

Haskell: data = codata ?

data List = Nil | Cons Nat List

Codata — p.2/

Haskell: data = codata ?

data List = Nil | Cons Nat List

even € List — Bool

even Nil = True
even (Cons a as) = — (even as)

Codata — p.2/

Haskell: data = codata ?

data List = Nil | Cons Nat List

even € List — Bool

even Nil = True
even (Cons a as) = — (even as)

from € Nat — List
from n = Cons n (from (n + 1))

Codata — p.2/

Haskell: data = codata ?

data List = Nil | Cons Nat List

even € List — Bool

even Nil = True
even (Cons a as) = — (even as)

from € Nat — List
from n = Cons n (from (n + 1))
even (from 0) diverges!

Codata — p.2/

Type Theory: data # codata

data List = Nil | Cons Nat List
codata List™ = Nil* | Cons*™ Nat List™

Codata — p.3/

Type Theory: data # codata

data List = Nil | Cons Nat List
codata List™ = Nil* | Cons*™ Nat List™

even € List — Bool

even Nil = True
even (Cons a as) = — (even as)

Codata — p.3/

Type Theory: data +# codata

data List = Nil | Cons Nat List
codata List™ = Nil* | Cons*™ Nat List™

even € List — Bool

even Nil = True
even (Cons a as) = — (even as)

from € Nat — List™

from n = Cons™ n (from (n+ 1))

Codata — p.3/

Type Theory: data +# codata

data List = Nil | Cons Nat List
codata List™ = Nil* | Cons*™ Nat List™

even € List — Bool

even Nil = True
even (Cons a as) = — (even as)

from € Nat — List™

from n = Cons™ n (from (n+ 1))

even (from 0) doesn’t typecheck.

Codata — p.3/

codata in Type Theory

Thierry Coquand
Infinite Objects in Type Theory
TYPES 93

codata in Type Theory

Thierry Coquand
Infinite Objects in Type Theory
TYPES 93

Eduardo Giminez
Coinductive Types in COQ
93 -95

see Coq'Art, pp.347 — 376

Codata ?

Codata ?

Codata seems more exotic then data.

Codata — p.5/

Codata ?

Codata seems more exotic then data.

Categorically codata (terminal coalgebras) is
a dual of data (initial algebras)

Codata — p.5/

Codata ?

Codata seems more exotic then data.

Categorically codata (terminal coalgebras) is
a dual of data (initial algebras)

Proposal: a conceptual duality based on
contracts

Codata — p.5/

Codata ?

Codata seems more exotic then data.

Categorically codata (terminal coalgebras) is
a dual of data (initial algebras)

Proposal: a conceptual duality based on
contracts

which justifies Observational Type Theory
reflecting this symmetry.

Codata — p.5/

Data — the producer contract

The producer of data promises that
he/she will construct data only using the
agreed constructors.

Codata — p.6/

Data — the producer contract

The producer of data promises that
he/she will construct data only using the
agreed constructors.

Consequences:

Codata — p.6/

Data — the producer contract

The producer of data promises that
he/she will construct data only using the
agreed constructors.

Consequences:
pattern matching

Codata — p.6/

Data — the producer contract

The producer of data promises that
he/she will construct data only using the
agreed constructors.

Consequences:
pattern matching
structural recursion

Codata — p.6/

Data — the producer contract

The producer of data promises that
he/she will construct data only using the
agreed constructors.

Consequences:
pattern matching
structural recursion
Induction as structural recursion on proofs

Codata — p.6/

Codata — the consumer contract

The consumer of codata promises that
he/she will only analyze codata using the
patterns induced by the agreed
constructors.

Codata — p.7/

Codata — the consumer contract

The consumer of codata promises that
he/she will only analyze codata using the
patterns induced by the agreed
constructors.

Consequences:

Codata — p.7/

Codata — the consumer contract

The consumer of codata promises that
he/she will only analyze codata using the
patterns induced by the agreed
constructors.

Consequences:
constructors

Codata — p.7/

Codata — the consumer contract

The consumer of codata promises that
he/she will only analyze codata using the
patterns induced by the agreed
constructors.

Consequences:
constructors
guarded corecursion

Codata — p.7/

Codata — the consumer contract

The consumer of codata promises that
he/she will only analyze codata using the
patterns induced by the agreed
constructors.

Consequences:
constructors
guarded corecursion
coinduction as guarded recursion on proofs

Codata — p.7/

A simple proposition
mapS € List™ — List™

mapS Nil™ = Nil*>®
mapS Cons™ n 11 = Cons™ (n + 1) (mapS 1)

Codata — p.8/

A simple proposition

mapS € List™ — List™
mapS Nil™ = Nil*>®
mapS Cons™ n 11 = Cons™ (n + 1) (mapS 1)

n € Nat
lem n € mapS (from n) = from (n + 1)

let

Codata — p.8/

A simple proposition

mapS € List™ — List™
mapS Nil™ = Nil*>®
mapS Cons™ n 11 = Cons™ (n + 1) (mapS 1)

n € Nat
lem n € mapS (from n) = from (n + 1)

let

Let's have a closer look at =.

Codata — p.8/

Equality for List

Equality for List

m

, 1 € List
T =

L where
n € Prop

Codata — p.9/

Equality for List

EqNil € Nil = Nil

Codata — p.9/

Equality for List

n € List
= where

data L
T c Prop

)
T =

EqNil € Nil = Nil

pEM=n pEM=n
EqCons p p € Cons m m = Cons n 7l

Codata — p.9/

Properties of =

Properties of =

n € List
reflmen=n
refl Nil = EqgNil
refl (Cons n 17) = EqCons (refl n) (refl i)

let

Codata — p.10/

Properties of =

n € List
let ~ -
reflnen=n
refl Nil = EqgNil
refl (Cons n 17) = EqCons (refl n) (refl i)
peEmMm=1n gE€n=o0
let

Codata — p.10/

Properties of =

n € List
let ~ -
reflnen=n
refl Nil = EqgNil
refl (Cons n 17) = EqCons (refl n) (refl i)
peEmMm=1n gE€n=o0
let

trans pqg € m =0
trans EqNil EqNil = EgNil
trans (EqCons p p) (EqCons ¢ p)
= EqCons (trans p q) (trans p q)

Codata — p.10/

Equality for List

Equality for List™

m. 1 € List™

—— where
m =1 € Prop

codata

Codata — p.11/

Equality for List™

m. 1 € List™

—— where
m =1 € Prop

codata

EqNil® € Nil® = Nil®

Codata — p.11/

Equality for List™

m,n € List™
m =mn € Prop

codata where

EqNil® € Nil® = Nil®

pEM=n pEM=n
EqCons™ p p € Cons™ m m = Cons™ n n

Codata — p.11/

Properties of =

Properties of =

n € List™
reflnen=n
refl Nil™ = EgNil™
refl (Cons™ n i) = EqCons™ (refl n) (refl i)

let

Codata — p.12/

Properties of =

n € List™
let ———
refl n eEn=n
refl Nil™ = EgNil™
refl (Cons™ n i) = EqCons™ (refl n) (refl i)
PlEm=—n JeEn=20
let

Codata — p.12/

Properties of =

n € List™
let ———
refl n eEn=n
refl Nil™ = EgNil™
refl (Cons™ n i) = EqCons™ (refl n) (refl i)
PlEm=—n JeEn=20
let

trans p ¢ € m = 0
trans EqNil™ EqNil® = EqgNil*>
trans (EqCons™ p p) (EqCons™ ¢ ¢)

= EqCons™ (trans p q) (trans p q)

Codata — p.12/

A simple proof

n € Nat
lem n € mapS (from n) = from (n + 1)

let

Codata — p.13/

A simple proof

n € Nat
lem n € mapS (from n) = from (n + 1)

let

lem n = EqCons™ (n + 1) (lem (n+ 1))

A simple proof

n € Nat
lem n € mapS (from n) = from (n + 1)

let

lem n = EqCons™ (n + 1) (lem (n+ 1))

Coinductive reasoning can be easy.

A simple proof

n € Nat
lem n € mapS (from n) = from (n + 1)

let

lem n = EqCons™ (n + 1) (lem (n+ 1))

Coinductive reasoning can be easy.

Guarded coinduction is guarded corecursion
on proofs.

Codata — p.13/

A simple proof

n € Nat
lem n € mapS (from n) = from (n + 1)

let

lem n = EqCons™ (n + 1) (lem (n+ 1))

Coinductive reasoning can be easy.

Guarded coinduction is guarded corecursion
on proofs.

There 1s no need to construct bisimulations.

Codata — p.13/

The mirror

The mirror

The mirror

data codata
Inductive

Codata — p.14/

The mirror

data codata
Inductive coinductive

Codata — p.14/

The mirror

data codata
Inductive coinductive
finite objects

Codata — p.14/

The mirror

data codata
Inductive coinductive
finite objects infinite objects

Codata — p.14/

The mirror

data codata
Inductive coinductive
finite objects infinite objects

structural recursion

Codata — p.14/

The mirror

data codata
Inductive coinductive
finite objects infinite objects

structural recursion | guarded corecursion

Codata — p.14/

The mirror

data codata
Inductive coinductive
finite objects infinite objects

structural recursion | guarded corecursion
structural induction

Codata — p.14/

The mirror

data codata
Inductive coinductive
finite objects infinite objects

structural recursion | guarded corecursion
structural induction | guarded coinduction

Codata — p.14/

The mirror

data codata
Inductive coinductive
finite objects infinite objects

structural recursion | guarded corecursion
structural induction | guarded coinduction

Where do functions live?

Codata — p.14/

The mirror

data codata
Inductive coinductive
finite objects infinite objects

structural recursion | guarded corecursion
structural induction | guarded coinduction

Where do functions live?
Functions are codata.

Codata — p.14/

The mirror

data codata
Inductive coinductive
finite objects infinite objects

structural recursion | guarded corecursion
structural induction | guarded coinduction

Where do functions live?
Functions are codata.

Consumer contract:
You may only apply a function.

Codata — p.14/

Leibniz ?

P e Nat - Type gem=n meList pe Pm

let TORE = =
letbniz Ppp € Pn

Codata — p.15/

Leibniz ?

- P e Nat - Type gem=n meList pe Pm
e

letbniz Ppp € Pn
letbniz P EqNil Nil D=7
leibniz P (EqCons ¢ ¢) (Cons m m) p =
leibniz (An — P (Cons nm)) m q
(letbniz (Al — P (Cons m 1)) m ¢ p)

Codata — p.15/

Leibniz ?

- P e Nat - Type gem=n meList pe Pm
e

letbniz Ppp € Pn
letbniz P EqNil Nil D=7
leibniz P (EqCons ¢ ¢) (Cons m m) p =
leibniz (An — P (Cons nm)) m q
(letbniz (Al — P (Cons m 1)) m ¢ p)

leibniz doesn’t dualize to List™.

Codata — p.15/

Observational Type-

Observational Type Theory

We can implement leibniz by internalizing the
setoid model — see my LICS 99 paper
Extensional Type Theory, intensionally.

Observational Type Theory

We can implement leibniz by internalizing the
setoid model — see my LICS 99 paper
Extensional Type Theory, intensionally.

Using this construction we implement both
consumer and producer contracts without
giving up decidability.

Observational Type Theory

We can implement leibniz by internalizing the
setoid model — see my LICS 99 paper
Extensional Type Theory, intensionally.

Using this construction we implement both
consumer and producer contracts without
giving up decidability.

This is based on a translation of
Observational Type Theory into intensional
Type Theory + a proof irrelevant universe of
propositions.

Observational Type Theory

We can implement leibniz by internalizing the
setoid model — see my LICS 99 paper
Extensional Type Theory, intensionally.

Using this construction we implement both
consumer and producer contracts without
giving up decidability.

This is based on a translation of
Observational Type Theory into intensional
Type Theory + a proof irrelevant universe of
propositions.

Alternative: any two hypothetical proofs of
False are convertible.

A short history of T-

A short history of T-

A short history of Type Theory

Anarchy
No contracts, not even producer contracts.

Codata — p.17/

A short history of Type Theory

Anarchy
No contracts, not even producer contracts.
Instead of II n € Nat: ... we write
[T n e Nat.(Ind n) —

Codata — p.17/

A short history of Type Theory

Anarchy
No contracts, not even producer contracts.
Instead of II n € Nat: ... we write
[T n e Nat.(Ind n) —
Impredicative encodings of data

Codata — p.17/

A short history of T-

A short history of Type Theory

Wild West
Producer contracts but no consumer
contracts.

Codata — p.18/

A short history of Type Theory

Wild West
Producer contracts but no consumer
contracts.
We can quantify over Nat

Codata — p.18/

A short history of Type Theory

Wild West
Producer contracts but no consumer

contracts.

We can quantify over Nat

We have to verify again and again that a
consumer of codata respects equality.

Codata — p.18/

A short history of Type Theory

Wild West
Producer contracts but no consumer
contracts.
We can quantify over Nat
We have to verify again and again that a
consumer of codata respects equality.
Intensional Type Theory

Codata — p.18/

A short history of T-

A short history of Type Theory

Rule of law
Producer and consumer contracts.

Codata — p.19/

A short history of Type Theory

Rule of law
Producer and consumer contracts.
We can quantify over Nat

Codata — p.19/

A short history of Type Theory

Rule of law
Producer and consumer contracts.

We can quantify over Nat
We know that any consumer of codata

respects equality.

Codata — p.19/

A short history of Type Theory

Rule of law
Producer and consumer contracts.
We can quantify over Nat

We know that any consumer of codata
respects equality.

Observational Type Theory

Codata — p.19/

Observational Epi-

Observational Epigram

The goal of our recently funded EPSRC project
Decidable Type Theory with Observational Equality is

to implement a Type Theory with observational equality
(Observational Epigram)

Codata — p.20/

Observational Epigram

The goal of our recently funded EPSRC project
Decidable Type Theory with Observational Equality is
to implement a Type Theory with observational equality
(Observational Epigram)

We want to improve on my LICS 99 paper by adding
the conversion equality

letbniz ... refl x = x

Codata — p.20/

Observational Epigram

The goal of our recently funded EPSRC project
Decidable Type Theory with Observational Equality is
to implement a Type Theory with observational equality
(Observational Epigram)

We want to improve on my LICS 99 paper by adding
the conversion equality

leibniz ... refl x =

And hence strictly extend intensional Type Theory.

Codata — p.20/

Observational Epigram

The goal of our recently funded EPSRC project
Decidable Type Theory with Observational Equality is
to implement a Type Theory with observational equality
(Observational Epigram)

We want to improve on my LICS 99 paper by adding
the conversion equality

leibniz ... refl x =
And hence strictly extend intensional Type Theory.

We also want to realize another extension of the
MIrror:

Codata — p.20/

Observational Epigram

The goal of our recently funded EPSRC project
Decidable Type Theory with Observational Equality is
to implement a Type Theory with observational equality
(Observational Epigram)

We want to improve on my LICS 99 paper by adding
the conversion equality

leibniz ... refl x =
And hence strictly extend intensional Type Theory.

We also want to realize another extension of the
Mmirror:
data codata

subset types | quotient types

Codata — p.20/

	Haskell: data = codata ?
	Type Theory: data $
ot =$ codata
	codata in Type Theory
	Codata ?
	Data -- the producer contract
	Codata -- the consumer contract
	A simple proposition
	Equality for ensuremath {Tyid {List}}
	Properties of ensuremath {mathrel {=}}
	Equality for ensuremath {Tyid {List}^infty }
	Properties of ensuremath {mathrel {=}}
	A simple proof
	The mirror
	Leibniz ?
	Observational Type Theory
	A short history of Type Theory
	A short history of Type Theory
	A short history of Type Theory
	Observational Epigram

