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Extensional Propaganda

Shortcomings of Intensional Type Theory (ITT)

Ext is not provable
pelacAfa=ga

extpe f=g

No quotients E.g. R is not definable.

Re = {feN—-Q]

Ve>0.3neN.|f(n+1)—fn| < e}
~r € Rrep - IRrep — Prop
frpg = Ve>03dneNVm>nlifm—gm| <e
R = Rrep/ =R

No small core Inductive and coinductive definitions are not

reducible to W.
(unlike in Extensional Type Theory).

Thorsten Altenkirch types 07



Extensional Propaganda

Asymmetry of ITT

data

@ defined by construction.

@ producer contract: producer promises to
only uses legal methods to produce data.

@ Examples: Inductive types, e.g. N, finite
types, X-types, subset types.

@ supported by ITT

codata

@ defined by use

@ consumer contract: consumer promises
only to use legal methods to investigate
codata.

@ Examples: Coinductive types (e.g. streams),
¥ types, M types, quotient types.

@ not properly supported by ITT
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Extensional Propaganda

Per Martin-Lof’s classification (MAP 07)

Excluded middle | Impredicative | Extensional
ZFC set theory yes yes yes
Topos theory no yes yes
Predicative topoi no no yes
ITT no no no

@ Is there a foundational issue with extensionality?

@ Claim: Extensionality introduces ways of abstraction
without increasing the strength of the system.
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The goal: Observational Type Theory (OTT)

@ ext is provable

@ quotients are available

@ canonicity holds

@ definitional equality (=) and type checking are decidable
@ definitional proof-irrelevance for propositional types:

PecProp p,geP
pP=q

@ extends ITT, in particular the definitional equalities for
equality elimination hold.
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An extensional universe

The goal (today)

Implement a universe with extensional equality in ITT
(e.g. using Agda or Epigram 1), s.t.
@ ext is provable,
@ quotient types (like R) are definable,
@ canonicity holds for non-propositional types (like N),
@ propositional proof irrelevance is provable.
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An extensional universe

Basic components of the universe

AcU
UcType  ElAc Type

ABecU acA beB
EqABec U eqabe U

st p €El(eq(ac A)(be B))

fog p € E1(EqAB)
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An extensional universe

Coercion and coherence

pZEqAOA1 ac ElAg

coep a € El Ay
cohpa € El(eqa(coepa))
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An extensional universe

Example: l-types

AcU Be(ElA)—U
PIABcU

feNacEIAEl(Ba)
lam f € E1 (PIAB)
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An extensional universe

Equality for M-types

p € El(eq(ap € Ao) (a1 € Ar))
AT € El(EqA1 Ao) B:p€ El(Eq(BO ao) (B1 31))
PI"A~ B ¢ El(Eq (PI Ao Bo) (PI Aq B; ))

We are cheating!
The official definition of Eq uses only the encoding of types in
U, using PI and SIGMA (not given here).
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An extensional universe

Equality for elements of -types

p € El(eq(ao € Ao) (a1 € Ar))
fieMNae EIA;.EI(B,' a) ( (

A= € El (Eq Aq Ao)
lam™ A~ f~ € El(eq (lam fy) (lam f;))

f~peEl(eq(fhap € Bay) (f1 a1 € Bay))

Thorsten Altenkirch types 07



An extensional universe

Coerce for l-types

PI" A= B~ Eq (PI Ao Bo) (PI Aq B1) f € El (PI Ao Bo)

coe(PIA=B=)f € EI(PIAfBy)
coe (PIFA=B=)f = JXac Aj.coe(B~(cohA™)a)f(coe A= a)

coh(PI"A=B=)f € El(eqf(coe(PI= A= B7)f))

Exercise: Implement coherence.
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An extensional universe

Other type constructors

@ > -types
0,12
with large elims for 2, e.g. to show true # false.
@ W-types
@ This collection is sufficent to encode most of everyday

Type Theory, including inductive and coinductive families.
cf. joint work with Peter Morris et al on Container types.
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An extensional universe

What about refl?

We cannot prove:

AcU acElA
Refl A € EI(EqAA) refla € El(eqaa)

which actually is a consequence of:
Be (El1A) - U peEl(eq(ag € A)(ar € A))
Resp Bp € El(Eq(B ag) (Bay))

feNacElAEI(Ba) pecEl(eq(a € A)(ar € A))
respfp € El(eq(fay € Bag) (fas € Bay))

Hence we are going to assume Resp,resp!
Are we back at square 17?
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An extensional universe

Propositional types

We define
Prop € U — Type
by
p € Na,be ElAEl(eqab)
propp € Prop A
We can show:

ABeU acElA beEIB
Irr € Prop (Eq A B) irr € Prop (eqab)
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An extensional universe

Observation

@ Assumptions in a consistent propositional type will only
generate non-canonical elements in other propositional
types.

@ resp,Resp are consistent, if ETT is consistent.

@ Hence: Assuming resp,Resp does not destroy canonicity of
non-propositional types, like N.
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Quotient types

Quotient types ?

@ The construction does not work for quotient types,
because resp is unsound.

@ Instead we define:
peceq(ap € A)(a; € A
AceU Be(ElA)—-U B*PcEq(Bay)(Bay)
PIABB™P c U
p € El(eq(a € A) (a1 € A))
P p € El (eq(fag) (fay)

fielNae EIA,'.EI(B,' a)
A= € El (Eq Aq Ao)
lam A= f f € EI (PI A B B*%)
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Quotient types

Quotient types

p € El(eq(ao € A) (a1 € A))
q € El(eq (b € A) (b1 € A))

R™* € El(Eq(Ro a bo) (R1 a1 b1))

e € Eqrel R
R € E1A — El A — Prop

QuotARR*PecU
acEIA

quota € El(QuotARe)

p € El(eq(ap € Ao) (a1 € Ay))
q € El(eq(by € Ao) (by € Ay))

A~ € El(EqA A1) R~ pq e El(Eq(Roao bo) (A1 a1 by))
Quot™ A= R~ € El(Eq (Quot Ay Ry ey) (Quot Ay Ry e4))




Quotient types

Quotient types

a; € El A;
Quot= A= R= ¢ El(Eq (Quot Ag Ry eo) (Quot Aq Ry &4 ))
r € E1(Ry (coe A= ap) a1)

quot™ A~ R™ r € eq(quot ap) (quot ay)
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Quotient types

Discrete respect

@ We can now prove refl, Refl because the elements contain
the proofs of resp.

@ but now we have to show that functions preserve
extensional equality, when introducing them!

@ This is necessary for quotients but not for discrete types.
Hence we should assume:

d € Discrete A
feNaecEIAEI(Ba)
p € El(eq(ay € E1A) (a1 € ElA))

drespd p € El(eq(f ap) (f ay))

@ Discrete € U — Type can be defined syntactically (no
strictly positive occurence of quotient types).
@ Is there a better (intrinsic) characterisation of Discrete?
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Discussion

Discussion

@ Our construction does not extend ITT, e.g.
coeRefla= a

doesn’t hold, but we can only prove it propositionally.
@ We require the consistency of ETT!

@ Can we extend this construction to a translation from
proof-relevant OTT to ITT?

@ Proof-irrelevant OTT is being implemented in Epigram 2.

@ We hope to be able to show it's metatheoretic properties
directly. ..

@ ...using big step normalisation, cf. previous talk.
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