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Haskell: data = codata ?

data List = Nil | Cons Nat List

even € List — Bool

even Nil = True
even (Cons a as) = — (even as)

from € Nat — List
from n = Cons n (from (n + 1))
even (from 0) diverges!
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Type Theory: data +# codata

data List = Nil | Cons Nat List
codata List™ = Nil* | Cons*™ Nat List™

even € List — Bool

even Nil = True
even (Cons a as) = — (even as)

from € Nat — List™

from n = Cons™ n (from (n+ 1))

even (from 0) doesn’t typecheck.

Codata — p.3/
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Codata ?

Codata seems more exotic then data.

Categorically codata (terminal coalgebras) is
a dual of data (initial algebras)

Proposal: a conceptual duality based on
contracts

which justifies Observational Type Theory
reflecting this symmetry.
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The producer of data promises that
he/she will construct data only using the
agreed constructors.

Consequences:
pattern matching
structural recursion
Induction as structural recursion on proofs
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Codata — the consumer contract

The consumer of codata promises that
he/she will only analyze codata using the
patterns induced by the agreed
constructors.

Consequences:
constructors
guarded corecursion
coinduction as guarded recursion on proofs

Codata — p.7/
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mapS € List™ — List™
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A simple proposition

mapS € List™ — List™
mapS Nil™ = Nil*>®
mapS Cons™ n 11 = Cons™ (n + 1) (mapS 1)

n € Nat
lem n € mapS (from n) = from (n + 1)

let

Let's have a closer look at =.
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m

, 1 € List
T =

L where
n € Prop
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Equality for List

n € List
= where

data L
T c Prop

)
T =

EqNil € Nil = Nil

pEM=n pEM=n
EqCons p p € Cons m m = Cons n 7l
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n € List
reflmen=n
refl Nil = EqgNil
refl (Cons n 17) = EqCons (refl n) (refl i)

let
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Properties of =

n € List
let ~ -
reflnen=n
refl Nil = EqgNil
refl (Cons n 17) = EqCons (refl n) (refl i)
peEmMm=1n gE€n=o0
let

trans pqg € m =0
trans EqNil EqNil = EgNil
trans (EqCons p p) (EqCons ¢ p)
= EqCons (trans p q) (trans p q)
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m. 1 € List™

—— where
m =1 € Prop

codata
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m. 1 € List™

—— where
m =1 € Prop

codata

EqNil® € Nil® = Nil®
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Equality for List™

m,n € List™
m =mn € Prop

codata where

EqNil® € Nil® = Nil®

pEM=n pEM=n
EqCons™ p p € Cons™ m m = Cons™ n n
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n € List™
reflnen=n
refl Nil™ = EgNil™
refl (Cons™ n i) = EqCons™ (refl n) (refl i)

let
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Properties of =

n € List™
let ———
refl n eEn=n
refl Nil™ = EgNil™
refl (Cons™ n i) = EqCons™ (refl n) (refl i)
PlEm=—n JeEn=20
let
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Properties of =

n € List™
let ———
refl n eEn=n
refl Nil™ = EgNil™
refl (Cons™ n i) = EqCons™ (refl n) (refl i)
PlEm=—n JeEn=20
let

trans p ¢ € m = 0
trans EqNil™ EqNil® = EqgNil*>
trans (EqCons™ p p) (EqCons™ ¢ ¢)

= EqCons™ (trans p q) (trans p q)

Codata — p.12/
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n € Nat
lem n € mapS (from n) = from (n + 1)

let

lem n = EqCons™ (n + 1) (lem (n+ 1))

Coinductive reasoning can be easy.

Guarded coinduction is guarded corecursion
on proofs.
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A simple proof

n € Nat
lem n € mapS (from n) = from (n + 1)

let

lem n = EqCons™ (n + 1) (lem (n+ 1))

Coinductive reasoning can be easy.

Guarded coinduction is guarded corecursion
on proofs.

There 1s no need to construct bisimulations.

Codata — p.13/
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The mirror

data codata
Inductive coinductive
finite objects infinite objects

structural recursion | guarded corecursion
structural induction | guarded coinduction

Where do functions live?
Functions are codata.

Consumer contract:
You may only apply a function.

Codata — p.14/
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Leibniz ?

- P e Nat - Type gem=n meList pe Pm
e

letbniz Ppp € Pn
letbniz P EqNil Nil D=7
leibniz P (EqCons ¢ ¢) (Cons m m) p =
leibniz (An — P (Cons nm)) m q
(letbniz (Al — P (Cons m 1)) m ¢ p)
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Leibniz ?

- P e Nat - Type gem=n meList pe Pm
e

letbniz Ppp € Pn
letbniz P EqNil Nil D=7
leibniz P (EqCons ¢ ¢) (Cons m m) p =
leibniz (An — P (Cons nm)) m q
(letbniz (Al — P (Cons m 1)) m ¢ p)

leibniz doesn’t dualize to List™.

Codata — p.15/
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Observational Type Theory

We can implement leibniz by internalizing the
setoid model — see my LICS 99 paper
Extensional Type Theory, intensionally.

Using this construction we implement both
consumer and producer contracts without
giving up decidability.

This is based on a translation of
Observational Type Theory into intensional
Type Theory + a proof irrelevant universe of
propositions.

Alternative: any two hypothetical proofs of
False are convertible.
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A short history of Type Theory

Anarchy
No contracts, not even producer contracts.
Instead of II n € Nat: ... we write
[T n e Nat.(Ind n) — ....
Impredicative encodings of data
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A short history of Type Theory

Wild West
Producer contracts but no consumer
contracts.
We can quantify over Nat
We have to verify again and again that a
consumer of codata respects equality.
Intensional Type Theory
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A short history of Type Theory

Rule of law
Producer and consumer contracts.
We can quantify over Nat

We know that any consumer of codata
respects equality.

Observational Type Theory

Codata — p.19/
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The goal of our recently funded EPSRC project
Decidable Type Theory with Observational Equality is

to implement a Type Theory with observational equality
(Observational Epigram)
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Observational Epigram

The goal of our recently funded EPSRC project
Decidable Type Theory with Observational Equality is
to implement a Type Theory with observational equality
(Observational Epigram)

We want to improve on my LICS 99 paper by adding
the conversion equality

leibniz ... refl x =
And hence strictly extend intensional Type Theory.

We also want to realize another extension of the
Mmirror:
data codata

subset types | quotient types

Codata — p.20/
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