Extensional Propaganda
OTT
An extensional universe
Quotient types
Discussion

Extensionality now!

based on joint work with Conor McBride and Wouter Swierstra supported by EPSRC grant EP/C512022 Observational Equality for Dependently Typed Programming

Thorsten Altenkirch

School of Computer Science and IT University of Nottingham

May 3, 2007

Shortcomings of Intensional Type Theory (ITT)

Ext is not provable

$$\frac{p \in \Pi a \in A.f \ a = g \ a}{\operatorname{ext} p \in f = g}$$

No quotients E.g. \mathbb{R} is not definable.

$$\begin{array}{rcl} \mathbb{R}_{\text{rep}} & = & \{f \in \mathbb{N} \to \mathbb{Q} \mid \\ & \forall \epsilon > 0.\exists n \in \mathbb{N}. | f\left(n+1\right) - f\left(n\right)| < \epsilon \} \\ \\ \simeq_{\mathbb{R}} & \in & \mathbb{R}_{\text{rep}} \to \mathbb{R}_{\text{rep}} \to \text{Prop} \\ f \simeq_{\mathbb{R}} g & = & \forall \epsilon > 0.\exists n \in \mathbb{N}. \forall m > n. | f\left(m-g\left(m\right)\right)| < \epsilon \\ \\ \mathbb{R} & = & \mathbb{R}_{\text{rep}} / \simeq_{\mathbb{R}} \end{array}$$

No small core Inductive and coinductive definitions are not reducible to W.

(unlike in Extensional Type Theory).

Asymmetry of ITT

data

- defined by construction.
- producer contract: producer promises to only uses legal methods to produce data.
- Examples: Inductive types, e.g. \mathbb{N} , finite types, Σ -types, subset types.
- supported by ITT

codata

- defined by use
- consumer contract: consumer promises only to use legal methods to investigate codata.
- Examples: Coinductive types (e.g. streams),
 Σ types, Π types, quotient types.
- not properly supported by ITT

Per Martin-Löf's classification (MAP 07)

	Excluded middle	Impredicative	Extensional
ZFC set theory	yes	yes	yes
Topos theory	no	yes	yes
Predicative topoi	no	no	yes
ITT	no	no	no

- Is there a foundational issue with extensionality?
- Claim: Extensionality introduces ways of abstraction without increasing the strength of the system.

The goal: Observational Type Theory (OTT)

- ext is provable
- quotients are available
- canonicity holds
- definitional equality (≡) and type checking are decidable
- definitional proof-irrelevance for propositional types:

$$\frac{P \in \text{Prop} \quad p, q \in P}{p \equiv q}$$

 extends ITT, in particular the definitional equalities for equality elimination hold.

The goal (today)

Implement a universe with extensional equality in ITT (e.g. using Agda or Epigram 1), s.t.

- ext is provable,
- quotient types (like \mathbb{R}) are definable,
- canonicity holds for non-propositional types (like N),
- propositional proof irrelevance is provable.

Basic components of the universe

$$\frac{A \in U}{El A \in Type}$$

$$\frac{A, B \in U}{\text{Eq } A B \in U} \qquad \frac{a \in A \quad b \in B}{\text{eq } a b \in U}$$

$$\frac{p \in \mathrm{El}\left(\mathrm{eq}\left(a \in A\right)\left(b \in B\right)\right)}{\log p \in \mathrm{El}\left(\mathrm{Eq}\,A\,B\right)}$$

Coercion and coherence

$$\frac{p : \operatorname{Eq} A_0 A_1 \qquad a \in \operatorname{El} A_0}{\operatorname{coe} p a \in \operatorname{El} A_1}$$
$$\operatorname{coh} p a \in \operatorname{El} (\operatorname{eq} a (\operatorname{coe} p a))$$

Example: П-types

$$\frac{A \in U \quad B \in (ElA) \to U}{PIAB \in U}$$

$$\frac{f \in \Pi a \in ElA.El(Ba)}{lam f \in El(PIAB)}$$

Equality for Π-types

$$\frac{A^{=} \in El (Eq (A_{0} \in A_{0}) (a_{1} \in A_{1}))}{B^{=} p \in El (Eq (B_{0} a_{0}) (B_{1} a_{1}))}$$

$$PI^{=} A^{=} B^{=} \in El (Eq (PI A_{0} B_{0}) (PI A_{1} B_{1}))$$

We are cheating!

The official definition of Eq uses only the encoding of types in U , using PI and SIGMA (not given here).

Equality for elements of Π-types

$$\frac{f_{i} \in \Pi a \in \text{El } A_{i}.\text{El } (B_{i} \ a)}{A^{=} \in \text{El } (\text{Eq } A_{1} \ A_{0})} \frac{p \in \text{El } (\text{eq } (a_{0} \in A_{0}) (a_{1} \in A_{1}))}{f^{=} p \in \text{El } (\text{eq } (f_{0} \ a_{0} \in B \ a_{0}) (f_{1} \ a_{1} \in B \ a_{1}))}$$

$$\frac{1}{\text{lam}^{=} A^{=} f^{=} \in \text{El } (\text{eq } (\text{lam } f_{0}) (\text{lam } f_{1}))}$$

Thorsten Altenkirch

Coerce for Π -types

$$PI^{=} A^{=} B^{=} : Eq (PI A_0 B_0) (PI A_1 B_1) \qquad f \in El (PI A_0 B_0)$$

$$coe (PI^{=} A^{=} B^{=}) f \qquad \in \qquad El (PI A_1 B_1)$$

$$coe (PI^{=} A^{=} B^{=}) f \qquad = \qquad \lambda a \in A_1.coe (B^{=} (coh A^{=}) a) f (coe A^{=} a)$$

$$coh (PI^{=} A^{=} B^{=}) f \qquad \in \qquad El (eq f (coe (PI^{=} A^{=} B^{=}) f))$$

Exercise: Implement coherence.

Other type constructors

- Σ-types
- 0, 1, 2
 with large elims for 2, e.g. to show true ≠ false.
- W-types
- This collection is sufficent to encode most of everyday
 Type Theory, including inductive and coinductive families.
 cf. joint work with Peter Morris et al on Container types.

What about refl?

We cannot prove:

$$\frac{A \in U}{\text{Refl } A \in \text{El}(\text{Eq } A A)} \qquad \frac{a \in \text{El } A}{\text{refl } a \in \text{El}\left(\text{eq } a a\right)}$$

which actually is a consequence of:

$$\frac{B \in (\operatorname{El} A) \to \operatorname{U} \quad p \in \operatorname{El}(\operatorname{eq}(a_0 \in A) (a_1 \in A))}{\operatorname{Resp} B \, p \in \operatorname{El}(\operatorname{Eq}(B \, a_0) (B \, a_1))}$$

$$\frac{f \in \Pi a \in \operatorname{El} A.\operatorname{El}(B \, a) \quad p \in \operatorname{El}(\operatorname{eq}(a_0 \in A) (a_1 \in A))}{\operatorname{resp} f \, p \in \operatorname{El}(\operatorname{eq}(f \, a_0 \in B \, a_0) (f \, a_1 \in B \, a_1))}$$

Hence we are going to assume Resp,resp! Are we back at square 1?

Propositional types

We define

$$Prop \in U \rightarrow \textbf{Type}$$

by

$$\frac{p \in \Pi a, b \in \text{El } A.\text{El } (\text{eq } a b)}{\text{prop } p \in \text{Prop } A}$$

We can show:

$$\frac{A, B \in U}{\operatorname{Irr} \in \operatorname{Prop} (\operatorname{Eq} AB)} \qquad \frac{a \in \operatorname{El} A \quad b \in \operatorname{El} B}{\operatorname{irr} \in \operatorname{Prop} (\operatorname{eq} ab)}$$

Extensional Propaganda OTT An extensional universe Quotient types Discussion

Observation

- Assumptions in a consistent propositional type will only generate non-canonical elements in other propositional types.
- resp,Resp are consistent, if ETT is consistent.
- Hence: Assuming resp,Resp does not destroy canonicity of non-propositional types, like N.

Quotient types?

- The construction does not work for quotient types, because resp is unsound.
- Instead we define:

$$\frac{A \in U \quad B \in (ElA) \to U}{PlABB^{resp} \in Eq(Ba_0)(Ba_1)} \frac{\rho \in eq(a_0 \in A)(a_1 \in A)}{B^{resp} \in Eq(Ba_0)(Ba_1)}$$

$$f_i \in \Pi a \in ElA_i.El(B_i a) \qquad \frac{\rho \in El(eq(a_0 \in A)(a_1 \in A))}{f^{resp} \rho \in El(eq(fa_0)(fa_1))}$$

$$\frac{A^{=} \in El(EqA_1 A_0)}{lam A^{=} f f^{resp} \in El(PlABB^{resp})}$$

Quotient types

$$e \in \operatorname{EqRel} R \qquad \frac{q \in \operatorname{El} \left(\operatorname{eq} \left(b_0 \in A\right) \left(b_1 \in A\right)\right)}{R^{\operatorname{resp}} \in \operatorname{El} \left(\operatorname{Eq} \left(R_0 \ a_0 \ b_0\right) \left(R_1 \ a_1 \ b_1\right)\right)}$$

$$Quot \ A \ R \ R^{\operatorname{resp}} \ e \in \operatorname{U}$$

$$a \in \operatorname{El} A$$

$$quot \ a \in \operatorname{El} \left(\operatorname{Quot} A \ R \ e\right)$$

 $p \in \text{El}\left(\text{eq}\left(a_0 \in A\right) \left(a_1 \in A\right)\right)$

 $p \in \text{El} (\text{eq} (a_0 \in A_0) (a_1 \in A_1))$ $q \in \text{El} (\text{eq} (b_0 \in A_0) (b_1 \in A_1))$

 $R^{=} p q \in El(Eq(R_0 a_0 b_0)(R_1 a_1 b_1))$

$$Quot^{=} A^{=} R^{=} \in El(Eq (Quot A_0 R_0 e_0) (Quot A_1 R_1 e_1))$$

 $A^{=} \in \text{El}\left(\text{Eq } A_0 A_1\right)$

Quotient types

$$a_{i} \in \operatorname{El} A_{i}$$

$$\operatorname{Quot}^{=} A^{=} R^{=} \in \operatorname{El}(\operatorname{Eq}(\operatorname{Quot} A_{0} R_{0} e_{0}) (\operatorname{Quot} A_{1} R_{1} e_{1}))$$

$$r \in \operatorname{El}(R_{1} (\operatorname{coe} A^{=} a_{0}) a_{1})$$

$$\operatorname{quot}^{=} A^{=} R^{=} r \in \operatorname{eq}(\operatorname{quot} a_{0}) (\operatorname{quot} a_{1})$$

Discrete respect

- We can now prove refl, Refl because the elements contain the proofs of resp.
- but now we have to show that functions preserve extensional equality, when introducing them!
- This is necessary for quotients but not for discrete types.
 Hence we should assume:

$$d \in \text{Discrete } A$$
 $f \in \Pi a \in \text{El } A.\text{El } (B a)$
 $p \in \text{El } (\text{eq } (a_0 \in \text{El } A) (a_1 \in \text{El } A))$

$$dresp d p \in \text{El } (\text{eq } (f a_0) (f a_1))$$

- Discrete ∈ U → Type can be defined syntactically (no strictly positive occurence of quotient types).
- Is there a better (intrinsic) characterisation of Discrete?

Discussion

Our construction does not extend ITT, e.g.

$$coe Refl a \equiv a$$

doesn't hold, but we can only prove it propositionally.

- We require the consistency of ETT!
- Can we extend this construction to a translation from proof-relevant OTT to ITT?
- Proof-irrelevant OTT is being implemented in Epigram 2.
- We hope to be able to show it's metatheoretic properties directly...
- ...using big step normalisation, cf. previous talk.