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e Dependently typed languages
(for programs and proofs)
e.g. CIC (Coq), Epigram, Agda, Cayenne ...

e Factor implementation into core language and

high level language.

e Core language should be independent of your
notion of totality.




EQUATION




e Small and simple
e Meta-theory feasible
e Batch compilation

e No interactive development necessary

* Yet suthciently general







GENERAL RECURSION

¢ Allow mutual recursive definitions

e Typing assumptions and recursive definitions
may depend on each other.




¢ Allow mutual recursive definitions

e Typing assumptions and recursive definitions
may depend on each other.

* Syntax

let {x:U depends on x = u [x]

x =u |x]

s Ve e
y=vIxyl}mmt[x, y]




e General recursion makes the system logically
Inconsistent

e So we don't lose anything by having

Type : Type

e This allows to simulate any universes hierarchy




FINITE TYPES

e Set of labels 1s a type:
e Typing a label:

e Case analysis:




e Nothing really new here

e [I-types:
(x: A) — B [x]

* Inhabited by functions:| \x — ¢ [x]

e Eliminated by application: £ t




e A type for dependent pair:
et AR

* Introduce by pairing:|  (u, v)

e Elimination by a letp operator:

letp (x,y) =pint




e General recursion
e Very impredicative universe

* Finite type, [1-Types, 2-Types

e We postpone equality types

e That'’s all: stmple but sufthcient
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ENCODING TYPES

o [Labeled sums:




ENCODING TYPES

o [Labeled sums:

Unit Type




ENCODING TYPES

o [Labeled sums:

Recursion







FAMILIES OF

Remember

Nat 1s a pair




FAMILIES OF

Remember

Nat 1s a parr




DIY EQUALITY

e Encoding equality of natural numbers:

'—>lNJ’ t — vp




A UNIVERSE
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MAIN ISSUES

e Looping with general recursion

e Pattern matching




* General recursion makes type checking

undecidable

e Type checker may loop because a term
doesn’t terminate

¢ Requirement: type checker should not loop

for reasonable programs.




* We sometimes put a box around a part of the
context:

R

e A recursive definition can only be used when

not 1n a box

L f—ou,...m f=u




e We want to prevent looping of a definition

fact =\n — ... case tag of
7 — factn ...

e We need to box recursive calls of a function

e We do this by putting a box on the context

when we meet a case

I'Fcaseeof {L; —b;,...}:T




unfolds to:

e We want to prevent looping of a Case ...

fact n’
fact =\n — ... case tag of

Z — factn ...

e We need to box recursive calls of a function

e We do this by putting a box on the context

when we meet a case

I'Fcaseeof {L; —b;,...}:T




unfolds to:

AT infolds to:

J)
tact n case ...

e We want to prevent loo,

fact n’
fact =\n — ... case tag of

Z — factn ...

e We need to box recursive calls of a function

e We do this by putting a box on the context

when we meet a case

I'Fcaseeof {L; —b;,...}:T




BOXES AND
COMPUTATIONS

e We need to do some computations

| 24224 |
e What happens here?
[...case S @t § S = (S, 0 ) ]

[(s, n’ + m) ]

e Reduction occurs when there 1s no stuck

elimination




BOXES AND
COMPUTATIONS

e We need to do some computations

RN

e What happens here? /

no case
— h b
[ case Sof { S %ﬁe no box

G 5

e Reduction occurs when there 1s no stuck
elimination




e Agda: Pattern matching primitive

 Epigram: Generating motives for standard
eliminators.

e Coq: Under discussion

e Our proposal: use of constraints

Advantages: local case (with) 1s easy
less complexity in the translation
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e Case analysis for simple types:

F"GZ{ll,...,ln} F"t@T
[E-icaseeof. . o\l =tk T

e Case analysis with constraints:

F"Eﬂi{ll,...,ln} P,@ElfL'_tzT
== caseieof .ol it L A B
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EXAMPLES




EXAMPLES

SO
eqnn=eqn n




filter : (A) — (A — Bool) — List A — List A.
flice R

all : (p: A —= Bool) — List A — Bool

="

prop : (A p) — (as:lLust A) = So (all A p (hilter A p as))
prop = \ A p as — letp (tag,node) = as in

case tag of {
Nil — Void
Cons — letp (a,as’) = node in
case p a of {
True — prop A p as’

False — prop A p as’ }}



filter : (A) — (A — Bool) — List A — List A.
flice R

all : (p: A —= Bool) — List A — Bool

="

orge 3 () = Gllige A — So (all A p (hlter A p as))

prop = \A p as —> letp * = as in
So True

case tag of {
Nil — Void
Cons — letp (a,as’) = node in
case p a of {
True — prop A p as’

False — prop A p as’ }}



filter : (A) — (A — Bool) — List A — List A.
flice R

all : (p: A —= Bool) — List A — Bool

="

orge 3 () = Gllige A — So (all A p (hlter A p as))

prop =\ A p as — letp”“ = as in
So True

case tag of {
Nil — Void p a = True so
Cons — letp (a,aL all (ﬁlter a:as’) = all (ﬁlter as’)
case p a of {
True — prop A p as’

False — prop A p as’ }}
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e Some design choices:

e Bidirectional type checking

e Typed equality test
e Constraints:
e rewrite rules applied to head of values

e naive but works on examples




o Implementing general recursion
Can be ditficult to restart evaluation when
unfolding a definition.

* We glue together a neutral with its content

el o | =2V

e We use laziness to postpone evaluation of v







e Add any constraint to the type checker

Type “T if u and v are convertible”
lu=sv}=T

Type “T' and I ensure that u and v are

convertible” LR

e Encode equality type
equv = {{Vaid} | u = v}




e What kind of constraints?
It may be possible to include constraints
between constructors, tuples and neutral
terms.

e In a given context, all these are order 0 terms.

e For higher order, use an Observational Type
Theory like equality.




e We protect recursion under cases

* We can add user specified boxes

Specity not to unfold recursion 1n [t]

[t] : T-

e Example: co-data

stream : (A : Type) — Type
stream = \ A — |:{Cons}; A;
case | of { Cons — (stream A)-}

zeros : stream Nat
zeros = 0, | zeros |




* To compute we need to open a box
open [t ]| =t

e Our boxes are a special case :
open (caseeof { ... = [t ]})

e Working with codata

tail : stream A — stream A

tail =\ xs — letp (tag, node) = xs in

case tag of
{Cons —= letp (_, tl) = node in
open tl }




* Integrate meta-variables.

May have strange interaction with constraints.
e Reflection and generic programming.
e Phase separation and compiler.

e Evidence based optimization.




