A e iy ——
- ~

A -

- 2
a a o -]
A S 5 ’.'\-:t......_.,.‘ St
3 i T e

o e
% : N i

THORSTEN

UNIVERSITY OF

Tar i AN
-

s et

L
-

. LTENKIRCH

"OURY

e Dependently typed languages
(for programs and proofs)
e.g. CIC (Coq), Epigram, Agda, Cayenne ...

e Factor implementation into core language and

high level language.

e Core language should be independent of your
notion of totality.

EQUATION

e Small and simple
e Meta-theory feasible
e Batch compilation

e No interactive development necessary

* Yet suthciently general

GENERAL RECURSION

¢ Allow mutual recursive definitions

e Typing assumptions and recursive definitions
may depend on each other.

¢ Allow mutual recursive definitions

e Typing assumptions and recursive definitions
may depend on each other.

* Syntax

let {x:U depends on x = u [x]

x =u |x]

s Ve e
y=vIxyl}mmt[x, y]

e General recursion makes the system logically
Inconsistent

e So we don't lose anything by having

Type : Type

e This allows to simulate any universes hierarchy

FINITE TYPES

e Set of labels 1s a type:
e Typing a label:

e Case analysis:

e Nothing really new here

e [I-types:
(x: A) — B [x]

* Inhabited by functions:| \x — ¢ [x]

e Eliminated by application: £ t

e A type for dependent pair:
et AR

* Introduce by pairing:| (u, v)

e Elimination by a letp operator:

letp (x,y) =pint

e General recursion
e Very impredicative universe

* Finite type, [1-Types, 2-Types

e We postpone equality types

e That'’s all: stmple but sufthcient

\-V,
e P

B e

-
P e
I,y s P Y

ENCODING TYPES

o [Labeled sums:

ENCODING TYPES

o [Labeled sums:

Unit Type

ENCODING TYPES

o [Labeled sums:

Recursion

FAMILIES OF

Remember

Nat 1s a pair

FAMILIES OF

Remember

Nat 1s a parr

DIY EQUALITY

e Encoding equality of natural numbers:

'—>lNJ’ t — vp

A UNIVERSE

; ./Zx]-]-\l.]-l: A~

MAIN ISSUES

e Looping with general recursion

e Pattern matching

* General recursion makes type checking

undecidable

e Type checker may loop because a term
doesn’t terminate

¢ Requirement: type checker should not loop

for reasonable programs.

* We sometimes put a box around a part of the
context:

R

e A recursive definition can only be used when

not 1n a box

L f—ou,...m f=u

e We want to prevent looping of a definition

fact =\n — ... case tag of
7 — factn ...

e We need to box recursive calls of a function

e We do this by putting a box on the context

when we meet a case

I'Fcaseeof {L; —b;,...}:T

unfolds to:

e We want to prevent looping of a Case ...

fact n’
fact =\n — ... case tag of

Z — factn ...

e We need to box recursive calls of a function

e We do this by putting a box on the context

when we meet a case

I'Fcaseeof {L; —b;,...}:T

unfolds to:

AT infolds to:

J)
tact n case ...

e We want to prevent loo,

fact n’
fact =\n — ... case tag of

Z — factn ...

e We need to box recursive calls of a function

e We do this by putting a box on the context

when we meet a case

I'Fcaseeof {L; —b;,...}:T

BOXES AND
COMPUTATIONS

e We need to do some computations

| 24224 |
e What happens here?
[...case S @t § S = (S, 0)]

[(s, n’ + m)]

e Reduction occurs when there 1s no stuck

elimination

BOXES AND
COMPUTATIONS

e We need to do some computations

RN

e What happens here? /

no case
— h b
[case Sof { S %ﬁe no box

G 5

e Reduction occurs when there 1s no stuck
elimination

e Agda: Pattern matching primitive

 Epigram: Generating motives for standard
eliminators.

e Coq: Under discussion

e Our proposal: use of constraints

Advantages: local case (with) 1s easy
less complexity in the translation

Lul
-
13
>
D
X
i

Lul
-
13
>
D
X
i

Lul
-
13
>
D
X
i

e Case analysis for simple types:

F"GZ{ll,...,ln} F"t@T
[E-icaseeof. . o\l =tk T

e Case analysis with constraints:

F"Eﬂi{ll,...,ln} P,@ElfL'_tzT
== caseieof .ol it L A B

)
Lul
—
13
>
D
X
Ll

EXAMPLES

EXAMPLES

SO
eqnn=eqn n

filter : (A) — (A — Bool) — List A — List A.
flice R

all : (p: A —= Bool) — List A — Bool

="

prop : (A p) — (as:lLust A) = So (all A p (hilter A p as))
prop = \ A p as — letp (tag,node) = as in

case tag of {
Nil — Void
Cons — letp (a,as’) = node in
case p a of {
True — prop A p as’

False — prop A p as’ }}

filter : (A) — (A — Bool) — List A — List A.
flice R

all : (p: A —= Bool) — List A — Bool

="

orge 3 () = Gllige A — So (all A p (hlter A p as))

prop = \A p as —> letp * = as in
So True

case tag of {
Nil — Void
Cons — letp (a,as’) = node in
case p a of {
True — prop A p as’

False — prop A p as’ }}

filter : (A) — (A — Bool) — List A — List A.
flice R

all : (p: A —= Bool) — List A — Bool

="

orge 3 () = Gllige A — So (all A p (hlter A p as))

prop =\ A p as — letp”“ = as in
So True

case tag of {
Nil — Void p a = True so
Cons — letp (a,aL all (ﬁlter a:as’) = all (ﬁlter as’)
case p a of {
True — prop A p as’

False — prop A p as’ }}

— S

~ -
—,

e Some design choices:

e Bidirectional type checking

e Typed equality test
e Constraints:
e rewrite rules applied to head of values

e naive but works on examples

o Implementing general recursion
Can be ditficult to restart evaluation when
unfolding a definition.

* We glue together a neutral with its content

el o | =2V

e We use laziness to postpone evaluation of v

e Add any constraint to the type checker

Type “T if u and v are convertible”
lu=sv}=T

Type “T' and I ensure that u and v are

convertible” LR

e Encode equality type
equv = {{Vaid} | u = v}

e What kind of constraints?
It may be possible to include constraints
between constructors, tuples and neutral
terms.

e In a given context, all these are order 0 terms.

e For higher order, use an Observational Type
Theory like equality.

e We protect recursion under cases

* We can add user specified boxes

Specity not to unfold recursion 1n [t]

[t] : T-

e Example: co-data

stream : (A : Type) — Type
stream = \ A — |:{Cons}; A;
case | of { Cons — (stream A)-}

zeros : stream Nat
zeros = 0, | zeros |

* To compute we need to open a box
open [t]| =t

e Our boxes are a special case :
open (caseeof { ... = [t]})

e Working with codata

tail : stream A — stream A

tail =\ xs — letp (tag, node) = xs in

case tag of
{Cons —= letp (_, tl) = node in
open tl }

* Integrate meta-variables.

May have strange interaction with constraints.
e Reflection and generic programming.
e Phase separation and compiler.

e Evidence based optimization.

