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Motivation

Complexity of total dependently typed languages like
Agda, CIC, Epigram, . . .
Implicit arguments, schemes for inductive families, pattern
matching, coinductive types, termination analysis,
universes, . . .
Goal: small core language
Develop metatheory (formally)
Stable core language
Address issues, e.g. corecursion and induction-recursion
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ΠΣ in a nutshell

Partial language with full dependent types
Core language : doesn’t address high level featues
(e.g. implicit arguments, convenient pattern matching, . . . )
Structural instead of nominal type system
(recursive defns are first class)
Mutual (local) recursive definitions
Constructs to control unfolding of recursion
Few type constructors:

Type : Type
Π-types
Σ-types
Finite types (sets of labels)
Equality types
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Changes since last time

Eliminated constraints (too complicated) in favour of
equality types.
α-equivalence of recursive definitions
Different approach to control unfolding
(omitted boxes and lifting types).
New implementation (unfinished).
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Related work

Lennart Augustsson’s Cayenne
1998
Partial and fully dependent
but not a core language

Thierry Coquand’s Calculus of Definitions
2008-
similar to ΠΣ
Nominal approach to recursion
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Partial?

Type-checking is undecidable
Logically inconsistent
Type unsound after eliminating proofs
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Partial!

Basic mechanisms independent of totality
Separate definition of total sublanguages
Totality checker
Optimisations and guarantees depend on totality analysis
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ΠΣ by example: Natural numbers
Nat : Type
Nat = l : {z, s}

∗ case l of
z → {unit }
| s → .Nat

zero : Nat
zero = (z,unit)
succ : Nat → Nat
succ = λn→ (s,n)

Labelled sums are encoded using Σ-types and
enumerations.
Recursive types use general recursion.
Recursive variables can be marked with . to stop infinite
unfolding.
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Lazy addition

add : Nat → Nat → Nat
add = λm n→ split m with (l ,m′)

→ case l of
z → n
| s → succ (.add m′ n)

Eliminators split, case can only analyze variables to
support dependent elimination.
We use the same recursion mechanism as for the
definition of recursive types.
This definition of add is lazy, we have that
add (succ m) n = succ (.add m′ n)
but not
add 2 1 = 3
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Eager addition

add : Nat → Nat → Nat
add = λm n→ split m with (l ,m′)

→ !case l of
z → n
| s → succ (.add m′ n)

! forces delayed recursive definitions.
add (succ m) n = !succ (.add m′ n) = succ (add m′ n)
and hence add 2 1 = 3

Eager vs lazy correspond to inductive vs coinductive types.
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Vectors, recursively

Vec : Type→ Nat → Type
Vec = λA n→ split n with (l ,n′)

→ !case l of
z → {unit }
s → A ∗ .Vec A n′

Recursive programs (like vappend) have to analyze the
indices.
Doesn’t extend easily for more complicated types (like
typed λ terms).

Thorsten Altenkirch types 09



Introduction
ΠΣ by example

Design details
Conclusions?

Vectors using equality

Vec : Type→ Nat → Type
Vec = λA n→ l : {nil , cons}
∗ case l of

nil → {unit }
cons → A ∗ n′ : Nat ∗ Vec A n′ ∗ n = succ n′

Seems suitable to encode inductive families ala Agda and
dependently typed pattern matching
Need equality types. What is the right way to do them?
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Induction - recursion

U : Type
El : U → Type
U = l : {nat ,pi }
∗ case l of

nat → {unit }
| pi → a : .U ∗ El a→ Type

El = λa→ split a with (l ,a′)
→ !case l of

nat → Nat
| pi → split a′ with

(b, f )→ (x : .El b)→ .El (f x)
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Mutual inductive definitions

Let bindings are a sequence of
Declarations

x : σ

given that σ : Type.
Definitions

x = t

given that x : σ and t : σ.
In ΠΣ any sequence of declarations is allowed, as long as:

Every definition, declaration type checks with respect to the
definitions and declarations made before.
Every variable which is declared, will be defined.
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Delayed variables

Before: boxed definitions to delay evaluation
a : A

[a] : A⊥

a′ : A⊥

!a′ : A
![a] ≡ a

[a] stops unfolding of recursive definitions from outside.
Too inflexible, freezes too much.
but Nisse seems to like it . . .
Now: only variables are delayed
(.x instead of [x ]).
Invisible for the type system (no A⊥).
Forcing propagates during evaluation, e.g.

!(t ,u) ≡ !t , !u
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Equality of definitions

Evaluating
let Γ in.x

returns a closure.
How to we compare these closures?
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Equality quiz

let x : Nat , x = 3 in.x ≡ 3 ?
No, we would have to unfold a frozen variable.

let x : Nat , x = 3 in 4 ≡ 4 ?
Yes, sure 4 ≡ 4.

let x : Nat , x = 3 in.x ≡ let x : Nat , x = 3 in.x ?
Yes, sure x ≡ x in the same context.

let x : Nat , x = 3 in.x ≡ let x : Nat , x = 4 in.x ?
No, this would be unsound!

let x : Nat , x = 3 in.x ≡ let y : Nat , y = 4 in.y ?
Yes, there are the same upto α-conversion.
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Equivalence of recursive definitions (Nicolas Oury)

How do we decide that

let Γ in.x ≡ let ∆ in.y?

We look up

t = Γ (x)

u = ∆ (y)

We associate both x and y with the same fresh variable z
(by modifying the environment).
We continue comparing

t ≡ u
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Equivalence of recursive definitions

How to specify this equivalence on the level of rules?

let Γ in t ≡ let ∆ in u

Given a partial bijection

φ : FV Γ ' FV Γ

We require that all definitions and the body are equivalent
upto φ:

∀xφy .Γ(x) 'φ ∆(x)

t 'φ u

In general we have to define α-equivelence upto a partial
bijection of free variables.
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Metatheoretic properties (desired)

Type soundness
Sound wrt typing rules
Partial completeness
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What is next?

Finish implementation!
How to delay unfolding?
Which equality to use
(intensional, Observational Type Theory)?
Establish metatheoretic properties.
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What is later?

Translate high-level features
((co)datatype declarations, pattern matching, implicit
variables, . . . )
Implement in Agda.
Totality checker
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