
A Core Language
For

Dependently
Typed

Programming
T h o r s t e n A l t e n k i r c h

N i c o l a s O u r y
U n i v e r s i t y o f N o t t i n g h a m

Motivations

•Dependently typed languages

 (for programs and proofs)

e.g. CIC (Coq), Epigram, Agda, Cayenne ...

• Factor implementation into core language and
high level language.

• Core language should be independent of your
notion of totality.

Equation

 Haskell DTP

 =

 Fc(X) ?

Goals

• Small and simple

•Meta-theory feasible

• Batch compilation

• No interactive development necessary

• Yet sufficiently general

Design ideas

General Recursion

• Allow mutual recursive definitions

• Typing assumptions and recursive definitions
may depend on each other.

• Syntax

 let { x : U
 x = u [x]
 y : V [x]
 y = v [x, y] } in t[x, y]

General Recursion

• Allow mutual recursive definitions

• Typing assumptions and recursive definitions
may depend on each other.

• Syntax

 let { x : U
 x = u [x]
 y : V [x]
 y = v [x, y] } in t[x, y]

depends on x = u [x]

Universes

• General recursion makes the system logically
inconsistent

• So we don’t lose anything by having

• This allows to simulate any universes hierarchy

Type : Type

Finite Types

• Set of labels is a type:

• Typing a label:

• Case analysis:

{A,B,...} : Type

L : {..., L, ...}

case t of {
 A → ...
 | B → ...
 | C → ...}

t :{A, B, C}

Π-Types

• Nothing really new here

•Π-types :

• Inhabited by functions:

• Eliminated by application:

(x : A) → B [x]

\ x → t [x]

f t

Σ-Types

• A type for dependent pair:

• Introduce by pairing:

• Elimination by a letp operator:

x : A; B [x]

(u, v)

letp (x,y) = p in t

Features Summary

• General recursion

• Very impredicative universe

• Finite type, Π-Types, Σ-Types

•We postpone equality types

• That’s all: simple but sufficient

Encoding
Complex

Types

Encoding Types
• Labeled sums:

• Recursive types:

Either : Type → Type → Type
Either = \ A B → tag : {Left, Right};
 case tag of {Left →A | Right → B}

Nat : Type
 Nat = tag : {Z, S} ; case tag of {
 Z → {Void}
 | S → Nat }

Encoding Types
• Labeled sums:

• Recursive types:

Either : Type → Type → Type
Either = \ A B → tag : {Left, Right};
 case tag of {Left →A | Right → B}

Nat : Type
 Nat = tag : {Z, S} ; case tag of {
 Z → {Void}
 | S → Nat }

Unit Type

Encoding Types
• Labeled sums:

• Recursive types:

Either : Type → Type → Type
Either = \ A B → tag : {Left, Right};
 case tag of {Left →A | Right → B}

Nat : Type
 Nat = tag : {Z, S} ; case tag of {
 Z → {Void}
 | S → Nat }

Unit Type

Recursion

Families of types
Vec : Type → Nat → Type

 Vec = \ A n → letp (tag, n’) = n in
 case tag of {
 Z → l:{Nil}; Void
 | S → l:{Cons}; A; Vec A n’}

Families of types
Vec : Type → Nat → Type

 Vec = \ A n → letp (tag, n’) = n in
 case tag of {
 Z → l:{Nil}; Void
 | S → l:{Cons}; A; Vec A n’}

Remember
Nat is a pair

Families of types
Vec : Type → Nat → Type

 Vec = \ A n → letp (tag, n’) = n in
 case tag of {
 Z → l:{Nil}; Void
 | S → l:{Cons}; A; Vec A n’}

Remember
Nat is a pair

Fin : Nat → Type
 Fin = \ n → letp (tag, n’) = n in
 case tag of { Z → {}|S → l : {Z, S};
 case l of {Z → {Void}
 S → Fin n’}}

DIY Equality

• Encoding equality of natural numbers:
Eq : Nat → Nat → Type

 Eq = \ n m → letp (ln, n’) = n in
 letp (lm, m’) = m in
 case ln of {
 Z → case lm of { Z → {Void} | S → { }}
 | S → case lm of {
 Z → { }
 | S → Eq n’ m’ }

A Universe

 U : Type
 El : U → Type
 U = l:{u, pi} ; case l of {
 u → {Void}
 pi → a : U; El a → U}
 El = \ a → letp (l;node) = a in case l of {
 u → A
 pi → letp (src, tgt) = node in
 (x : El src) → El (tgt x)

Main Issues

Main Issues

• Looping with general recursion

• Pattern matching

Looping

• General recursion makes type checking
undecidable

• Type checker may loop because a term
doesn’t terminate

• Requirement: type checker should not loop
for reasonable programs.

Looping: Idea

•We sometimes put a box around a part of the
context:

• A recursive definition can only be used when
not in a box

Γ, [Γ′],Γ′′ ! t : T

. . . , f → u, . . . " f ≡ u

Boxes: When?

•We want to prevent looping of a definition

•We need to box recursive calls of a function

•We do this by putting a box on the context
when we meet a case

fact = \ n → … case tag of
 Z → fact n’ …

. . .[Γ] ! bi : T

Γ ! case e of {Li → bi, . . .} : T

Boxes: When?

•We want to prevent looping of a definition

•We need to box recursive calls of a function

•We do this by putting a box on the context
when we meet a case

fact = \ n → … case tag of
 Z → fact n’ …

unfolds to:
case …
fact n’

. . .[Γ] ! bi : T

Γ ! case e of {Li → bi, . . .} : T

Boxes: When?

•We want to prevent looping of a definition

•We need to box recursive calls of a function

•We do this by putting a box on the context
when we meet a case

fact = \ n → … case tag of
 Z → fact n’ …

unfolds to:
case …
fact n’

unfolds to:
case …
fact n’

. . .[Γ] ! bi : T

Γ ! case e of {Li → bi, . . .} : T

boxes and
Computations

•We need to do some computations

• What happens here?

• Reduction occurs when there is no stuck
elimination

2+2 ≅ 4

…case S of { S → (S, n’ + m) …

(S, n’ + m)

boxes and
Computations

•We need to do some computations

• What happens here?

• Reduction occurs when there is no stuck
elimination

2+2 ≅ 4

…case S of { S → (S, n’ + m) …

(S, n’ + m)

no case
hence no box

Pattern Matching

• Agda: Pattern matching primitive

• Epigram: Generating motives for standard
eliminators.

• Coq: Under discussion

•Our proposal: use of constraints
Advantages: local case (with) is easy
less complexity in the translation

Example
append :: (n m) → Vect n → Vect m → Vect (n + m)

 append = \ n m xs ys → letp (tagn, n’) = n
 (tagxs, xs’) = xs in
 case tagn of {
 Z → case tagxs of {
 Nil → ys }

 S → case tagxs of {
 Cons→ (Cons, append n’ m xs’ ys)}

Example
append :: (n m) → Vect n → Vect m → Vect (n + m)

 append = \ n m xs ys → letp (tagn, n’) = n
 (tagxs, xs’) = xs in
 case tagn of {
 Z → case tagxs of {
 Nil → ys }

 S → case tagxs of {
 Cons→ (Cons, append n’ m xs’ ys)}

tagn≡Z
so

n+m ≡ m

Example
append :: (n m) → Vect n → Vect m → Vect (n + m)

 append = \ n m xs ys → letp (tagn, n’) = n
 (tagxs, xs’) = xs in
 case tagn of {
 Z → case tagxs of {
 Nil → ys }

 S → case tagxs of {
 Cons→ (Cons, append n’ m xs’ ys)}

tagn≡Z
so

n+m ≡ m

n ≡ (S,n’)
n+m ≡ (S,n’+m)

Constraints

• Case analysis for simple types:

• Case analysis with constraints:

Γ ! e : {l1, . . . , ln} Γ ! ti : T

Γ ! case e of{. . . |li → ti| . . .} : T

Γ ! e : {l1, . . . , ln} Γ, e ≡ li ! ti : T

Γ ! case e of{. . . |li → ti| . . .} : T

Examples
So : {True, False} → Type

 So = \ b → case b of {True → {Void} | False → {}}

 reflNat : (n:Nat) → So (eq n n).
 reflNat = \ n →
 letp (nl,n') = n in
 case nl of {
 Z → Void
 | S → reflNat n' }

Examples
So : {True, False} → Type

 So = \ b → case b of {True → {Void} | False → {}}

 reflNat : (n:Nat) → So (eq n n).
 reflNat = \ n →
 letp (nl,n') = n in
 case nl of {
 Z → Void
 | S → reflNat n' }

nl≡Z
so

eq n n ≡ {Void}

Examples
So : {True, False} → Type

 So = \ b → case b of {True → {Void} | False → {}}

 reflNat : (n:Nat) → So (eq n n).
 reflNat = \ n →
 letp (nl,n') = n in
 case nl of {
 Z → Void
 | S → reflNat n' }

nl≡Z
so

eq n n ≡ {Void}

nl≡S
so

eq n n ≡ eq n’ n’

Examples
filter : (A) → (A → Bool) → List A → List A.

 filter = …
 all : (p : A → Bool) → List A → Bool
 all = …

 prop : (A p) → (as:List A) → So (all A p (filter A p as))
 prop = \ A p as → letp (tag,node) = as in
 case tag of {
 Nil → Void
 Cons → letp (a,as’) = node in
 case p a of {
 True → prop A p as’
 False → prop A p as’ }}

Examples
filter : (A) → (A → Bool) → List A → List A.

 filter = …
 all : (p : A → Bool) → List A → Bool
 all = …

 prop : (A p) → (as:List A) → So (all A p (filter A p as))
 prop = \ A p as → letp (tag,node) = as in
 case tag of {
 Nil → Void
 Cons → letp (a,as’) = node in
 case p a of {
 True → prop A p as’
 False → prop A p as’ }}

So True

Examples
filter : (A) → (A → Bool) → List A → List A.

 filter = …
 all : (p : A → Bool) → List A → Bool
 all = …

 prop : (A p) → (as:List A) → So (all A p (filter A p as))
 prop = \ A p as → letp (tag,node) = as in
 case tag of {
 Nil → Void
 Cons → letp (a,as’) = node in
 case p a of {
 True → prop A p as’
 False → prop A p as’ }}

So True

p a ≡ True so
all (filter a:as’) ≡ all (filter as’)

Prototype

Prototype

• Some design choices:

• Bidirectional type checking

• Typed equality test

• Constraints:

• rewrite rules applied to head of values

• naive but works on examples

Prototype

• Implementing general recursion
Can be difficult to restart evaluation when
unfolding a definition.

•We glue together a neutral with its content

•We use laziness to postpone evaluation of v

x t … [:= v]

Future Work

General Constraints

• Add any constraint to the type checker
 Type “T if u and v are convertible”

Type “T and I ensure that u and v are
convertible”

• Encode equality type

{T | u ≡ v}

{u ≡ v} ⇒ T

eq u v = {{Void} | u ≡ v}

General constraints

•What kind of constraints?
It may be possible to include constraints
between constructors, tuples and neutral
terms.

• In a given context, all these are order 0 terms.

• For higher order, use an Observational Type
Theory like equality.

General Boxes

•We protect recursion under cases

•We can add user specified boxes
Specify not to unfold recursion in [t]

• Example: co-data

stream : (A : Type) → Type
 stream = \ A → l:{Cons}; A;
 case l of { Cons → (stream A)-}
 zeros : stream Nat
 zeros = 0, [zeros]

[t] : T-

General Boxes
• To compute we need to open a box

 open [t] ≡ t

•Our boxes are a special case :
 open (case e of { … → [t]})

•Working with codata

tail : stream A → stream A
 tail = \ xs → letp (tag, node) = xs in

 case tag of
 {Cons → letp (_, tl) = node in
 open tl }

More to do

• Integrate meta-variables.
May have strange interaction with constraints.

• Reflection and generic programming.

• Phase separation and compiler.

• Evidence based optimization.

