ns @(n:ns’)) (ps @(p:ps’))

n < p*p = n:(slieve ns’ prines)
nmod n p == = sieve ns’ prines
ot herw se = Sieve ns ps’

prinmes € [Nat]
prines = 2 . (sieve (nats 3) prines)
Left as an exercise.

D LN Y T =y

Wellfounded recur-

Wellfounded recursion

Given:
A— B

where (A, <) is well-ordered.

................................

Wellfounded recursion

Given:
A— B

where (A, <) is well-ordered.
We define a CER on A — B:

acA f,ge A— B

frg < Vr<afr=gx

Wellfounded recursion

Given:
A— B

where (A, <) is well-ordered.
We define a CER on A — B:

acA f,ge A— B

frg < Ver<afr=gzx

Local and global limits:

lim(h) = Aa.haa

— (A — B)

Wellfounded recursion ...

fe(A—B)— (A— B)
f contractive:

Ya < b.h ~, h'
Jh bfh'

D L Y T D ———

Wellfounded recursion ...

fe(A—B)— (A— B)
f contractive:

Ya < b.h ~, h'
fh=y f1

means
Ve<a<bhx=Hhzx

Ve <b.fhx=fh'x

Wellfounded recursion ...

fe(A—B)— (A— B)
f contractive:

Ya < b.h ~, h'
fh =y fH

means
Ve<a<bhx=Hhzx

Ve <b.fhz=fh'=z
that f uses h only on smaller arguments.

Wellfounded recursion ...

fe(A—B)— (A— B)
f contractive:

Ya < b.h ~, h'
fh =y fR

means
Ve<a<bhx=Hhzx

Ve <b.fhz=fh'=z

that f uses h only on smaller arguments.
Hence : Contractive — Wellfounded.

D L Y T D ———

Back to Questions

Applicable in (extensional) Type Theory ?
More Interesting examples ?

Practical ? (i.e. better generalized general
recursion)

Categorical semantics ?
Discovered before ?

DY LN B T =y

	General recursion
	General recursion dots
	Better general recursion
	Better general recursion
	Better general recursion

		exttt {nats} ?
		exttt {nats} !
		exttt {nats} !
		exttt {nats} !

		exttt {ham} ?
		exttt {ham} ?
		exttt {ham} ?
		exttt {ham} ?

		exttt {primes} ??
	Generalized general recursion
	Generalized general recursion
	Generalized general recursion
	Generalized general recursion
	Generalized general recursion
	Generalized general recursion

	Questions
	Questions
	Questions
	Questions
	Questions
	Questions

		exttt {nth}
	The stream CER
	The stream CER
	The stream CER
	The stream CER

	The stream CER dots
	The stream CER dots
	The stream CER dots
	The stream CER dots
	The stream CER dots

	CERs in general
	CERs in general
	CERs in general

	CERs in general dots
	CERs in general dots
	CERs in general dots
	CERs in general dots

	Differences to Matthews
	Differences to Matthews
	Differences to Matthews
	Differences to Matthews

	A CER on $	exttt {Nat}	o 	exttt {[Nat]}$
	A CER on $	exttt {Nat}	o 	exttt {[Nat]}$
	A CER on $	exttt {Nat}	o 	exttt {[Nat]}$

	Contractive functions
	Contractive functions

	Proof sketch
	Proof sketch
	Proof sketch
	Proof sketch

		exttt {nats}
		exttt {ham}
		exttt {primes}
	Wellfounded recursion
	Wellfounded recursion
	Wellfounded recursion
	Wellfounded recursion

	Wellfounded recursion dots
	Wellfounded recursion dots
	Wellfounded recursion dots
	Wellfounded recursion dots
	Wellfounded recursion dots

	Back to Questions

