
Conceptual Programming with Python

Thorsten Altenkirch

Functional Programming Laboratory
School of Computer Science
University of Nottingham

February 12, 2020

Thorsten Altenkirch (Nottingham) Conceptual Programming February 12, 2020 1 / 25



Introduction

History
Since 2013 I am teaching G54PRG (now COMP4008): Programming

Module for Master Students with no or very little
programming experience.
Previously used C# as programming language.
I changed it to Python

Since 2017 Teaching jointly with Isaac Triguero.
Autumn 2019 Publish our book, based on jupyter python scripts.

Since Autum 2019 A number of computerphile videos on youtube on
topics covered in the book.

Thorsten Altenkirch (Nottingham) Conceptual Programming February 12, 2020 2 / 25



Introduction

Why Python?
Python has a very simple syntax with very little overhead. It uses
layout to represent structure which is very natural and easy to read.
Python uses dynamic typing, this makes it easy to learn because you
don’t have to get your head around a static type system, but see
below.
Python allows you to use concepts from a variety of programming
paradigms, including object oriented programming and functional
programming.
There are a number of tools which make Python easy to use, like
jupyter notebooks which we are using.
Python features a toplevel like many functional languages, which
makes it easy to interactively explore the language.
Python is very popular, which results in a number of libraries (APIs)
available in Python, which often makes it the language of choice in
practice.

Thorsten Altenkirch (Nottingham) Conceptual Programming February 12, 2020 3 / 25



Introduction

Why not Python?

The fact that Python doesn’t use static typing means that many
errors which would be flagged by other languages go undetected and
may cause hidden errors in the software. These also means that
interfaces are not clearly defined making the development of large
systems harder.
Python makes it often hard to use modern concepts, like recursion,
because you have to pay an unnecessary performance penalty.
Python also lacks certain features, like a pattern matching and
algebraic data types, making the representation often unnecessarily
clumsy.
The lack of types leads to certain design errors in Python, for example
the decision to avoid characters and represent them as strings.

Thorsten Altenkirch (Nottingham) Conceptual Programming February 12, 2020 4 / 25



Introduction Character madness

Python’s character madness

In : def swap(x) :
return x[-1]+x[1:-1]+x[0]

In : swap("Python")

Out: 'nythoP'

In : swap([1,2,3])

TypeError: unsupported operand type(s) for +: ’int’ and ’list’

Thorsten Altenkirch (Nottingham) Conceptual Programming February 12, 2020 5 / 25



Introduction Character madness

In : def swap (x) :
return x[-1:]+x[1:-1]+x[:1]

In : swap("Python")

Out: 'nythoP'

In : swap([1,2,3])

Out: [3, 2, 1]

Thorsten Altenkirch (Nottingham) Conceptual Programming February 12, 2020 6 / 25



Introduction Course Structure

Course structure

1 Python from the toplevel
2 Imperative programming
3 Recursion and backtracking
4 Object oriented programming
5 Pygame API

Thorsten Altenkirch (Nottingham) Conceptual Programming February 12, 2020 7 / 25



Introduction Course Structure

Assessment

1 4 courseworks on topics 1-4 (20 %)
assessed (but not marked) in the lab.

2 Pygame group project (30 %)
demo + peer assessment + prizes

3 Written exam (50%)
what is the output of . . . ?

Thorsten Altenkirch (Nottingham) Conceptual Programming February 12, 2020 8 / 25



Toplevel

Explaining sharing

In : l=[[1,2,3],[1,2,3]]

In : rotateRx(l[1])

In : l

Out: [[1, 2, 3], [3, 1, 2]]

Thorsten Altenkirch (Nottingham) Conceptual Programming February 12, 2020 9 / 25



Toplevel

How do I make this list?

In : l

Out: [[1, 2, 3], [1, 2, 3]]

In : rotateRx(l[1])

In : l

Out: [[3, 1, 2], [3, 1, 2]]

Thorsten Altenkirch (Nottingham) Conceptual Programming February 12, 2020 10 / 25



Toplevel

Answer

In : lx = [1,2,3]

In : l = [lx,lx]

Thorsten Altenkirch (Nottingham) Conceptual Programming February 12, 2020 11 / 25



Imperative programming

The Halting problem in Python

Our assumption is that there is a Python function

def halts(fun,arg) :
...

which gets two string arguments: fun which contains a function definition
and arg which is an argument and the function will return true if the
Python program which we get when applying fun to the argument
terminates and false otherwise.

Thorsten Altenkirch (Nottingham) Conceptual Programming February 12, 2020 12 / 25



Imperative programming

weird
def weird(fun) :

def halts(fun,arg) :
...

if halts(fun,fun) :
while(true) :

pass
else :

return

wstr =
"""
def weird(fun) :
...
"""

Now what happens if we run

weird(wstr)
Thorsten Altenkirch (Nottingham) Conceptual Programming February 12, 2020 13 / 25



Recursion and Backtracking

Towers of Hanoi

In : def hanoi(n,f,h,t):
if n==0:

return
else:

hanoi(n-1,f,t,h)
print("Move disk from {} to {}".format(f,t))
hanoi(n-1,h,f,t)

In : hanoi(4,"A","B","C")

Move disk from A to B
Move disk from A to C
Move disk from B to C
...

Thorsten Altenkirch (Nottingham) Conceptual Programming February 12, 2020 14 / 25



Recursion and Backtracking

Sudoku
5 3 7

6 1 9 5

9 8 6

8 6 3

4 8 3 1

7 2 6

6 2 8

4 1 9 5

8 7 9

1

In : def solve() :
global grid
for y in range(0,9) :

for x in range(0,9) :
if grid[y][x] == 0 :

for n in range(1,10) :
if possible(y,x,n) :

grid[y][x] = n
solve()
grid[y][x] = 0

return
print_grid()
input("More?")

In : solve()

Thorsten Altenkirch (Nottingham) Conceptual Programming February 12, 2020 15 / 25



OOP

Exercise 4 : Boolean expressions

e1 = Or(Var("x"),Not(Var("x")))
e2 = Eq(Var("x"),Not(Not(Var("x"))))
e3 = Eq(Not(And(Var("x"),Var("y"))),

Or(Not(Var("x")),Not(Var("y"))))
e4 = Eq(Not(And(Var("x"),Var("y"))),

And(Not(Var("x")),Not(Var("y"))))

Thorsten Altenkirch (Nottingham) Conceptual Programming February 12, 2020 16 / 25



OOP

Part 1 : Create objects
In : class Expr :

pass

class Not(Expr) :
def __init__(self,e) :

self.e = e
class BinOp(Expr) :

def __init__(self,l,r) :
self.l = l
self.r = r

class And(BinOp) :
pass

class Or(BinOp) :
pass

class Eq(BinOp) :
pass

class Const(Expr) :
def __init__(self,val) :

self.val = val
class Var(Expr) :

def __init__(self,name) :
self.name = name

Thorsten Altenkirch (Nottingham) Conceptual Programming February 12, 2020 17 / 25



OOP

Part 2 : print expressions

In : print(e1)

x|!x

In : print(e2)

x==!!x

In : print(e3)

!(x&y)==!x|!y

In : print(e4)

!(x&y)==!x&!y

Thorsten Altenkirch (Nottingham) Conceptual Programming February 12, 2020 18 / 25



OOP

In : class Expr :

def __str__(self) :
return self.str_aux(0)

class BinOp(Expr) :

def __init__(self,l,r) :
self.l = l
self.r = r

def str_aux(self,fix) :
s=self.l.str_aux(self.fix)+\

self.sym+self.r.str_aux(self.fix)
if fix > self.fix :

return "("+s+")"
else :

return s

class And(BinOp) :

fix = 2
sym = "&"

Thorsten Altenkirch (Nottingham) Conceptual Programming February 12, 2020 19 / 25



OOP

Tautology checker

Exercise 04: A proposition is called a tautology if it is always true. That
is, the truthtable contains only True in the last column. Implement a
method isTauto which determines whether the proposition is a tautology.
E.g.

>>> e1.isTauto()
True
>>> e4.isTauto()
False

Thorsten Altenkirch (Nottingham) Conceptual Programming February 12, 2020 20 / 25



OOP

vars and eval

In : class BinOp(Expr) :

def vars(self) :
return self.l.vars().union(self.r.vars())

def eval(self,env) :
return self.op(self.l.eval(env),self.r.eval(env))

class And(BinOp) :

fix = 2
sym = "&"

def op(self,l,r) :
return l&r

Thorsten Altenkirch (Nottingham) Conceptual Programming February 12, 2020 21 / 25



OOP

isTauto

In : class Expr :

def isTauto(self) :
tt = truthtable(list(self.vars()))
for env in tt :

if not self.eval(env) :
return False

return True

Thorsten Altenkirch (Nottingham) Conceptual Programming February 12, 2020 22 / 25



Functional Programming

The sieve of Erathostenes

In : def nats(n) :
yield n
yield from nats(n+1)

In : def sieve(ns) :
n = next(ns)
yield n
yield from (i for i in sieve(ns) if i%n != 0)

In : primes = sieve(nats(2))

In : show(primes)

2 More? y
3 More? y
5 More? y
7 More? y
11 More? y
13 More? y

Thorsten Altenkirch (Nottingham) Conceptual Programming February 12, 2020 23 / 25



Conclusions

Observations

You can teach programming concepts with Python.
The pythonesque philosophy sometimes gets in your way but can be
largely ignored.
Dynamic typing is good for the beginner. They don’t have to
understand the static semantics, and if the program goes wrong its
their fault!
Do coursework demos in the lab, and give feedback in person.
But don’t give them their marks in the lab!
Use the toplevel, and do not allow IDEs that don’t integrate the
toplevel.

Thorsten Altenkirch (Nottingham) Conceptual Programming February 12, 2020 24 / 25



Conclusions

Observations

Don’t use slides! Live hacking is much more fun and can go wrong in
interesting ways. Plus write on the ipad.
Jupyter is good to record life hacking sessions for lecture notes.
Important message: Copying code is evil. However, it is ok for a quick
and dirty prototype but then refactor your code later.
Implementing games with pygames is very popular and adds a fun
component to the course.
The only way to learn software engineering is by doing it. Games are a
good subject for this.
Written exams are useful. In particular you can check wether they can
run python programs in their head.

Thorsten Altenkirch (Nottingham) Conceptual Programming February 12, 2020 25 / 25


	Introduction
	Character madness
	Course Structure

	Toplevel
	Imperative programming
	Recursion and Backtracking
	OOP
	Functional Programming
	Conclusions

