
Introduction
ΠΣ by example

Design details
Conclusions?

ΠΣ
a core language for

dependently typed programming
work in suspended progress

thanks to Nicolas Oury
and Nils Anders Danielsson

Thorsten Altenkirch

School of Computer Science
University of Nottingham

May 14, 2009

Thorsten Altenkirch types 09



Introduction
ΠΣ by example

Design details
Conclusions?

Motivation

Complexity of total dependently typed languages like
Agda, CIC, Epigram, . . .
Implicit arguments, schemes for inductive families, pattern
matching, coinductive types, termination analysis,
universes, . . .
Goal: small core language
Develop metatheory (formally)
Stable core language
Address issues, e.g. corecursion and induction-recursion

Thorsten Altenkirch types 09



Introduction
ΠΣ by example

Design details
Conclusions?

ΠΣ in a nutshell

Partial language with full dependent types
Core language : doesn’t address high level featues
(e.g. implicit arguments, convenient pattern matching, . . . )
Structural instead of nominal type system
(recursive defns are first class)
Mutual (local) recursive definitions
Constructs to control unfolding of recursion
Few type constructors:

Type : Type
Π-types
Σ-types
Finite types (sets of labels)
Equality types

Thorsten Altenkirch types 09



Introduction
ΠΣ by example

Design details
Conclusions?

Changes since last time

Eliminated constraints (too complicated) in favour of
equality types.
α-equivalence of recursive definitions
Different approach to control unfolding
(omitted boxes and lifting types).
New implementation (unfinished).

Thorsten Altenkirch types 09



Introduction
ΠΣ by example

Design details
Conclusions?

Related work

Lennart Augustsson’s Cayenne
1998
Partial and fully dependent
but not a core language

Thierry Coquand’s Calculus of Definitions
2008-
similar to ΠΣ
Nominal approach to recursion

Thorsten Altenkirch types 09



Introduction
ΠΣ by example

Design details
Conclusions?

Partial?

Type-checking is undecidable
Logically inconsistent
Type unsound after eliminating proofs

Thorsten Altenkirch types 09



Introduction
ΠΣ by example

Design details
Conclusions?

Partial!

Basic mechanisms independent of totality
Separate definition of total sublanguages
Totality checker
Optimisations and guarantees depend on totality analysis

Thorsten Altenkirch types 09



Introduction
ΠΣ by example

Design details
Conclusions?

ΠΣ by example: Natural numbers
Nat : Type
Nat = l : {z, s}

∗ case l of
z → {unit }
| s → .Nat

zero : Nat
zero = (z,unit)
succ : Nat → Nat
succ = λn→ (s,n)

Labelled sums are encoded using Σ-types and
enumerations.
Recursive types use general recursion.
Recursive variables can be marked with . to stop infinite
unfolding.

Thorsten Altenkirch types 09



Introduction
ΠΣ by example

Design details
Conclusions?

Lazy addition

add : Nat → Nat → Nat
add = λm n→ split m with (l ,m′)

→ case l of
z → n
| s → succ (.add m′ n)

Eliminators split, case can only analyze variables to
support dependent elimination.
We use the same recursion mechanism as for the
definition of recursive types.
This definition of add is lazy, we have that
add (succ m) n = succ (.add m′ n)
but not
add 2 1 = 3

Thorsten Altenkirch types 09



Introduction
ΠΣ by example

Design details
Conclusions?

Eager addition

add : Nat → Nat → Nat
add = λm n→ split m with (l ,m′)

→ !case l of
z → n
| s → succ (.add m′ n)

! forces delayed recursive definitions.
add (succ m) n = !succ (.add m′ n) = succ (add m′ n)
and hence add 2 1 = 3

Eager vs lazy correspond to inductive vs coinductive types.

Thorsten Altenkirch types 09



Introduction
ΠΣ by example

Design details
Conclusions?

Vectors, recursively

Vec : Type→ Nat → Type
Vec = λA n→ split n with (l ,n′)

→ !case l of
z → {unit }
s → A ∗ .Vec A n′

Recursive programs (like vappend) have to analyze the
indices.
Doesn’t extend easily for more complicated types (like
typed λ terms).

Thorsten Altenkirch types 09



Introduction
ΠΣ by example

Design details
Conclusions?

Vectors using equality

Vec : Type→ Nat → Type
Vec = λA n→ l : {nil , cons}
∗ case l of

nil → {unit }
cons → A ∗ n′ : Nat ∗ Vec A n′ ∗ n = succ n′

Seems suitable to encode inductive families ala Agda and
dependently typed pattern matching
Need equality types. What is the right way to do them?

Thorsten Altenkirch types 09



Introduction
ΠΣ by example

Design details
Conclusions?

Induction - recursion

U : Type
El : U → Type
U = l : {nat ,pi }
∗ case l of

nat → {unit }
| pi → a : .U ∗ El a→ Type

El = λa→ split a with (l ,a′)
→ !case l of

nat → Nat
| pi → split a′ with

(b, f )→ (x : .El b)→ .El (f x)

Thorsten Altenkirch types 09



Introduction
ΠΣ by example

Design details
Conclusions?

Mutual inductive definitions

Let bindings are a sequence of
Declarations

x : σ

given that σ : Type.
Definitions

x = t

given that x : σ and t : σ.
In ΠΣ any sequence of declarations is allowed, as long as:

Every definition, declaration type checks with respect to the
definitions and declarations made before.
Every variable which is declared, will be defined.

Thorsten Altenkirch types 09



Introduction
ΠΣ by example

Design details
Conclusions?

Delayed variables

Before: boxed definitions to delay evaluation
a : A

[a] : A⊥

a′ : A⊥

!a′ : A
![a] ≡ a

[a] stops unfolding of recursive definitions from outside.
Too inflexible, freezes too much.
but Nisse seems to like it . . .
Now: only variables are delayed
(.x instead of [x ]).
Invisible for the type system (no A⊥).
Forcing propagates during evaluation, e.g.

!(t ,u) ≡ !t , !u

Thorsten Altenkirch types 09



Introduction
ΠΣ by example

Design details
Conclusions?

Equality of definitions

Evaluating
let Γ in.x

returns a closure.
How to we compare these closures?

Thorsten Altenkirch types 09



Introduction
ΠΣ by example

Design details
Conclusions?

Equality quiz

let x : Nat , x = 3 in.x ≡ 3 ?
No, we would have to unfold a frozen variable.

let x : Nat , x = 3 in 4 ≡ 4 ?
Yes, sure 4 ≡ 4.

let x : Nat , x = 3 in.x ≡ let x : Nat , x = 3 in.x ?
Yes, sure x ≡ x in the same context.

let x : Nat , x = 3 in.x ≡ let x : Nat , x = 4 in.x ?
No, this would be unsound!

let x : Nat , x = 3 in.x ≡ let y : Nat , y = 4 in.y ?
Yes, there are the same upto α-conversion.

Thorsten Altenkirch types 09



Introduction
ΠΣ by example

Design details
Conclusions?

Equivalence of recursive definitions (Nicolas Oury)

How do we decide that

let Γ in.x ≡ let ∆ in.y?

We look up

t = Γ (x)

u = ∆ (y)

We associate both x and y with the same fresh variable z
(by modifying the environment).
We continue comparing

t ≡ u

Thorsten Altenkirch types 09



Introduction
ΠΣ by example

Design details
Conclusions?

Equivalence of recursive definitions

How to specify this equivalence on the level of rules?

let Γ in t ≡ let ∆ in u

Given a partial bijection

φ : FV Γ ' FV Γ

We require that all definitions and the body are equivalent
upto φ:

∀xφy .Γ(x) 'φ ∆(x)

t 'φ u

In general we have to define α-equivelence upto a partial
bijection of free variables.

Thorsten Altenkirch types 09



Introduction
ΠΣ by example

Design details
Conclusions?

Metatheoretic properties (desired)

Type soundness
Sound wrt typing rules
Partial completeness

Thorsten Altenkirch types 09



Introduction
ΠΣ by example

Design details
Conclusions?

What is next?

Finish implementation!
How to delay unfolding?
Which equality to use
(intensional, Observational Type Theory)?
Establish metatheoretic properties.

Thorsten Altenkirch types 09



Introduction
ΠΣ by example

Design details
Conclusions?

What is later?

Translate high-level features
((co)datatype declarations, pattern matching, implicit
variables, . . . )
Implement in Agda.
Totality checker

Thorsten Altenkirch types 09


	Introduction
	 by example
	Design details
	Conclusions?

