
Codata
Thorsten Altenkirch

University of Nottingham

Codata – p.1/7



Haskell: data = codata ?

diverges!

Codata – p.2/7



Haskell: data = codata ?

��� � � � ��� � � 	 
 � �
 � � � � �� �

diverges!

Codata – p.2/7



Haskell: data = codata ?

��� � � � ��� � � 	 
 � �
 � � � � �� �

�� �� � � ��� � � � �

�� �� 	 
 � �� �

�� �� � �
 � � �� � � � � �� �� �� �

diverges!

Codata – p.2/7



Haskell: data = codata ?

��� � � � ��� � � 	 
 � �
 � � � � �� �

�� �� � � ��� � � � �

�� �� 	 
 � �� �

�� �� � �
 � � �� � � � � �� �� �� �

�� � � � � � �� �

�� � � � �
 � � � �� � � �  � �

diverges!

Codata – p.2/7



Haskell: data = codata ?

��� � � � ��� � � 	 
 � �
 � � � � �� �

�� �� � � ��� � � � �

�� �� 	 
 � �� �

�� �� � �
 � � �� � � � � �� �� �� �

�� � � � � � �� �

�� � � � �
 � � � �� � � �  � �

�� �� � �� � ! �
diverges!

Codata – p.2/7



Type Theory: data " codata

doesn’t typecheck.

Codata – p.3/7



Type Theory: data " codata

��� � � � ��� � � 	 
 � �
 � � � � �� �

# � ��� � � � �� � $ � 	 
 $ � �
 � $ � � � ��� � $

doesn’t typecheck.

Codata – p.3/7



Type Theory: data " codata

��� � � � ��� � � 	 
 � �
 � � � � �� �

# � ��� � � � �� � $ � 	 
 $ � �
 � $ � � � ��� � $

�� �� � � ��� � � � �

�� �� 	 
 � �� �

�� �� � �
 � � �� � � � � �� �� �� �

doesn’t typecheck.

Codata – p.3/7



Type Theory: data " codata

��� � � � ��� � � 	 
 � �
 � � � � �� �

# � ��� � � � �� � $ � 	 
 $ � �
 � $ � � � ��� � $

�� �� � � ��� � � � �

�� �� 	 
 � �� �

�� �� � �
 � � �� � � � � �� �� �� �

�� � � � � � �� � $

�� � � � �
 � $ � � �� � � �  � �

doesn’t typecheck.

Codata – p.3/7



Type Theory: data " codata

��� � � � ��� � � 	 
 � �
 � � � � �� �

# � ��� � � � �� � $ � 	 
 $ � �
 � $ � � � ��� � $

�� �� � � ��� � � � �

�� �� 	 
 � �� �

�� �� � �
 � � �� � � � � �� �� �� �

�� � � � � � �� � $

�� � � � �
 � $ � � �� � � �  � �

�� �� � �� � ! �
doesn’t typecheck.

Codata – p.3/7



codata in Type Theory

Thierry Coquand
Infinite Objects in Type Theory
TYPES 93

Eduardo Giminez
Coinductive Types in COQ
93 – 95
see Coq’Art, pp.347 – 376
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Codata ?

Codata seems more exotic then data.

Categorically codata (terminal coalgebras) is
a dual of data (initial algebras)

Proposal: a conceptual duality based on
contracts

which justifies Observational Type Theory
reflecting this symmetry.
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Data – the producer contract

The producer of data promises that
he/she will construct data only using the
agreed constructors.

Consequences:
pattern matching

structural recursion

induction as structural recursion on proofs
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A simple proposition
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Let’s have a closer look at .
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The mirror

data codata
inductive coinductive

finite objects infinite objects
structural recursion guarded corecursion
structural induction guarded coinduction

Where do functions live?

Functions are codata.

Consumer contract:
You may only apply a function.

Codata – p.14/7



The mirror

data codata

inductive coinductive
finite objects infinite objects

structural recursion guarded corecursion
structural induction guarded coinduction

Where do functions live?

Functions are codata.

Consumer contract:
You may only apply a function.

Codata – p.14/7



The mirror

data codata
inductive

coinductive
finite objects infinite objects

structural recursion guarded corecursion
structural induction guarded coinduction

Where do functions live?

Functions are codata.

Consumer contract:
You may only apply a function.

Codata – p.14/7



The mirror

data codata
inductive coinductive

finite objects infinite objects
structural recursion guarded corecursion
structural induction guarded coinduction

Where do functions live?

Functions are codata.

Consumer contract:
You may only apply a function.

Codata – p.14/7



The mirror

data codata
inductive coinductive

finite objects

infinite objects
structural recursion guarded corecursion
structural induction guarded coinduction

Where do functions live?

Functions are codata.

Consumer contract:
You may only apply a function.

Codata – p.14/7



The mirror

data codata
inductive coinductive

finite objects infinite objects

structural recursion guarded corecursion
structural induction guarded coinduction

Where do functions live?

Functions are codata.

Consumer contract:
You may only apply a function.

Codata – p.14/7



The mirror

data codata
inductive coinductive

finite objects infinite objects
structural recursion

guarded corecursion
structural induction guarded coinduction

Where do functions live?

Functions are codata.

Consumer contract:
You may only apply a function.

Codata – p.14/7



The mirror

data codata
inductive coinductive

finite objects infinite objects
structural recursion guarded corecursion

structural induction guarded coinduction

Where do functions live?

Functions are codata.

Consumer contract:
You may only apply a function.

Codata – p.14/7



The mirror

data codata
inductive coinductive

finite objects infinite objects
structural recursion guarded corecursion
structural induction

guarded coinduction

Where do functions live?

Functions are codata.

Consumer contract:
You may only apply a function.

Codata – p.14/7



The mirror

data codata
inductive coinductive

finite objects infinite objects
structural recursion guarded corecursion
structural induction guarded coinduction

Where do functions live?

Functions are codata.

Consumer contract:
You may only apply a function.

Codata – p.14/7



The mirror

data codata
inductive coinductive

finite objects infinite objects
structural recursion guarded corecursion
structural induction guarded coinduction

Where do functions live?

Functions are codata.

Consumer contract:
You may only apply a function.

Codata – p.14/7



The mirror

data codata
inductive coinductive

finite objects infinite objects
structural recursion guarded corecursion
structural induction guarded coinduction

Where do functions live?

Functions are codata.

Consumer contract:
You may only apply a function.

Codata – p.14/7



The mirror

data codata
inductive coinductive

finite objects infinite objects
structural recursion guarded corecursion
structural induction guarded coinduction

Where do functions live?

Functions are codata.

Consumer contract:
You may only apply a function.

Codata – p.14/7



Leibniz ?

let

Z : []\ ?_^ `ba c d 79R : 7Q B 798 79Q : ; <>= ? W : Z 79Q

e A f gN fih Z 7 PW : Z 7 8

doesn’t dualize to .

Codata – p.15/7



Leibniz ?

let

Z : []\ ?_^ `ba c d 79R : 7Q B 798 79Q : ; <>= ? W : Z 79Q

e A f gN fih Z 7 PW : Z 7 8e A f gN fih Z F G C D E C D E W B W

e A f gN fih Z H F G IKJ L MX 79R O HIKJ L Mj 7Q O W B

e A f gN fih Hk N ^ Z HIKJ L MN 7Q O O j X

H e A f gN fih Hk 798^ Z HIKJ L Mj 798 O O 79Q 7 RW O

doesn’t dualize to .

Codata – p.15/7



Leibniz ?

let

Z : []\ ?_^ `ba c d 79R : 7Q B 798 79Q : ; <>= ? W : Z 79Q

e A f gN fih Z 7 PW : Z 7 8e A f gN fih Z F G C D E C D E W B W

e A f gN fih Z H F G IKJ L MX 79R O HIKJ L Mj 7Q O W B

e A f gN fih Hk N ^ Z HIKJ L MN 7Q O O j X

H e A f gN fih Hk 798^ Z HIKJ L Mj 798 O O 79Q 7 RW O

e A f gN fih doesn’t dualize to

; <>= ? Y

.

Codata – p.15/7



Observational Type Theory

We can implement by internalizing the
setoid model – see my LICS 99 paper
Extensional Type Theory, intensionally.
Using this construction we implement both
consumer and producer contracts without
giving up decidability.

This is based on a translation of
Observational Type Theory into intensional
Type Theory + a proof irrelevant universe of
propositions.

Alternative: any two hypothetical proofs of
are convertible.
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A short history of Type Theory

Anarchy
No contracts, not even producer contracts.
Instead of we write

.
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