eral recursion

Altenkirch

f Nottingham




General recursion

gcd’ € Nat — Nat — Nat

gcd” mn

MmE=n = m

nkn = gcd’ (mn) n
n<Km = gcd’” m(n-m

_______________________________



General recursion ...

Paulson 86, Nordstrom 88

fellae A(llbe A(b<a) — B)— B
fix(f) € Ila € A.(Acc < a) — B

where Acc Is defined inductively:

[Ib e A.(b<a) — Acc < b
Acc < a

_______________________________
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each recursive function.

_______________________________



Better general recursion

Bove and Capretta
Define a specific termination predicate for
each recursive function.

McBride and McKinna
Turn recursive programs into structurally
recursive ones.

_______________________________
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nat s !

nat s cannot be defined by well-founded
recursion.

nat s can be defined using coiteration.

nat s can be defined by guarded corecursion
(Coguand 94).

................................



ham?

nerge € [Nat] — [Nat] — [ Nat]
nerge (as @(a:as’)) (bs @(b:bs’))

a<b = a:(nerge as’ bs)

b<a = b:(nerge as bs’)

a==b = a:(nerge as’ bs’)
ham € [ Nat ]

ham= 2 : (nerge (map (A1 — 2*i) ham
(map (A1 — 3*i) han))

P LN B T ———
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hamcannot be defined by well-founded
recursion.

________________________________



ham?

hamcannot be defined by well-founded
recursion.

It IS not obvious how to use coiteration to
define ham
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ham?

hamcannot be defined by well-founded
recursion.

It IS not obvious how to use coiteration to
define ham

hamis not guarded!

................................



prines ??

sieve € [Nat] — [Nat] — [ Nat]
sieve (ns @(n:ns’ )) (ps @(p:ps’))

n < p*p = n:(slieve ns’ prines)
nmod n p == = sieve ns’ prines
ot herw se = Sieve ns ps’

prinmes € [ Nat]
prines = 2 . (sieve (nats 3) prines)

P LN B T
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Generalized general recursion

John Matthews (2001)
Generalizing well-founded recursion to coinductive
domains

Fixpoints of contractive maps using converging
equivalence relations (CERS) = fi ltered limits.

Fixpoints of functions with coinductive codomains
which are total even though they are not guarded.

Wellfounded recursion (general recursion) arises as a
special case.

Developed in a classical setting (Isabelle,HOL).
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Questions

Applicable in (extensional) Type Theory ?
More interesting examples ?

Practical ?
(l.e. better generalized general recursion)

Categorical semantics ?
Discovered before ?

B LN Y T D



nt h

nth € [a] — Nat — a

nth (a:as) 0 = a
nth (a:as) (n+l) = nth as n

.................................
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Thestream CER

CER = Converging equivalence relations.

We define a CER on [ 4]
(here Streams over a).

We defi ne a family of equivalence relations

. € Nat xr,y €[ a]
r ~; Yy € Prop

. € Nat xr,y €[ a]

Tr=;Yy

________________________________



Thestream CER



Q?%jy




Q?%jy

i Y

T € |al.x g L



Thestream CER -

Q?%jy

~; Y

Vo € lal.x =y L




Thestream CER ...

chain | .
1 <) xRy
T~
0
1 e[a] Vo € |al.x =y L
global limit

h € Nat — [ a] Vi<j.hj=;hj
i mh) €[ a]
Vi € Nat .l i mh) ~; hi
(Vi € Nat .x ~; hi) -z =11mh)

________________________________
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CERsIn general

A CER on a set A Is given by
An Index set [/ with a well-founded relation <

1,9 €1
1 < 7 € Prop
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CERsIn general

A CER on a set A Is given by
An Index set [/ with a well-founded relation <

1,9 €1
1 < 7 € Prop

A collection of equivalence relations

1€ 1 T,y €A
x ~;y € Prop

_________________________________
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CERsiIn general ...

chain
T =~; Y
hel — A Vi<j <ihj=;hj
lini(h) e A
local limit

Vk < ilim(h) ~ hk
(Vk <ix~p hk)— x=;ini(h)
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CERsiIn general ...

1 <9 xRy

chain
T~y
hel — A Vi<j <ihj=;hj
lini(h) e A
local limit -
Vk < il imi(h) ~, hk
(Vk < i.x =, hk) — x=; | inm(h)
hel A VYj<j.hj=;hj
limh) e A
global limit

VE e Ilimh) ~; hk
(Vk e .o = hk) — x=1imh)

________________________________
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Differencesto M atthews

Matthews hasn’t got the uniqueness
conditions for limit and global limit.

(Vi <i) mz~iy (4)
derivable from local limit.

(Vjxmjy) —xz=y (6)
derivable from global limit.

DY L Y T D pe———
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A CER on Nat — [ Nat |

i € Nat f.g € Nat — [ a]
f~ig
< VjeNat.(j <i)—
Vn eNat.nth(fn)j=nth(gn)j
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A CER on Nat — [ Nat |

i € Nat f.g € Nat — [ a]
f~ig
< VjeNat.(j <i)—
Vn eNat.nth(fn)j=nth(gn)j

This shows how to lifta CER on Bto A — B.

________________________________
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contractive, Iff

Jr=ify
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Contractive functions

Givena CER on A afunction f € A — Als
contractive, Iff

Jrz=ify

Theorem (Matthews): A contractive function
f € A — A has a unique fixpoint fix(f) € A

DY L B T
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Proof sketch

Define h € I — A using well founded recursion:

hi= f(lim'h)
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Proof sketch

Define h € I — A using well founded recursion:

hi= f(lim'h)
and show that
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Proof sketch

Define h € I — A using well founded recursion:

hi= f(lim'h)
and show that

then define

fix(f) = lim(h)

________________________________



nat s

fe (Nt — [Nat]) — (Nat — [Nat])
f nats = n : (nats (n+l))

Observation: f Is contractive.

.................................



ham

f € [Nat] — [ Nat]
f ham=2 : (nerge (map (A1 — 2*1) ham
(map (A1 — 3*i) hanm))

Observation: f Is contractive.
Lemma:
h ~; h'
map g h ~; map g h’

Lemma;
h ~; h' g =i 9/

merge h g ~; merge h' ¢’

B LN Y T =y



pri Nes

sieve € [Nat] — [Nat] — [ Nat]
sieve (ns @(n:ns’ )) (ps @(p:ps’))

n < p*p = n:(slieve ns’ prines)
nmod n p == = sieve ns’ prines
ot herw se = Sieve ns ps’

prinmes € [ Nat]
prines = 2 . (sieve (nats 3) prines)
Left as an exercise.

D LN Y T =y
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Wellfounded recursion

Given:
A— B

where (A, <) is well-ordered.
We define a CER on A — B:

acA f,ge A— B

frg < Vr<afr=gx
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Wellfounded recursion

Given:
A— B

where (A, <) is well-ordered.
We define a CER on A — B:

acA f,ge A— B

frg < Ver<afr=gzx

Local and global limits:

lim(h) = Aa.haa

________________________________



— (A — B)




Wellfounded recursion ...

fe(A—B)— (A— B)
f contractive:

Ya < b.h ~, h'
Jh bfh'

D L Y T D ———
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Wellfounded recursion ...

fe(A—B)— (A— B)
f contractive:

Ya < b.h ~, h'
fh =y fH

means
Ve<a<bhx=Hhzx

Ve <b.fhz=fh'=z
that f uses h only on smaller arguments.
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Wellfounded recursion ...

fe(A—B)— (A— B)
f contractive:

Ya < b.h ~, h'
fh =y fR

means
Ve<a<bhx=Hhzx

Ve <b.fhz=fh'=z

that f uses h only on smaller arguments.
Hence : Contractive — Wellfounded.

D L Y T D ———



Back to Questions

Applicable in (extensional) Type Theory ?
More Interesting examples ?

Practical ? (i.e. better generalized general
recursion)

Categorical semantics ?
Discovered before ?

DY LN B T =y
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