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Chapter 1

Logic

Human language is the most sophisticated system of communication in the
known universe. We use it daily to inform, enquire, demand, order, convince,
sympathise and insult. Linguistics studies its inner working and its infinite range
of expressions and forms. In this book we have a more modest purpose: we want
to understand the part of language that is used in mathematics to formulate
theorems and equations and to give proofs. Only a very limited portion of the
grammatical and semantic wealth of natural language will be needed.

The kind of phrases we are interested in are propositions. A proposition is
any statement that can be true or false. Examples of propositions are:

✑ The sky is blue.

✑ Paris is the capital of Jamaica.

✑ All red cats have bushy tails.

✑ The moon is made of cheese.

Not all expressions in natural language are propositions. Questions (What is the
moon made of? ), orders (Don’t step on my toes.), interjections (Good grief ! )
are neither true nor false, but serve a purpose different from stating a fact.

For our aims, we are more interested in propositions that state properties of
numbers and other mathematical objects:

✑ 30 is a multiple of 5.

✑ 7 is a divisor of 23.

✑ In any right triangle, the square of the hypotenuse is equal to the sum
of the squares of the two legs.

✑ 61 is a prime number.

✑ There are infinitely many prime numbers.

✑ Every even integer larger than 2 can be written as the sum of two
primes.

Some of these properties are true and some are false. The last one is a
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mystery: as of today nobody has been able to prove it or to come up with an
integer that doesn’t satisfy it.

Several propositions can be combined in one by the use of special words
called connectives: and, or, if .. then .., not, only if, etc. The following are
examples of complex propositions:

✑ The sky is blue and the grass is green.

✑ If the moon is made of cheese, then 7 is a divisor of 23.

✑ You will pass the exam only if you study hard.

✑ If Paris is not the capital of Jamaica or 61 is a prime number, then
all red cats have bushy tails.

Some propositions are about specific entities: The moon is red during an
eclipse is about the moon.

Other propositions state a common property of a group of entities: Every
squirrel likes chestnuts is about the group of all squirrels. Words like all, every,
each, etc. which are used for this purpose are called universal quantifiers.

Still other propositions state that there is an entity that has a property, but
without specifying which it is: Someone stole my bicycle states something about
an individual without specifying who he or she is. Words like some, something,
someone, there is, there exists, for some, etc. which are used for this purpose
are called existential quantifiers.

1.1 Derivations

Suppose that we know the following facts:

✑ I sing if Jenny plays drums and Edward plays guitar.

✑ If Jenny doesn’t play drums, then Sue plays bongos.

✑ Edward plays guitar and I don’t sing.

Then we can certainly conclude that Sue plays bongos.
Now let’s consider this other deduction, apparently of a completely different

kind. Suppose that we know the following facts:

✑ If the door was locked and the killer escaped, then he must have exited
by the window.

✑ If the door wasn’t locked, then the killer had a key.

✑ The killer escaped but he didn’t exit by the window.

Then we can conclude that the killer had a key.
The two inferences are about quite different situations: the first is about the

composition of a rock band, the second about a murder mystery. However, to
a logician they are exactly the same, because a logician only cares about the
structure of an argument and not about its content.

An excessively precise logical derivation for the first inference is as follows:
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1. I sing if Jenny plays drums and Edward plays guitar. ⊳ Premise.

2. If Jenny doesn’t play drums, then Sue plays bongos. ⊳ Premise.

3. Edward plays guitar and I don’t sing. ⊳ Premise.

4. Suppose that Jenny plays drums. ⊳ Assumption.

5. We know that Edward plays guitar. ⊳ From line 3.

6. So Jenny plays drums and Edward plays guitar. ⊳ Lines 4 and 5.

7. Therefore I sing. ⊳ By lines 1 and 6.

8. But I don’t sing. ⊳ From line 3.

9. Impossible! ⊳ Lines 7 and 8 are contradictory.

10. So Jenny doesn’t play drums. ⊳ Assumption 4 must be false because it
produced the contradiction 9.

11. In conclusion Sue plays bongos. ⊳ By lines 2 and 10.

On every line we wrote one proposition, followed by a justification explaining
why that proposition is valid. The first three lines are just the premises from
which we start, so they don’t need any justification. In line number 4 we make an
assumption, that is, we suppose that a proposition (Jenny plays drums) is true
and we investigate what would then follow. To indicate that the following steps
are not necessarily true, but only proceed from this assumption, we indented
them a bit. The sequence of indented steps is called a subderivation. In this
case, the subderivation leads to a blatant contradiction (I sing and I don’t
sing). Since these two propositions cannot be both true, our conclusion must
be that the assumption that we made was actually false. We then can close the
subderivation and conclude that the negation of its assumption is true (Jenny
doesn’t play drums).

Now let’s repeat the process with our second inference and give a full deriva-
tion for it:

1. If the door was locked and the killer escaped, then he must have exited
by the window. ⊳ Premise.

2. If the door wasn’t locked, then the killer had a key. ⊳ Premise.

3. The killer escaped but he didn’t exit by the window. ⊳ Premise.

4. Suppose that The door was locked. ⊳ Assumption.

5. We know that The killer escaped. ⊳ From line 3.

6. So the door was locked and the killer escaped. ⊳ Lines 4 and 5.

7. Therefore The killer exited by the window. ⊳ By lines 1 and 6.

8. But The killer didn’t exit by the window. ⊳ From line 3.

9. Impossible! ⊳ Lines 7 and 8 are contradictory.

10. So The door wasn’t locked. ⊳ Assumption 4 must be false because it
produced the contradiction 9.
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11. In conclusion The killer had a key. ⊳ By lines 2 and 10.

You probably noticed that the two derivations have exactly the same struc-
ture. Logic is concerned just with this structure and not with the specific topics
discussed. We can then summarise the structure by replacing the component
phrases, which we call atomic propositions, with letters A, B, C, D standing for
any possible sentence. The gist of the argument then goes like this. Suppose
that we know the following facts:

✑ If A and B then C.

✑ If not A then D.

✑ B and not C.

Then we can conclude that D must be true. Our two examples are obtained by
replacing the variables by atomic propositions as follows:

A := Jenny plays drums.
B := Edward plays guitar.
C := I sing.
D := Sue plays bongos.

A := The door was locked.
B := The killer escaped.
C := The killer exited by the window.
D := The killer had a key.

The common structure of the two derivations is the following:

1. If A and B then C. ⊳ Premise.

2. If not A then D. ⊳ Premise.

3. B and not C. ⊳ Premise.

4. Suppose that A is true. ⊳ Assumption.

5. We know B. ⊳ From line 3.

6. So A and B. ⊳ Lines 4 and 5.

7. Therefore C. ⊳ By lines 1 and 6.

8. But not C. ⊳ From line 3.

9. Impossible! ⊳ Lines 7 and 8 are contradictory.

10. So not A. ⊳ Assumption 4 lead to the contradiction 9.

11. In conclusion D must be true. ⊳ By lines 2 and 10.

1.2 Propositional Formulas

Propositional logic is the discipline that studies the correct logical rules to make
derivations using propositions. We ignore the meaning of the component propo-
sitions: we use variable names A,B,C, etc. to denote them. Instead we concen-
trate on the way the connectives affect the truth or falsity of complex proposi-
tions. We use symbols to denote the connectives: ∧ for ‘and’, ∨ for ‘or’, ⇒ for
‘if .. then ..’ and ¬ for ‘not’.

For example, if we denote by A the atomic proposition ‘Paris is the capital
of Jamaica’, by B the atomic proposition ‘61 is a prime number’ and by C
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the atomic proposition ‘all red cats have bushy tails’, then the last complex
proposition at the end of the introduction of this chapter (If Paris is not the
capital of Jamaica or 61 is a prime number, then all red cats have bushy tails)
can be written symbolically as:

¬A ∨B ⇒ C.

Each connective may be rendered in natural language with different expres-
sions and it can be tricky to recognise it. Sometimes we may have the feeling
that two logically equivalent expressions actually say quite different things.

The conjunction connective ∧ states that both its arguments are true, so
it formalises the conjunction ‘and’. However, it also translates the conjunction
‘but’ ! If I say ‘I have a trombone but I don’t know how to play it’, I am stating
that both atomic propositions ‘I have a trombone’ and ‘I don’t know how to
play the trombone’ are true. I use ‘but’ to express that there is a psychological
opposition between the two sentences, but there is no logical contradiction.
From the logical point of view, I am just making a conjunction.

The disjunction connective ∨ states that at least one of its arguments is true.
This is called inclusive disjunction, meaning that it is possible that they are
both true. We use ∨ to translate ‘or’, but we must be careful that sometimes,
in everyday language, we use it in an exclusive sense: only one of the two
components can be true. ‘You can have ice cream or cake’ doesn’t mean that
you can have both. But in formal logic, we always use ∨ in an inclusive way.

The implication connective ⇒ is the trickiest one when it comes to trans-
lating from natural language. There are several ways of expressing it: A⇒ B

can be rendered by ‘A implies B’, ‘if A then B’, ‘B if A’ (mind the inversion),
‘B is a consequence of A’, ‘A only if B’. This last one is very deceptive, let
me repeat it: ‘A only if B’ means that A logically implies B. Be careful not
to confuse logical consequence with causal relation, where the state of affairs
described by the first proposition is the cause of the events expressed by the
second. ‘It will snow only if the temperature drops below zero’ tells us that a
freezing weather is a cause (among others) of snow. The logical connection goes
in the opposite direction: if it snows, we can deduce that the temperature must
have been below zero. But, since the temperature might fall below zero without
it snowing, the implication in the other direction is not valid.

Let’s summarise in a table the uses of the logical connectives and some of
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their translations: A ∧B: the conjunction of A and B,
A and B,
A but B,
both A and B are true;

A ∨B: the disjunction of A and B,
A or B,
either A or B (or both),
one of A and B is true;

A⇒B: the implication from A to B,
A implies B,
if A then B,
B if A,
A only if B,
B is a consequence of A,
whenever A is true also B is true;

¬A: the negation of A,
not A,
A is false.

It is useful to have also two special symbols denoting a true and false proposi-
tion, respectively. We use ⊤ for a proposition that is undoubtedly true, without
the need for a proof, for example 0 = 0. We use ⊥ for a proposition that is
undoubtedly false, for example 0 = 1.

Let us now be more formal and give an exact definition of the kind of entities
that form the object of our study.

Definition 1 A propositional formula is any expression obtained by applying
some of the following construction rules a finite number of times:

• Propositional variables A,B,C, . . . are propositional formulas;

• The symbols ⊤ and ⊥ are propositional formulas;

• If A and B are propositional formulas, then (A∧B), (A∨B), (A⇒B) are
propositional formulas;

• If A is a propositional formula, then (¬A) is a propositional formula.

This definition is the first example we see of an inductively defined set. This
means that the collection of propositional formulas is constructed in stages: first
we have the atomic formulas, which are just variables represented as upper-
case letters and the two symbols ⊤ and ⊥; all other formulas are obtained
by applying the connectives again and again, constructing increasingly more
complex expressions. Examples of propositional formulas are the following:

A

(A ∧B)
(A⇒ (B ∨ C))
((A ∨ (¬B))⇒ (C ⇒ (¬(B ∧A)))).
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As the formulas become more complex, all the parentheses start to make them
very difficult to read. For this reason there are precedence conventions that allow
us to drop some of the parentheses. In fact, the first propositional formula that
we wrote, ¬A ∨B ⇒ C, doesn’t have any. Without any convention, this would
be ambiguous: there are several different ways of restoring parentheses:

(((¬A) ∨B)⇒ C), ((¬A) ∨ (B ⇒ C)), ((¬(A ∨B))⇒ C),
(¬((A ∨B)⇒ C)), (¬(A ∨ (B ⇒ C)));

each with a different meaning. The one that we really mean is the first one. To
enforce this, we decide that there is an order of precedence between connectives:
¬ has the highest precedence, followed by ∧, then ∨ and finally ⇒. This means
that in restoring parentheses, when there is some ambiguity, we should put them
first around subformulas containing the higher connective.

1.3 Rules of Propositional Logic

Now that we have defined formally what a proposition is, we want to give exact
rules to make logical derivations. We are inspired by the semi-formal proofs
that we wrote down in Section 1.1: A derivation is a sequence of numbered
propositions, starting with the premises, each one given with a justification
showing how it follows from the previous ones.

These justifications must be mathematically precise. We give exact rules
to derive propositions. A proof is a kind of game played according to these
rules. In the justifications we must say what rule we used and to what previous
propositions we applied it.

We organise these derivations as a series of numbered steps displayed along
a vertical line: each step consists of a proposition and a justification of how it
follows logically from the steps that came before. At the beginning we put some
propositions that we assume to be true, these are the initial hypotheses. So here
is how a specific derivation looks like:

1 A ∧B ⇒ C

2 ¬C ∧B
...

... justifications

9 ¬A justification of the last step

In this example we start with two hypotheses A∧B⇒C and ¬C ∧B; they are
separated from the actual steps of the derivation by a horizontal line.

Next we explain how the logical steps work for each of the connectives. Each
of them has two kinds of rule: the first, called an introduction rule tells us how
we can derive a combined proposition containing that connective; the second,
called an elimination rule tells us how we can use it to prove other propositions.
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How to Use Variables Remember that propositional variables stand for any
possible statement. The rules of logic are expressed using variables. When we
apply them in a concrete derivation, they can be replaced with any proposition.
Consider the example derivation sketched above. If we instantiate the variables
so: A := ‘Jenny plays drums,’ B := ‘Edward plays guitar,’ C := ‘I sing;’ then
the two hypotheses and the conclusion become:

✑ (Jenny plays drums) ∧ (Edward plays guitar)⇒ (I sing);

✑ ¬(I sing) ∧ (Edward plays guitar);

✑ ¬(Jenny plays drums).

I left the connectives as symbols, rather than translating them in words:
Let’s get used to mathematical notation.

Propositional variables can be instantiated not only by atomic formulas writ-
ten in natural language, but also by other propositional formulas. For example,
we could choose the instantiations: A := Q ∨ R, B := ¬R, C := R⇒Q. Then
our hypotheses and conclusion are instantiated so:

(Q ∨R) ∧ (¬R)⇒ (R⇒Q);
¬(R⇒Q) ∧ (¬R);
¬(Q ∨R).

Be careful to use parentheses appropriately when you make the substitutions:
Always put them around the formula that you are substituting and only after-
wards you may delete those that are not necessary.

The propositional formulas by which you replace the variables might also
contain those same variables. Be careful not to confuse the occurrences of
those variables before and after the substitution. For example, if we choose the
instantiations: A := A ⇒ B, B := C ∨ ¬B, C := A; the three propositions
become:

(A⇒B) ∧ (C ∨ ¬B)⇒A;
¬A ∧ (C ∨ ¬B);
¬(A⇒B).

Conjunction The conjunction of two propositions A and B is the combined
proposition that uses the “and” connective, A∧B. The introduction rule states
that to prove A ∧B, we must have already proved separately both A and B:

m A
...

...

n B
...

...

p A ∧B ∧I, m, n

m B
...

...

n A
...

...

p A ∧B ∧I, n, m
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The elimination rule states that if we have proved A ∧ B, we can use it to
prove A and to prove B:

m A ∧B
...

...

p A ∧E, m

m A ∧B
...

...

p B ∧E, m

Implication When we want to prove a proposition in the form A⇒B, what
we have to do is to assume that A is true and show that using this assumption
we can derive that B must also be true. So we need to add A to our stock of
hypotheses, but only temporarily until we demonstrate B. We indicate this by
drawing a new vertical line on the right of the present position. The part of the
derivation spanned by this line shows that we can derive B from A. The new
hypothesis A that we introduce at the top of the line can be used only inside
this subderivation:

m A
...

...

n B

n+ 1 A⇒B ⇒I, m–n

The elimination rule for implication simply states that if we know that A

implies B and we also know that A is true, then B must be true as well:

m A⇒B
...

...

n A
...

...

p B ⇒E, m, n

m A
...

...

n A⇒B
...

...

p B ⇒E, n, m

This rule is so important that it also has a Latin name: modus ponens.

Disjunction The disjunction of two propositions A and B is the combined
proposition that uses the “or” connective, A ∨ B. We understand it as a non-
exclusive or, meaning that A ∨B is true in the case that only A is true, in the
case that only B is true, and also in the case that they’re both true. It is false
only in the case that both A and B are false. To prove A ∨ B it is enough to
prove one or the other of the disjuncts:
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m A
...

...

p A ∨B ∨I, m

m B
...

...

p A ∨B ∨I, m

The elimination rule is a bit more complex: suppose we have proved A∨B;
how can we use it to prove some other proposition C? We know that either A
or B must be true, but we don’t know which. To be sure that the conclusion is
valid, we must show that C can be derived both from A and from B. Therefore
we make two subderivations. As in the case of implication, the new assumptions
A and B can be used only locally in those subderivations:

m A ∨B
...

...

h A
...

...

i C

j B
...

...

k C

p C ∨E, m, h–i, j–k

Truth and Falsity The two atomic propositions ⊤ and ⊥ have especially
simple rules. ⊤ is a certainly true proposition, it doesn’t need a proof; its
introduction rule just states that it is valid. On the other hand, it doesn’t
tell us anything useful, that is, it won’t have an elimination rule. The false
proposition ⊥ should not be provable, so it doesn’t have an introduction rule.
On the other hand, if we manage, by some miracle, to prove it, then we can
prove anything: if falsity is true, then everything is true. In conclusion, ⊤ only
has an introduction rule, without elimination; ⊥ only has an elimination rule,
without introduction:

...
...

p ⊤ ⊤I

m ⊥

...
...

p C ⊥E, m
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Negation The negation of a proposition, ¬A, is actually equivalent to saying
that A implies something false, that is, A⇒⊥. And indeed the rules for negation
are exactly those for implication when the conclusion is the false proposition:

m A
...

...

n ⊥

n+ 1 ¬A ¬I, m–n

m ¬A
...

...

n A
...

...

p ⊥ ¬E, m, n

m A
...

...

n ¬A
...

...

p ⊥ ¬E, n, m

Reiteration Sometimes we just want to copy a proposition that we proved
earlier in order to use it again. We are free to do it, but be careful: we can copy
only propositions that are in scope at the place where we want to copy them.
This means that the vertical line immediately to the left of the proposition that
we want to copy must extend down to the left of the place where we want to
copy it:

m A
...

...

p A R, m

We are allowed to copy a proposition to a more internal subderivation, that
is, to a vertical line on the right; but we cannot copy a proposition from a
subderivation to a more external place, that is, to the left of its vertical line;
also, we cannot copy a proposition after there has been a break of its line:
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m A
...

...

n B
...

...

p A R, m
...

...

OK

WRONG: WRONG:

m B
...

...

n A
...

...
...

...

p A R, n

n B
...

...

k A
...

...

m C
...

...

p A R, k
...

...

1.4 Example Derivations

Here are a couple of examples of full derivations. In the first, we have three
atomic propositions A, B and C. We assume to know that A ⇒ B, B ⇒ C

and ¬C are true and we want to prove that ¬A follows from them. Here is the
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complete formal proof:

1 A⇒B

2 B ⇒ C

3 ¬C

4 A

5 B ⇒E, 1, 4

6 C ⇒E, 2, 5

7 ⊥ ¬E, 3, 6

8 ¬A ¬I, 4–7

Let us see how this formal proof corresponds to an argument in English
by using some actual sentences for our propositional letters. Let A mean the
universe is a fairy land, B mean the moon is made of cheese and C mean mice
live in the moon. Then the formal proof above corresponds to the following
argument:

Suppose that if the universe were a fairy land, then the moon would
be made of cheese. Suppose also that if the moon were made of
cheese, then mice would live in it. Finally, suppose that mice don’t
live in the moon. Assume now that the universe were a fairy land.
Then, by the first supposition, we would know that the moon is made
of cheese. But then, by the second supposition, we would also have
that mice live in the moon. But we know, by the third supposition,
that mice don’t live in the moon. We reached a contradiction: mice
live and don’t live in the moon. This means that our assumption
that the universe is a fairy land was wrong. Then we can conclude
that the universe is not a fairy land.

In my opinion the English version is more difficult to understand. Symbols
and mathematical rules make thinking easier.

In our second example we make the assumptions A⇒C, B⇒D and A∨B
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and we conclude that C ∨D must hold:

1 A⇒ C

2 B ⇒D

3 A ∨B

4 A

5 C ⇒E, 1, 4

6 C ∨D ∨I, 5

7 B

8 D ⇒E, 2, 7

9 C ∨D ∨I, 8

10 C ∨D ∨E, 3, 4–6, 7–9

Also in this case we can show an English argument corresponding to this
formal proof. Let’s assign to A the meaning I eat spinach, to B the meaning
I eat carrots, to C the meaning I can jump over a mountain and to D the
meaning I can jump across a river. Then the formal proof above corresponds
to the following argument:

Suppose that, if I eat spinach, then I can jump over a mountain.
Suppose also that, if I eat carrots, then I can jump across a river.
Finally, suppose that I eat spinach or carrots. In the first case,
spinach, the first supposition tells me that I can jump over a moun-
tain; therefore I can jump over a mountain or across a river (the first
being the case). In the second case, carrots, the second supposition
tells me that I can jump across a river; therefore I can jump over
a mountain or across a river (the second being the case). Since I
reached the same conclusion in both cases, I have proved that I can
jump over a mountain or across a river.

Let’s go back to the informal examples that we discussed in Section 1.1. We
noted that the two derivations, about the composition of a rock band and about
a murder mystery, had the same structure. We also formulated the argument in
a general way using variables in place of atomic sentences. Here is the completely
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formalised proof:

1 A ∧B ⇒ C

2 ¬A⇒D

3 B ∧ ¬C

4 A

5 B ∧E, 3

6 A ∧B ∧I, 4, 5

7 C ⇒E, 1, 6

8 ¬C ∧E, 3

9 ⊥ ¬E, 8, 7

10 ¬A ¬I, 4–9

11 D ⇒E, 2, 10

1.5 More Examples

Here are a few more examples of formal derivations for you to study. After
looking at them, you should be able to write them yourselves.

1 A ∧ (B ∧ C)

2 A ∧E, 1

3 B ∧ C ∧E, 1

4 B ∧E, 3

5 C ∧E, 3

6 A ∧B ∧I, 2, 4

7 (A ∧B) ∧ C ∧I, 6, 5

1 ¬(A⇒B)

2 B

3 A

4 B R, 2

5 A⇒B ⇒I, 3–4

6 ⊥ ¬E, 1, 5

7 ¬B ¬I, 2–6
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1 A ∨B

2 ¬A

3 A

4 ⊥ ¬E, 2, 3

5 B ⊥E, 4

6 B

7 B R, 6

8 B ∨E, 1, 3–5, 6–7

9 ¬A⇒B ⇒I, 2–8

1 A⇒B

2 ¬B

3 A

4 B ⇒E, 1, 3

5 ⊥ ¬E, 2, 4

6 ¬A ¬I, 3–5

7 ¬B ⇒¬A ⇒I, 2–6

1 ¬(A ∨B)

2 A

3 A ∨B ∨I, 2

4 ⊥ ¬E, 1, 3

5 ¬A ¬I, 2–4

6 B

7 A ∨B ∨I, 6

8 ⊥ ¬E, 1, 7

9 ¬B ¬I, 6–8

10 ¬A ∧ ¬B ∧I, 5, 9

1 A ∧ (B ∨ C)

2 A ∧E, 1

3 B ∨ C ∧E, 1

4 B

5 A ∧B ∧I, 2, 4

6 (A ∧B) ∨ (A ∧ C) ∨I, 5

7 C

8 A ∧ C ∧I, 2, 7

9 (A ∧B) ∨ (A ∧ C) ∨I, 8

10 (A ∧B) ∨ (A ∧ C) ∨E, 3, 4–6, 7–9

1.6 WRONG Derivations

So you are aware of the pitfalls of formal logic, let us look at some derivations
that may look correct at first, but contain subtle mistakes.
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1 ¬A

2 (A⇒B)⇒ C

3 A

4 ⊥ ¬E, 1, 3

5 B ⊥E, 4

6 A⇒B ⇒I, 3–5

7 C ⇒E, 2, 6

8 A ∧ C ∧I, 3, 7

WRONG

The last step of this derivation is incorrect: It uses the hypothesis A that was
made at step 3 in a subderivation. That hypothesis can be used only in the
subderivation going from step 3 to step 5, so it is not allowed in the conclusion.

1 A ∨B

2 A⇒ C

3 A

4 C ⇒E, 2, 3

5 B

6 C R, 4

7 C ∨E, 1, 3–4, 5–6

WRONG

The mistake here is similar to the previous one: the proposition C derived in
step 4 belongs to the subderivation 3-4, so we can’t copy it in step 6 because
the vertical line has been broken.

1 A⇒ C

2 B ⇒D

3 A ∨B

4 A

5 C ⇒E, 1, 4

6 B

7 D ⇒E, 2, 6

8 C ∧D ∨E, 3, 4–5, 6–7

WRONG
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Here the rule for disjunction elimination has been applied erroneously: when we
eliminate a disjunction A ∨ B we must make two distinct subderivations with
the assumption A and B, respectively; the conclusion of the two subderivations
must be the same. Here we have two different conclusions, so nothing can be
inferred from them.

1.7 Forward and Backward Thinking

Finding a valid derivation from a set of hypotheses to a conclusion can be a
challenging puzzle. We’ll see later that there is a way to determine for sure if it
is possible or not, at least for propositional logic. But when we add quantifiers
to our logical operators, the problem can’t be solved automatically anymore.
So proving is a sort of art.

In general you have to guess what rules to apply and you may need to try
several possibilities. To help you play the right moves in this game, I suggest
two possible strategies, called forward reasoning and backward reasoning.

In forward reasoning we start with the hypotheses and we try to derive all
the interesting consequences that follow from them with simple applications of
the elimination rules. Here is an example:

1 A⇒ (B ⇒ C)

2 A ∧B

3 A ∧E, 2

4 B ⇒ C ⇒E, 1, 3

5 B ∧E, 2

6 C ⇒E, 4, 5

7 . . .

If we’re lucky, sooner or later we’ll hit the conclusion that we’re looking for.
But often there are many possible rules that we can apply and we can’t see a
clear path towards the conclusion.

That’s when backward reasoning becomes useful. This time we look at the
conclusion first and we try to see what introduction rules could lead to it.
To apply those rules we need to have their hypotheses: we write them in the
derivation and then apply backward reasoning to them as well. For example,
suppose we’re trying to prove the conclusion C ∧ ((A ⇒ D) ⇒ D). Since the
main connective is a conjunction, we try to apply the conjunction introduction
rule. This will require that the formulas C and (A⇒D)⇒D have been proved.
So we write them in the derivation like so (we use letters n and m for the line
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numbers, since we still don’t know how long the proof is going to be):

... . . .

n C
... . . .

m (A⇒D)⇒D

m+ 1 C ∧ ((A⇒D)⇒D) ∧I, n, m

We must now fill in the blanks by applying backward reasoning to the line m.
Since it is an implication, we’ll use the implication introduction rule.

... . . .

n C

p A⇒D
... . . .

q D

m (A⇒D)⇒D ⇒I, p–q

m+ 1 C ∧ ((A⇒D)⇒D) ∧I, n, m

At this point, the goals that still need to be solved are at lines n and q. They’re
atomic formulas, so we can’t deconstruct them further using backwards reason-
ing. We’ll have to use forward reasoning to complete the proof.

Now you should be able to put together the two fragments of derivation,
backward and forward, to obtain a full proof of the conclusion from the hy-
potheses.

In general, the best strategy consists in starting with backward reasoning
from the conclusion; deconstruct it as much as possible using introduction rules;
once we reduced it to atomic formulas, start forward reasoning from the hypothe-
ses to prove those.

1.8 Cats and Gorillas

Our goal is to solve, using propositional logic, the following puzzle from Ian
Stewart, Professor Stewart’s Cabinet of Mathematical Curiosities. It asks to
determine whether we can logically derive a certain conclusion from a set of five
assumptions.

Suppose you know that the following sentences are true:

✑ No cat that wears a heron suit is unsociable.
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✑ No cat without a tail will play with a gorilla.

✑ Cats with whiskers always wear heron suits.

✑ No sociable cat has blunt claws.

✑ No cats have tails unless they have whiskers.

Can you then logically conclude that No cat with blunt claws will play with
a gorilla?

To solve it, we first assign letters to the atomic propositions used as compo-
nents of the sentences. Suppose we are talking about some generic cat. Each of
the atomic propositions states some fact that may be true or false of the cat:

A := The cat wears a heron suit.

B := The cat is sociable.

C := The cat has a tail.

D := The cat will play with a gorilla.

E := The cat has whiskers.

F := The cat has blunt claws.

Then the five assumptions can be translated to propositional formulas:

¬(A ∧ ¬B) = No cat that wears a heron suit is unsociable.

¬(¬C ∧D) = No cat without a tail will play with a gorilla.

E ⇒A = Cats with whiskers always wear heron suits.

¬(B ∧ F ) = No sociable cat has blunt claws.

¬C ∨ E = No cats have tails unless they have whiskers.

The conclusion can in turn be formulated as the following propositional
formula:

¬(F ∧D) = No cat with blunt claws will play with a gorilla.

Now that we have translated our problem to that of finding a formal deriva-
tion from five hypotheses to a conclusion, we can use the rules of propositional
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logic to solve it:

1 ¬(A ∧ ¬B)

2 ¬(¬C ∧D)

3 E ⇒A

4 ¬(B ∧ F )

5 ¬C ∨ E

6 F ∧D

7 F ∧E, 6

8 D ∧E, 6

9 ¬C

10 ¬C R, 9

11 E

12 A ⇒E, 3, 11

13 B

14 B ∧ F ∧I, 13, 7

15 ⊥ ¬E, 4, 14

16 ¬B ¬I, 13–15

17 A ∧ ¬B ∧I, 12, 16

18 ⊥ ¬E, 1, 17

19 ¬C ⊥E, 18

20 ¬C ∨E, 5, 9–10, 11–19

21 ¬C ∧D ∧I, 20, 8

22 ⊥ ¬E, 2, 21

23 ¬(F ∧D) ¬I, 6–22
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