Monadic containers and universes

Thorsten Altenkirch

Functional Programming Laboratory School of Computer Science University of Nottingham

jww Gun Pinyo

January 26, 2018

Container (polynomial functors)

• A container (polynomial functor) $S \triangleleft P$ is given by

Shapes
$$S:$$
 Set
Positions $P:\rightarrow$ **Set**
and gives rise to $[S \triangleleft P]:$ **Set** \rightarrow **Set**:

$$\llbracket S \lhd P \rrbracket X = \Sigma s : S.P s \to X$$

- Example List = $\mathbb{N} \lhd \operatorname{Fin}$ with Fin $n = \{0, 1, \dots, n-1\}$
- Containers are functors, given $f: A \rightarrow B$:

$$[S \triangleleft P] f : [S \triangleleft P] A \rightarrow [S \triangleleft P] B$$
$$[S \triangleleft P] f (s,g) = (s,f \circ g)$$

Constructions on containers

Products

$$(S \triangleleft P) \times (T \triangleleft Q) = (S \times T) \triangleleft (\lambda(s, t).Ps + Qt)$$

Sums

$$(S \lhd P) + (T \lhd Q) = (S + T) \lhd (\lambda \begin{array}{cc} \operatorname{left} s & . & P s \\ \operatorname{right} t & . & Q t \end{array})$$

Initial algebras

$$\mu(S \triangleleft P) = WSP$$

Application of containers

Generic constructions on inductive (and coinductive) types

Container morphisms

• Given container $S \triangleleft P$, $T \triangleleft Q$ we define a container morphism $f \triangleleft g : \operatorname{Cont}(S \triangleleft P)(T \triangleleft Q)$ given by

$$f: S \to T$$

 $g: \Pi s: S.Q(fs) \to Ps$

A container morphism gives rise to a natural transformation given by

$$\llbracket f \lhd g \rrbracket : \Pi X : \mathbf{Set}. \llbracket S \lhd P \rrbracket X \to \llbracket T \lhd Q \rrbracket X$$
$$\llbracket f \lhd g \rrbracket X (s, h) = (f s, \lambda s. h \circ g s)$$

Completeness of morphisms

There is a one-to-one correspondence (an isomorphism) between container morphisms and natural transformation between containers.

Container are a 2-category

Identity

$$I=1 \lhd 1$$

Composition

$$(S \triangleleft P) \circ (T \triangleleft Q) = (\Sigma s : S.P s \rightarrow T) \triangleleft (\lambda(s, f).\Sigma p : P s.Q (f p))$$

Monads

A monad on Set is given by:

```
Function on sets M: \mathbf{Set} \to \mathbf{Set}
          unit \eta: \Pi_{X:Set}X \to MX
          bind \_>>= \_: \Pi_{X,Y:\mathbf{Set}}MX \to (X \to MY) \to MY
```

such that

$$(\eta x) >>= f = f x$$

 $m >>= \eta = m$
 $(m >>= f) >>= g = m >>= (\lambda x. f x >>= g)$

- Every monad is a functor with $Mf = \lambda m.m >>= \eta \circ f$
- Example List with

$$\eta x = [x]$$
 $[] >>= f = []$
 $(a :: I) >>= f = (f a) ++(I >>= f)$

Monad (alternative definition)

• A monad is given by:

a functor $M : \mathbf{Set} \to \mathbf{Set}$,

unit a natural transformation: $\eta:I o M$

join a natural transformation $\mu:M\circ M\to M$

such that the following diagrams commute:

• $\mu: \Pi_{X:\mathbf{Set}} \mathrm{List} (\mathrm{List} X) \to \mathrm{List} X$

$$\mu \begin{bmatrix} 1 & = & \end{bmatrix}$$

$$\mu I :: II & = I + + \mu II$$

Σ-universes

A Σ -universe is given by

U : **Set**
$$\iota : U$$

$$\mathrm{El}:\mathrm{U}\to\mathsf{Set}$$
 $\sigma:\mathsf{\Pi} a:\mathrm{U.}(\mathrm{El}\,a\to\mathrm{U})\to\mathrm{U}$

such that

$$\operatorname{El}\iota = 1$$
 $\operatorname{El}(\sigma a b) = \Sigma x : \operatorname{El} a . \operatorname{El}(b x)$

A Σ universe is univalent iff El is injective.

Example for a univalent Σ -universe

$$\mathbf{U} = \mathbb{N}$$
 $\qquad \qquad \iota = 1$ $\mathbf{E}\mathbf{l} = \mathbf{Fin}$ $\qquad \sigma \, n \, f = \sum_{i=0}^{n-1} f \, i$

Monoidal structure

Given a Σ -universe we can define

$$a \otimes b = \sigma a (\lambda_{-}.b)$$

In any univalent Σ -universe the following holds:

$$a \otimes \iota = a$$

$$\iota \otimes b = b$$

$$\sigma a(\lambda x. \sigma(bx)(cx)) = \sigma(\sigma a b)(\lambda x. c(\pi_0 x)(\pi_1 x))$$

... assuming a univalent metatheory.

From univalent Σ -universes to monadic containers

Proposition

Every univalent Σ -universe gives rise to a monadic container $U \triangleleft El$.

- ι provides the interpretation of η .
- σ provides the interpretation of μ .
- The monoidal structure is used to show that the diagrams commute.

Does every monadic container give rise to a univalent Σ -universe?

No. For example the reader monad $MX=\mathbb{N} \to X=1 \lhd \mathbb{N}$ is a counterexample.

Lax Σ-universes

A lax Σ -universe is given by

$$U:$$
 Set $\iota:U$

El: U
$$\rightarrow$$
 Set $\sigma: \Pi a: U.(El a \rightarrow U) \rightarrow U$

with

un : El
$$\iota \to 1$$

$$\operatorname{pr}:\operatorname{El}(\sigma a b)\to \Sigma x:\operatorname{El}a.\operatorname{El}(b x)$$

such that

$$a \otimes \iota = a$$

$$\iota \otimes b = b$$

$$\sigma a(\lambda x.\sigma(bx)(cx)) = \sigma(\sigma ab)(\lambda x.c(\pi_0(\operatorname{pr} x))(\pi_1(\operatorname{pr} x)))$$

Results

Proposition

Lax $\Sigma\text{-universes}$ correspond exactly to monadic containers given by $\mathrm{U}\lhd\mathrm{El}.$

- Univalent Σ -universes correspond to cartesian monads.
- ullet If we use a universe only closed under \otimes , we get applicative functors.
- The construction of a free monad over a container $S \triangleleft P$ is given by the free (univalent) Σ -universe over the family $P: S \rightarrow \mathbf{Set}$