
Codata
Thorsten Altenkirch

University of Nottingham

Codata – p.1/7

Haskell: data = codata ?

diverges!

Codata – p.2/7

Haskell: data = codata ?

��� � � � ��� � � 	
 � �
 � � � � �� �

diverges!

Codata – p.2/7

Haskell: data = codata ?

��� � � � ��� � � 	
 � �
 � � � � �� �

�� �� � � ��� � � � �

�� �� 	
 � �� �

�� �� � �
 � � �� � � � � �� �� �� �

diverges!

Codata – p.2/7

Haskell: data = codata ?

��� � � � ��� � � 	
 � �
 � � � � �� �

�� �� � � ��� � � � �

�� �� 	
 � �� �

�� �� � �
 � � �� � � � � �� �� �� �

�� � � � � � �� �

�� � � � �
 � � � �� � � � � �

diverges!

Codata – p.2/7

Haskell: data = codata ?

��� � � � ��� � � 	
 � �
 � � � � �� �

�� �� � � ��� � � � �

�� �� 	
 � �� �

�� �� � �
 � � �� � � � � �� �� �� �

�� � � � � � �� �

�� � � � �
 � � � �� � � � � �

�� �� � �� � ! �
diverges!

Codata – p.2/7

Type Theory: data " codata

doesn’t typecheck.

Codata – p.3/7

Type Theory: data " codata

��� � � � ��� � � 	
 � �
 � � � � �� �

# � ��� � � � �� � $ � 	
 $ � �
 � $ � � � ��� � $

doesn’t typecheck.

Codata – p.3/7

Type Theory: data " codata

��� � � � ��� � � 	
 � �
 � � � � �� �

# � ��� � � � �� � $ � 	
 $ � �
 � $ � � � ��� � $

�� �� � � ��� � � � �

�� �� 	
 � �� �

�� �� � �
 � � �� � � � � �� �� �� �

doesn’t typecheck.

Codata – p.3/7

Type Theory: data " codata

��� � � � ��� � � 	
 � �
 � � � � �� �

# � ��� � � � �� � $ � 	
 $ � �
 � $ � � � ��� � $

�� �� � � ��� � � � �

�� �� 	
 � �� �

�� �� � �
 � � �� � � � � �� �� �� �

�� � � � � � �� � $

�� � � � �
 � $ � � �� � � � � �

doesn’t typecheck.

Codata – p.3/7

Type Theory: data " codata

��� � � � ��� � � 	
 � �
 � � � � �� �

# � ��� � � � �� � $ � 	
 $ � �
 � $ � � � ��� � $

�� �� � � ��� � � � �

�� �� 	
 � �� �

�� �� � �
 � � �� � � � � �� �� �� �

�� � � � � � �� � $

�� � � � �
 � $ � � �� � � � � �

�� �� � �� � ! �
doesn’t typecheck.

Codata – p.3/7

codata in Type Theory

Thierry Coquand
Infinite Objects in Type Theory
TYPES 93

Eduardo Giminez
Coinductive Types in COQ
93 – 95
see Coq’Art, pp.347 – 376

Codata – p.4/7

codata in Type Theory

Thierry Coquand
Infinite Objects in Type Theory
TYPES 93

Eduardo Giminez
Coinductive Types in COQ
93 – 95
see Coq’Art, pp.347 – 376

Codata – p.4/7

codata in Type Theory

Thierry Coquand
Infinite Objects in Type Theory
TYPES 93

Eduardo Giminez
Coinductive Types in COQ
93 – 95
see Coq’Art, pp.347 – 376

Codata – p.4/7

Codata ?

Codata seems more exotic then data.

Categorically codata (terminal coalgebras) is
a dual of data (initial algebras)

Proposal: a conceptual duality based on
contracts

which justifies Observational Type Theory
reflecting this symmetry.

Codata – p.5/7

Codata ?

Codata seems more exotic then data.

Categorically codata (terminal coalgebras) is
a dual of data (initial algebras)

Proposal: a conceptual duality based on
contracts

which justifies Observational Type Theory
reflecting this symmetry.

Codata – p.5/7

Codata ?

Codata seems more exotic then data.

Categorically codata (terminal coalgebras) is
a dual of data (initial algebras)

Proposal: a conceptual duality based on
contracts

which justifies Observational Type Theory
reflecting this symmetry.

Codata – p.5/7

Codata ?

Codata seems more exotic then data.

Categorically codata (terminal coalgebras) is
a dual of data (initial algebras)

Proposal: a conceptual duality based on
contracts

which justifies Observational Type Theory
reflecting this symmetry.

Codata – p.5/7

Codata ?

Codata seems more exotic then data.

Categorically codata (terminal coalgebras) is
a dual of data (initial algebras)

Proposal: a conceptual duality based on
contracts

which justifies Observational Type Theory
reflecting this symmetry.

Codata – p.5/7

Data – the producer contract

The producer of data promises that
he/she will construct data only using the
agreed constructors.

Consequences:
pattern matching

structural recursion

induction as structural recursion on proofs

Codata – p.6/7

Data – the producer contract

The producer of data promises that
he/she will construct data only using the
agreed constructors.

Consequences:
pattern matching

structural recursion

induction as structural recursion on proofs

Codata – p.6/7

Data – the producer contract

The producer of data promises that
he/she will construct data only using the
agreed constructors.

Consequences:

pattern matching

structural recursion

induction as structural recursion on proofs

Codata – p.6/7

Data – the producer contract

The producer of data promises that
he/she will construct data only using the
agreed constructors.

Consequences:
pattern matching

structural recursion

induction as structural recursion on proofs

Codata – p.6/7

Data – the producer contract

The producer of data promises that
he/she will construct data only using the
agreed constructors.

Consequences:
pattern matching

structural recursion

induction as structural recursion on proofs

Codata – p.6/7

Data – the producer contract

The producer of data promises that
he/she will construct data only using the
agreed constructors.

Consequences:
pattern matching

structural recursion

induction as structural recursion on proofs

Codata – p.6/7

Codata – the consumer contract

The consumer of codata promises that
he/she will only analyze codata using the
patterns induced by the agreed
constructors.

Consequences:
constructors

guarded corecursion

coinduction as guarded recursion on proofs

Codata – p.7/7

Codata – the consumer contract

The consumer of codata promises that
he/she will only analyze codata using the
patterns induced by the agreed
constructors.

Consequences:
constructors

guarded corecursion

coinduction as guarded recursion on proofs

Codata – p.7/7

Codata – the consumer contract

The consumer of codata promises that
he/she will only analyze codata using the
patterns induced by the agreed
constructors.

Consequences:

constructors

guarded corecursion

coinduction as guarded recursion on proofs

Codata – p.7/7

Codata – the consumer contract

The consumer of codata promises that
he/she will only analyze codata using the
patterns induced by the agreed
constructors.

Consequences:
constructors

guarded corecursion

coinduction as guarded recursion on proofs

Codata – p.7/7

Codata – the consumer contract

The consumer of codata promises that
he/she will only analyze codata using the
patterns induced by the agreed
constructors.

Consequences:
constructors

guarded corecursion

coinduction as guarded recursion on proofs

Codata – p.7/7

Codata – the consumer contract

The consumer of codata promises that
he/she will only analyze codata using the
patterns induced by the agreed
constructors.

Consequences:
constructors

guarded corecursion

coinduction as guarded recursion on proofs

Codata – p.7/7

A simple proposition

let

Let’s have a closer look at .

Codata – p.8/7

A simple proposition

� �% & � � �� � $ � �� � $

� �% & 	
 $ � 	
 $

� �% & �
 � $ � ')(� �
 � $ � � � � � � % & ' (�

let

Let’s have a closer look at .

Codata – p.8/7

A simple proposition

� �% & � � �� � $ � �� � $

� �% & 	
 $ � 	
 $

� �% & �
 � $ � ')(� �
 � $ � � � � � � % & ' (�

let

� � � �

* � � � � � � % & � �� � � � � �� � � � �

Let’s have a closer look at .

Codata – p.8/7

A simple proposition

� �% & � � �� � $ � �� � $

� �% & 	
 $ � 	
 $

� �% & �
 � $ � ')(� �
 � $ � � � � � � % & ' (�

let

� � � �

* � � � � � � % & � �� � � � � �� � � � �

Let’s have a closer look at �.

Codata – p.8/7

Equality for

+-,

data where

Codata – p.9/7

Equality for

+-,

data

').0/ ')(� � �� �

' . � ' (� 1 �2 where

Codata – p.9/7

Equality for

+-,

data

').0/ ')(� � �� �

' . � ' (� 1 �2 where

354 	
 � 	
 � 	

Codata – p.9/7

Equality for

+-,

data

').0/ ')(� � �� �

' . � ' (� 1 �2 where

354 	
 � 	
 � 	

% � � � � ')6 � ' . � ')(354 �
 � % ')6 � �
 � � ' . � �
 � � ' (

Codata – p.9/7

Properties of "

let

let

Codata – p.10/7

Properties of "

let

798 : ; <>= ?

@A 798 : 798B 798

let

Codata – p.10/7

Properties of "

let

798 : ; <>= ?

@A 798 : 798B 798

@A CD E B F>G CD E

@A HIKJ L MN 798 O B F>G IKJ L M H @A N O H @A 7 8 O

let

Codata – p.10/7

Properties of "

let

798 : ; <>= ?

@A 798 : 798B 798

@A CD E B F>G CD E

@A HIKJ L MN 798 O B F>G IKJ L M H @A N O H @A 7 8 O

let

79P : 79Q B 798 79R : 798B 79S

T @U NV 7 P 7 R : 79Q B 79S

Codata – p.10/7

Properties of "

let

798 : ; <>= ?

@A 798 : 798B 798

@A CD E B F>G CD E

@A HIKJ L MN 798 O B F>G IKJ L M H @A N O H @A 7 8 O

let

79P : 79Q B 798 79R : 798B 79S

T @U NV 7 P 7 R : 79Q B 79ST @U N V F G C D E F G C D E B F G C D E

T @U N V H F G IKJ L MW 7 P O H F G IKJ L MX 7 P O

B F>G IKJ L M H T @U N V W X O H T @U N V 7 P 79R O

Codata – p.10/7

Equality for

+-,

codata where

Codata – p.11/7

Equality for

+-,

codata

' ./ ' (� � ��� � $

'. � ')(� 1 �2 where

Codata – p.11/7

Equality for

+-,

codata

' ./ ' (� � ��� � $

'. � ')(� 1 �2 where

354 	
 $ � 	
 $ � 	
 $

Codata – p.11/7

Equality for

+-,

codata

' ./ ' (� � ��� � $

'. � ')(� 1 �2 where

354 	
 $ � 	
 $ � 	
 $

% � � � � ')6 � '). � ' (354 �
 � $ % '6 � �
 � $ � '). � �
 � $ � ')(

Codata – p.11/7

Properties of "

let

let

Codata – p.12/7

Properties of "

let

798 : ; <>= ? Y

@A 798 : 798B 798

let

Codata – p.12/7

Properties of "

let

798 : ; <>= ? Y

@A 798 : 798B 798

@A CD E Y B F>G CD E Y

@A HIKJ L M Y N 798 O B F>G IKJ L M Y H @A N O H @A 7 8 O

let

Codata – p.12/7

Properties of "

let

798 : ; <>= ? Y

@A 798 : 798B 798

@A CD E Y B F>G CD E Y

@A HIKJ L M Y N 798 O B F>G IKJ L M Y H @A N O H @A 7 8 O

let

79P : 79Q B 798 79R : 798B 79S

T @U NV 7 P 7 R : 79Q B 79S

Codata – p.12/7

Properties of "

let

798 : ; <>= ? Y

@A 798 : 798B 798

@A CD E Y B F>G CD E Y

@A HIKJ L M Y N 798 O B F>G IKJ L M Y H @A N O H @A 7 8 O

let

79P : 79Q B 798 79R : 798B 79S

T @U NV 7 P 7 R : 79Q B 79ST @U N V F G C D E Y F G C D E Y B F G C D E Y

T @U N V H F G IKJ L M Y W 7 P O H F G IKJ L M Y X 79R O

B F>G IKJ L M Y H T @U N V W X O H T @U N V 7 P 79R O

Codata – p.12/7

A simple proof

let

� � � �

* � � � � � � % & � �� � � � � �� � � � �

Coinductive reasoning can be easy.

Guarded coinduction is guarded corecursion
on proofs.

There is no need to construct bisimulations.

Codata – p.13/7

A simple proof

let

� � � �

* � � � � � � % & � �� � � � � �� � � � �

* � � � � 354 �
 � $ � � � � * � � � � � �

Coinductive reasoning can be easy.

Guarded coinduction is guarded corecursion
on proofs.

There is no need to construct bisimulations.

Codata – p.13/7

A simple proof

let

� � � �

* � � � � � � % & � �� � � � � �� � � � �

* � � � � 354 �
 � $ � � � � * � � � � � �

Coinductive reasoning can be easy.

Guarded coinduction is guarded corecursion
on proofs.

There is no need to construct bisimulations.

Codata – p.13/7

A simple proof

let

� � � �

* � � � � � � % & � �� � � � � �� � � � �

* � � � � 354 �
 � $ � � � � * � � � � � �

Coinductive reasoning can be easy.

Guarded coinduction is guarded corecursion
on proofs.

There is no need to construct bisimulations.

Codata – p.13/7

A simple proof

let

� � � �

* � � � � � � % & � �� � � � � �� � � � �

* � � � � 354 �
 � $ � � � � * � � � � � �

Coinductive reasoning can be easy.

Guarded coinduction is guarded corecursion
on proofs.

There is no need to construct bisimulations.

Codata – p.13/7

The mirror

data codata
inductive coinductive

finite objects infinite objects
structural recursion guarded corecursion
structural induction guarded coinduction

Where do functions live?

Functions are codata.

Consumer contract:
You may only apply a function.

Codata – p.14/7

The mirror

data codata

inductive coinductive
finite objects infinite objects

structural recursion guarded corecursion
structural induction guarded coinduction

Where do functions live?

Functions are codata.

Consumer contract:
You may only apply a function.

Codata – p.14/7

The mirror

data codata
inductive

coinductive
finite objects infinite objects

structural recursion guarded corecursion
structural induction guarded coinduction

Where do functions live?

Functions are codata.

Consumer contract:
You may only apply a function.

Codata – p.14/7

The mirror

data codata
inductive coinductive

finite objects infinite objects
structural recursion guarded corecursion
structural induction guarded coinduction

Where do functions live?

Functions are codata.

Consumer contract:
You may only apply a function.

Codata – p.14/7

The mirror

data codata
inductive coinductive

finite objects

infinite objects
structural recursion guarded corecursion
structural induction guarded coinduction

Where do functions live?

Functions are codata.

Consumer contract:
You may only apply a function.

Codata – p.14/7

The mirror

data codata
inductive coinductive

finite objects infinite objects

structural recursion guarded corecursion
structural induction guarded coinduction

Where do functions live?

Functions are codata.

Consumer contract:
You may only apply a function.

Codata – p.14/7

The mirror

data codata
inductive coinductive

finite objects infinite objects
structural recursion

guarded corecursion
structural induction guarded coinduction

Where do functions live?

Functions are codata.

Consumer contract:
You may only apply a function.

Codata – p.14/7

The mirror

data codata
inductive coinductive

finite objects infinite objects
structural recursion guarded corecursion

structural induction guarded coinduction

Where do functions live?

Functions are codata.

Consumer contract:
You may only apply a function.

Codata – p.14/7

The mirror

data codata
inductive coinductive

finite objects infinite objects
structural recursion guarded corecursion
structural induction

guarded coinduction

Where do functions live?

Functions are codata.

Consumer contract:
You may only apply a function.

Codata – p.14/7

The mirror

data codata
inductive coinductive

finite objects infinite objects
structural recursion guarded corecursion
structural induction guarded coinduction

Where do functions live?

Functions are codata.

Consumer contract:
You may only apply a function.

Codata – p.14/7

The mirror

data codata
inductive coinductive

finite objects infinite objects
structural recursion guarded corecursion
structural induction guarded coinduction

Where do functions live?

Functions are codata.

Consumer contract:
You may only apply a function.

Codata – p.14/7

The mirror

data codata
inductive coinductive

finite objects infinite objects
structural recursion guarded corecursion
structural induction guarded coinduction

Where do functions live?

Functions are codata.

Consumer contract:
You may only apply a function.

Codata – p.14/7

The mirror

data codata
inductive coinductive

finite objects infinite objects
structural recursion guarded corecursion
structural induction guarded coinduction

Where do functions live?

Functions are codata.

Consumer contract:
You may only apply a function.

Codata – p.14/7

Leibniz ?

let

Z : []\ ?_^ `ba c d 79R : 7Q B 798 79Q : ; <>= ? W : Z 79Q

e A f gN fih Z 7 PW : Z 7 8

doesn’t dualize to .

Codata – p.15/7

Leibniz ?

let

Z : []\ ?_^ `ba c d 79R : 7Q B 798 79Q : ; <>= ? W : Z 79Q

e A f gN fih Z 7 PW : Z 7 8e A f gN fih Z F G C D E C D E W B W

e A f gN fih Z H F G IKJ L MX 79R O HIKJ L Mj 7Q O W B

e A f gN fih Hk N ^ Z HIKJ L MN 7Q O O j X

H e A f gN fih Hk 798^ Z HIKJ L Mj 798 O O 79Q 7 RW O

doesn’t dualize to .

Codata – p.15/7

Leibniz ?

let

Z : []\ ?_^ `ba c d 79R : 7Q B 798 79Q : ; <>= ? W : Z 79Q

e A f gN fih Z 7 PW : Z 7 8e A f gN fih Z F G C D E C D E W B W

e A f gN fih Z H F G IKJ L MX 79R O HIKJ L Mj 7Q O W B

e A f gN fih Hk N ^ Z HIKJ L MN 7Q O O j X

H e A f gN fih Hk 798^ Z HIKJ L Mj 798 O O 79Q 7 RW O

e A f gN fih doesn’t dualize to

; <>= ? Y

.

Codata – p.15/7

Observational Type Theory

We can implement by internalizing the
setoid model – see my LICS 99 paper
Extensional Type Theory, intensionally.
Using this construction we implement both
consumer and producer contracts without
giving up decidability.

This is based on a translation of
Observational Type Theory into intensional
Type Theory + a proof irrelevant universe of
propositions.

Alternative: any two hypothetical proofs of
are convertible.

Codata – p.16/7

Observational Type Theory
We can implement

* � l m � lon by internalizing the
setoid model – see my LICS 99 paper
Extensional Type Theory, intensionally.

Using this construction we implement both
consumer and producer contracts without
giving up decidability.

This is based on a translation of
Observational Type Theory into intensional
Type Theory + a proof irrelevant universe of
propositions.

Alternative: any two hypothetical proofs of
are convertible.

Codata – p.16/7

Observational Type Theory
We can implement

* � l m � lon by internalizing the
setoid model – see my LICS 99 paper
Extensional Type Theory, intensionally.
Using this construction we implement both
consumer and producer contracts without
giving up decidability.

This is based on a translation of
Observational Type Theory into intensional
Type Theory + a proof irrelevant universe of
propositions.

Alternative: any two hypothetical proofs of
are convertible.

Codata – p.16/7

Observational Type Theory
We can implement

* � l m � lon by internalizing the
setoid model – see my LICS 99 paper
Extensional Type Theory, intensionally.
Using this construction we implement both
consumer and producer contracts without
giving up decidability.

This is based on a translation of
Observational Type Theory into intensional
Type Theory + a proof irrelevant universe of
propositions.

Alternative: any two hypothetical proofs of
are convertible.

Codata – p.16/7

Observational Type Theory
We can implement

* � l m � lon by internalizing the
setoid model – see my LICS 99 paper
Extensional Type Theory, intensionally.
Using this construction we implement both
consumer and producer contracts without
giving up decidability.

This is based on a translation of
Observational Type Theory into intensional
Type Theory + a proof irrelevant universe of
propositions.

Alternative: any two hypothetical proofs ofp9q
 � � are convertible.
Codata – p.16/7

A short history of Type Theory

Anarchy
No contracts, not even producer contracts.
Instead of we write

.
Impredicative encodings of data

Codata – p.17/7

A short history of Type Theory

Anarchy

No contracts, not even producer contracts.
Instead of we write

.
Impredicative encodings of data

Codata – p.17/7

A short history of Type Theory

Anarchy
No contracts, not even producer contracts.

Instead of we write
.

Impredicative encodings of data

Codata – p.17/7

A short history of Type Theory

Anarchy
No contracts, not even producer contracts.
Instead of � � � �>rts s s we write� � � �s �u � v � � s s s .

Impredicative encodings of data

Codata – p.17/7

A short history of Type Theory

Anarchy
No contracts, not even producer contracts.
Instead of � � � �>rts s s we write� � � �s �u � v � � s s s .
Impredicative encodings of data

Codata – p.17/7

A short history of Type Theory

Wild West

Producer contracts but no consumer
contracts.
We can quantify over
We have to verify again and again that a
consumer of codata respects equality.
Intensional Type Theory

Codata – p.18/7

A short history of Type Theory

Wild West
Producer contracts but no consumer
contracts.

We can quantify over
We have to verify again and again that a
consumer of codata respects equality.
Intensional Type Theory

Codata – p.18/7

A short history of Type Theory

Wild West
Producer contracts but no consumer
contracts.
We can quantify over � �

We have to verify again and again that a
consumer of codata respects equality.
Intensional Type Theory

Codata – p.18/7

A short history of Type Theory

Wild West
Producer contracts but no consumer
contracts.
We can quantify over � �
We have to verify again and again that a
consumer of codata respects equality.

Intensional Type Theory

Codata – p.18/7

A short history of Type Theory

Wild West
Producer contracts but no consumer
contracts.
We can quantify over � �
We have to verify again and again that a
consumer of codata respects equality.
Intensional Type Theory

Codata – p.18/7

A short history of Type Theory

Rule of law

Producer and consumer contracts.
We can quantify over
We know that any consumer of codata
respects equality.
Observational Type Theory

Codata – p.19/7

A short history of Type Theory

Rule of law
Producer and consumer contracts.

We can quantify over
We know that any consumer of codata
respects equality.
Observational Type Theory

Codata – p.19/7

A short history of Type Theory

Rule of law
Producer and consumer contracts.
We can quantify over � �

We know that any consumer of codata
respects equality.
Observational Type Theory

Codata – p.19/7

A short history of Type Theory

Rule of law
Producer and consumer contracts.
We can quantify over � �
We know that any consumer of codata
respects equality.

Observational Type Theory

Codata – p.19/7

A short history of Type Theory

Rule of law
Producer and consumer contracts.
We can quantify over � �
We know that any consumer of codata
respects equality.
Observational Type Theory

Codata – p.19/7

Observational Epigram

The goal of our recently funded EPSRC project
Decidable Type Theory with Observational Equality is
to implement a Type Theory with observational equality
(Observational Epigram)

We want to improve on my LICS 99 paper by adding
the conversion equality

And hence strictly extend intensional Type Theory.

We also want to realize another extension of the
mirror:

data codata

subset types quotient types

Codata – p.20/7

Observational Epigram
The goal of our recently funded EPSRC project
Decidable Type Theory with Observational Equality is
to implement a Type Theory with observational equality
(Observational Epigram)

We want to improve on my LICS 99 paper by adding
the conversion equality

And hence strictly extend intensional Type Theory.

We also want to realize another extension of the
mirror:

data codata

subset types quotient types

Codata – p.20/7

Observational Epigram
The goal of our recently funded EPSRC project
Decidable Type Theory with Observational Equality is
to implement a Type Theory with observational equality
(Observational Epigram)

We want to improve on my LICS 99 paper by adding
the conversion equalitye A f gN fihxw w w @A y z y

And hence strictly extend intensional Type Theory.

We also want to realize another extension of the
mirror:

data codata

subset types quotient types

Codata – p.20/7

Observational Epigram
The goal of our recently funded EPSRC project
Decidable Type Theory with Observational Equality is
to implement a Type Theory with observational equality
(Observational Epigram)

We want to improve on my LICS 99 paper by adding
the conversion equalitye A f gN fihxw w w @A y z y
And hence strictly extend intensional Type Theory.

We also want to realize another extension of the
mirror:

data codata

subset types quotient types

Codata – p.20/7

Observational Epigram
The goal of our recently funded EPSRC project
Decidable Type Theory with Observational Equality is
to implement a Type Theory with observational equality
(Observational Epigram)

We want to improve on my LICS 99 paper by adding
the conversion equalitye A f gN fihxw w w @A y z y
And hence strictly extend intensional Type Theory.

We also want to realize another extension of the
mirror:

data codata

subset types quotient types

Codata – p.20/7

Observational Epigram
The goal of our recently funded EPSRC project
Decidable Type Theory with Observational Equality is
to implement a Type Theory with observational equality
(Observational Epigram)

We want to improve on my LICS 99 paper by adding
the conversion equalitye A f gN fihxw w w @A y z y
And hence strictly extend intensional Type Theory.

We also want to realize another extension of the
mirror:

data codata

subset types quotient types
Codata – p.20/7

	Haskell: data = codata ?
	Type Theory: data $
ot =$ codata
	codata in Type Theory
	Codata ?
	Data -- the producer contract
	Codata -- the consumer contract
	A simple proposition
	Equality for ensuremath {Tyid {List}}
	Properties of ensuremath {mathrel {=}}
	Equality for ensuremath {Tyid {List}^infty }
	Properties of ensuremath {mathrel {=}}
	A simple proof
	The mirror
	Leibniz ?
	Observational Type Theory
	A short history of Type Theory
	A short history of Type Theory
	A short history of Type Theory
	Observational Epigram

