
Mathematics for Computer Scientists
Lecture notes for the module G51MCS

Venanzio Capretta

University of Nottingham

School of Computer Science



Chapter 1

Boolean Algebra

Ordinary algebra is that area of mathematics concerned with formulas denoting
numbers. It deals with formulas like a + (−b × c). It uses letters like a, b, c

to indicate variables that represent unknown numbers. Then it combines them
using operations like addition, +, multiplication, ×, opposite, −.

Boolean algebra is similar, but instead of numbers it is concerned with truth
values, also called Boolean values, true and false. It deals with propositional
formulas like A ∨ (¬B ∧ C). It uses letters like A,B,C to indicate variables
representing unknown truth values. Then it combines them using connectives
like disjunction, ∨, conjunction, ∧, negation, ¬, and implication, ⇒.

1.1 Intuitionistic and Classical Logic

The rules that we have seen so far constitute what is called intuitionistic logic.

Traditionally another rule is added to the system to give what is called classical

logic:

m ¬¬A
...

...

p A ¬¬E, m

This rule, called double negation elimination, states that if we proved that
it is impossible that A is false, then A must be true. One of its consequences is
the law of excluded middle, that states that every proposition is either true or

1



false:

1 ¬(A ∨ ¬A)

2 A

3 A ∨ ¬A ∨I, 2

4 ⊥ ¬E, 1, 3

5 ¬A ¬I, 2–4

6 A ∨ ¬A ∨I, 5

7 ⊥ ¬E, 1, 6

8 ¬¬(A ∨ ¬A) ¬I, 1–7

9 A ∨ ¬A ¬¬E, 8

Double negation elimination and the principle of excluded middle seem rea-
sonable rules, but they have one undesired effect on our logic: they make it non
constructive. Suppose A is a proposition that states that there is a solution to
some problem. An intuitionistic proof of A would in that case give us a way to
compute the solution. On the other hand, a classical proof of it would only tell
us that it is impossible that the solution doesn’t exist, without helping us to
find it. Similarly, an intuitionistic proof of A∨B gives us a method to determine
which of the two alternatives is valid, while a classical proof would only tell us
that they cannot be both false.

For this reason intuitionistic logic is particularly interesting in computer
science, where we care about being able to compute solutions to problems rather
than just have an abstract guarantee that it is impossible that the solution
doesn’t exist.

From now on we make free use of double negation elimination, but always
remember that an intuitionistic proof gives us more information than a classical
one.

Even if the principle of excluded middle is a derived proposition, it is often
useful to apply it in one step as if it were a rule on its own. After all, once we
know that it holds, we should be able to use it freely:

...
...

p A ∨ ¬A EM

1.2 Examples of Classical Derivations

Here is a couple of examples of derivations that use double negation elimination
or the principle of excluded middle in an essential way.

2



m A

n B

p A ∧B ∧I, m, n

m A ∧B

p A ∧E, m

m A ∧B

p B ∧E, m

m A

p A ∨B ∨I, m

m B

p A ∨B ∨I, m

m A ∨B

h A

i C

j B

k C

p C ∨E, m, h–i, j–k

m A

n B

n+ 1 A⇒B ⇒I, m–n

m A⇒B

n A

p B ⇒E, m, n

m A

n ⊥

n+ 1 ¬A ¬I, m–n

m ¬A

n A

p ⊥ ¬E, m, n

m ⊥

p C ⊥E, m

m A

p A R, m

m ¬¬A

p A ¬¬E, m
p A ∨ ¬A EM

Figure 1.1: Natural Deduction Rules for Propositional Logic

3



1 ¬(A ∧B)

2 A ∨ ¬A EM

3 A

4 B

5 A ∧B ∧I, 3, 4

6 ⊥ ¬E, 1, 5

7 ¬B ¬I, 4–6

8 ¬A ∨ ¬B ∨I, 7

9 ¬A

10 ¬A ∨ ¬B ∨I, 9

11 ¬A ∨ ¬B ∨E, 2, 3–8, 9–10

This principle, that we can derive ¬A ∨ ¬B from ¬(A ∧ B) is one direction of
one of the two de Morgan laws; we’ll talk about them later. The vice versa,
proving ¬(A∧B) from ¬A∨¬B is also valid and can be done with intuitionistic
logic. I suggest you try.

The next example is also a famous one: it’s known as Peirce’s law.

1 (A⇒B)⇒A

2 ¬A

3 A

4 ⊥ ¬E, 2, 3

5 B ⊥E, 4

6 A⇒B ⇒I, 3–5

7 A ⇒E, 1, 6

8 ⊥ ¬E, 2, 7

9 ¬¬A ¬I, 2–8

10 A ¬¬E, 9

To summarise all that we have learnt so far, Figure 1.1 gives all the rules of
propositional logic in one table in a synthetic form.

4



1.3 Truth Tables

A way of determining the truth or falsity of a formula is to use truth tables. It is
very different from the method of logical derivations, but equivalent. If we adopt
the classical concept of logic, every proposition is either true or false (by the
principle of excluded middle). This means that we can assign to it a truth value,
either true or false. A complex proposition obtained by joining two simpler ones
by a connective will have a truth value that depends in a predictable way from
the truth values of its components. For example, the conjunction A ∧ B will
have the truth value true in the case that both A and B have the value true, it
will have the truth value false in all other cases. Therefore, we can make the
following table:

A B A ∧B

true true true

true false false

false true false

false false false

The other connectives can be described similarly by truth tables:

A ¬A

true false

false true

A B A ∨B

true true true

true false true

false true true

false false false

A B A⇒B

true true true

true false false

false true true

false false true

For more complex propositional formulas, we can construct truth tables by
assigning all possible truth values to the atomic propositions in them and then
compute recursively the values of the subformulas from the smaller ones to the
largest one using the truth tables of the connectives:

A B ¬B A ∨ ¬B ¬A A ∨ ¬B ⇒¬A

true true false true false false

true false true true false false

false true false false true true

false false true true true true

A formula whose truth table has always the value true for all possible values
of its atomic propositions is called a tautology. This system of determining the
truth of a proposition is equivalent to the propositional calculus that we studied
before: a formula is a tautology exactly in the case that it can be derived in
propositional logic without any hypothesis.

Using truth tables we can see that some connectives can be defined in terms
of others. For example, implication can be defined in terms of negation and
disjunction: A⇒B is equivalent to ¬A∨B, in the sense that their truth tables

5



give the same results.

A B A⇒B

true true true

true false false

false true true

false false true

A B ¬A ¬A ∨B

true true false true

true false false false

false true true true

false false true true

Conjunction can also be defined in terms of negation and disjunction: A ∧B is
equivalent to ¬(¬A∨¬B). Verify it yourself by writing down their truth tables.
In conclusion, we only need to have negation and disjunction in our set of basic
Boolean operators. The rest can be constructed from them.

We can do even better. We can find a single connective from which all the
other ones can be derived. There are many different ways of doing this. One
is to use the nand operator (also called Sheffer stroke), which represents the
negation of the conjunction. We use the symbol ↑ for it. Here is its truth table.

A B A ↑B

true true false

true false true

false true true

false false true

It’s easy to check that ¬A is equivalent to A ↑ A and A ∨ B is equivalent to
(¬A) ↑ (¬B). Since we already know that the other operators can be realised
by negation and disjunction, we can do everything with nand.

How many possible binary Boolean operators are there? We just have to
count the number of different ways to construct a truth table for two variables
A and B. Each table has four lines corresponding to the possible truth values
for A and B. For each line we can choose whether our operator will return true

or false. So we have two choices for each of the four lines: the total number of
possible choices is then 2 × 2 × 2 × 2 = 16. There are sixteen possible binary
operators.

But we don’t need to worry about them: we can realise each of them using
the ones that we already have. In fact we can realise every possible truth table
by using only the nand operator. It is an instructive exercise to try this with a
few randomly chosen tables. Take the following, for example.

A B ?
true true true

true false false

false true false

false false true

You can verify that it is equivalent to (A ∧B) ∨ (¬A ∧ ¬B).
The general algorithm to associate a formula to an arbitrary truth table is

this:

6



• Select all the rows for which the table gives true;

• For each of these rows, look at the values assigned to the variables;

• If the value is true take the variable by itself, if it’s false take its negation;

• Make the conjunction of all the variables and variable negations that you
wrote;

• Take the disjunction of the formulas that you obtained for each row.

This algorithm works also for more than two variables. Let’s illustrate it
with a three variables truth table.

A B C ?
true true true true

true true false true

true false true false

true false false false

false true true false

false true false true

false false true false

false false false true

There are four lines for which the table gives true, the first, second, sixth and
eighth. The first line corresponds to the value true for all three variables, so we
associate the formula A∧B ∧C to it. The second line corresponds to the value
true for A and B and false for C, so we associate the formula A ∧ B ∧ ¬C to
it. The sixth line corresponds to the value true for B and false for A and C, so
we associate the formula ¬A∧B ∧¬C to it. The eighth line corresponds to the
value false for all three variables, so we associate the formula ¬A∧¬B ∧¬C to
it. Finally, we put the three formulas associated to the three true rows together
using disjunction:

(A ∧B ∧ C) ∨ (A ∧B ∧ ¬C) ∨ (¬A ∧B ∧ ¬C) ∨ (¬A ∧ ¬B ∧ ¬C).

1.4 Logical Equivalences

A special kind of tautology is the logical equivalence. Given two propositional
formulas A and B, we say that they are equivalent if their truth tables give
exactly the same values for all possible assignments to the atomic formulas.

If you look at the example above, you will notice that the formulas ¬A and
A ∨ ¬B ⇒ ¬A always have the same truth value, so they are equivalent. We
express this by writing (A∨¬B⇒¬A)⇔ (¬A) The equivalence symbol ⇔ is a
new connective, meaning implication in both directions. That is, A⇔B means
(A⇒ B) ∧ (B ⇒ A). As a connective, ⇔ is given the lowest priority: all other
connectives have precedence over it.

7



We defined equivalence in terms of truth tables. We could as easily define it
using derivations: A is equivalent to B if there is one derivation with hypothesis
A and conclusion B and another derivation with hypothesis B and conclusion
A.

Many important logical rules can be expressed as equivalences. We saw the
proofs of some of them (at least in one of the two directions) already. You can
convince yourselves that they are true by computing their truth tables or by
constructing derivations for them.

A ∧B ⇔B ∧A Commutativity of conjunction
A ∨B ⇔B ∨A Commutativity of disjunction
A ∧ (B ∧ C)⇔ (A ∧B) ∧ C Associativity of conjunction
A ∨ (B ∨ C)⇔ (A ∨B) ∨ C Associativity of disjunction
A ∧ (B ∨ C)⇔ (A ∧B) ∨ (A ∧ C) Distributivity of conj. over disj.
A ∨ (B ∧ C)⇔ (A ∨B) ∧ (A ∨ C) Distributivity of disj. over conj.
¬(A ∧B)⇔¬A ∨ ¬B First De Morgan law
¬(A ∨B)⇔¬A ∧ ¬B Second De Morgan law

1.5 The laws of Boolean algebra

In ordinary algebra there is a calculus with precise laws to manipulate formulas
and simplify them. Given a complex formula, we can use these laws to reduce
it to a simpler one, like in this example:

(a+ b)× c− b× c = a× c+ b× c− b× c distributivity of × over +
= a× c+ 0 defining property of opposite
= a× c zero is the unit of addition

Similarly in Boolean algebra we have laws to manipulate and simplify propo-
sitional formulas. Here is an example of the simplification of a formula in
Boolean algebra (don’t worry too much about the justifications on the right
for the moment):

A ∧ (C ∨ ¬A) = (A ∧ C) ∨ (A ∧ ¬A) distributivity of ∧ over ∨
= (A ∧ C) ∨ false contradiction
= A ∧ C false is the unit of disjunction

As you can see, Boolean algebra is very similar to ordinary algebra, but not
exactly the same. The first step we must take is to write down all the rules that
are satisfied by the propositional connectives. Here they are.

8



The laws of Boolean algebra

A ∧B = B ∧A Commutativity of conjunction
A ∨B = B ∨A Commutativity of disjunction

A ∧ (B ∧ C) = (A ∧B) ∧ C Associativity of conjunction
A ∨ (B ∨ C) = (A ∨B) ∨ C Associativity of disjunction

A ∧ (B ∨ C) = (A ∧B) ∨ (A ∧ C) Distributivity of conj. over disj.
A ∨ (B ∧ C) = (A ∨B) ∧ (A ∨ C) Distributivity of disj. over conj.

¬(A ∧B) = ¬A ∨ ¬B First De Morgan law
¬(A ∨B) = ¬A ∧ ¬B Second De Morgan law

A ∧ true = A Unit of conjunction
A ∨ false = A Unit of disjunction

A ∧ false = false Zero of conjunction
A ∨ true = true Zero of disjunction

A ∧A = A Idempotence of conjunction
A ∨A = A Idempotence of disjunction

A ∧ (A ∨B) = A First absorption law
A ∨ (A ∧B) = A Second absorption law

A ∧ ¬A = false Contradiction

¬¬A = A Double negation
A ∨ ¬A = true Excluded middle

A⇒B = ¬A ∨B Definition of implication

We gave a single law for the implication connective. It allows us to rewrite
a formula containing ⇒ to one containing ¬ and ∨. We can use this definition
of implication in terms of negation and disjunction to derive some extra laws
that are useful in manipulating Boolean formulas containing implications.

Laws of Implication

A ∧ (A⇒B) = A ∧B Modus ponens
A⇒B = ¬B ⇒¬A Contrapositive

(A ∧B)⇒ C = A⇒ (B ⇒ C) Currying

and many others.

9



As an example, here is how the rule of modus ponens can be derived:

A ∧ (A⇒B) = A ∧ (¬A ∨B) Definition of implication
= (A ∧ ¬A) ∨ (A ∧B) Distributivity of conj. over disj.
= false ∨ (A ∧B) Contradiction
= (A ∧B) ∨ false Commutativity of disjunction
= A ∧B Unit of disjunction

The implication connective is not the only one that can be defined in terms of
the others. We can also define conjunction in terms of negation and disjunction,
like this:

A ∧B = ¬(¬A ∨ ¬B).

Then we would need only the laws for ¬ and ∨ and those for ∧ could be derived.

1.6 Proving the laws

The laws that we gave in the previous section need to be justified: how do we
know that they are valid? We know two ways of doing this: with derivations or
with truth tables.

Let’s take, as an example, the first De Morgan law:

¬(A ∧B) = ¬A ∨ ¬B.

For illustration, let me show you how we can prove it using both methods.

Proof with derivations We use propositional logic to prove the equality.
We have to show that the two propositional formulas ¬(A ∧ B) and ¬A ∨ ¬B

are logically equivalent. To do this we need two derivations: the first showing
that if we take ¬(A∧B) as hypothesis, then we can derive ¬A∨¬B; the second
showing that if we take ¬A ∨ ¬B as hypothesis, then we can derive ¬(A ∧ B).

10



Here are both derivations:

1 ¬(A ∧B)

2 A ∨ ¬A EM

3 A

4 B

5 A ∧B ∧I, 3, 4

6 ⊥ ¬E, 1, 5

7 ¬B ¬I, 4–6

8 ¬A ∨ ¬B ∨I, 7

9 ¬A

10 ¬A ∨ ¬B ∨I, 9

11 ¬A ∨ ¬B ∨E, 2, 3–8, 9–10

1 ¬A ∨ ¬B

2 A ∧B

3 A ∧E, 2

4 B ∧E, 2

5 ¬A

6 ⊥ ¬E, 5, 3

7 ¬B

8 ⊥ ¬E, 7, 4

9 ⊥ ∨E, 1, 5–6, 7–8

10 ¬(A ∧B) ¬I, 2–9

Proof with truth tables To prove the law, we just have to make the truth
tables of both propositional formulas and check that they are equal: they always
give the same result for all possible values of A and B.

A B A ∧B ¬(A ∧B)
true true true false

true false false true

false true false true

false false false true

11



A B ¬A ¬B ¬A ∨ ¬B

true true false false false

true false false true true

false true true false true

false false true true true

Since both truth tables give the same result on every row, we can conclude
that the two formulas are logically equivalent.

Now try for yourself: for each of the laws of Boolean algebra, prove its
validity both using propositional logic and truth tables. With the first method:
make two derivations showing that if you take one of the two equated formulas
as hypothesis, you can derive the other. With the second method: make the
truth tables for the two formulas and verify that they give the same result on
every row.

1.7 Logical equivalence as a connective

Logical equivalence can be used as a new connective: two formulas A and B can
be said to be equivalent if A implies B and also B implies A. We write A⇔B

in this case (read it “A equivales B”). So we define the new connective ⇔ so:

A⇔B = (A⇒B) ∧ (B ⇒A). Definition of logical equivalence

What is the difference between writing A = B and A ⇔ B? They both have
the same meaning: the two formulas A and B are logically equivalent. But we
use them in different ways. When we write A = B we mean it as an assertion:
we are stating that the two formulas A and B are equivalent. When we write
A⇔B we are just denoting a new propositional formula obtained by applying
the equivale connective to A and B; we are not declaring that the equivalence
is true.

We give ⇔ the lowest priority as a connective, so all other connectives must
be parenthesised before it. Like the other connectives, ⇔ has some laws that
allow us to manipulate it in Boolean algebra.

Laws of equivalence

(A⇔B)⇔ C = A⇔ (B ⇔ C) Associativity of equivalence
A⇔B = B ⇔A Commutativity of equivalence
A⇔B = ¬A⇔¬B Contrapositive of equivalence

See if you can derive these laws in Boolean algebra using the definition of ⇔ in
terms of ∧ and ⇒ and their Boolean laws.

12



1.8 The laws of equality

We already silently used some laws of equality when we gave examples of the
manipulation of formulas in Boolean algebra. We all instinctively know them,
but it is useful to spell them out formally.

A = A Reflexivity of equality
A = B ⇒B = A Symmetry of equality
A = B ∧B = C ⇒A = C Transitivity of equality

Finally there is the substitutivity of equality or congruence law, that states that
whenever two formulas are equal, we can replace one with the other:

A = B ⇒ F [A] = F [B].

Here F denotes any large formula that contains in it an occurrence of A or B.
The law states that inside F we can replace A with B.

When we write a sequence of equalities in which every step is justified by
one of the laws of Boolean algebra, for example:

F1 = F2 = F3 = · · · = F10,

we are implicitly using the law of congruence and that of transitivity: in each
step we replace some part of the formula by something that is equivalent to it
according to one of the laws; we conclude that the first formula F1 is equivalent
to the last F10 by the repeated application of transitivity to all the intermediate
steps.

For example, consider the following proof of a Boolean equality:

A ∨ (B ∧ ¬A) = (A ∨B) ∧ (A ∨ ¬A) distributivity of disj. over conj.
= (A ∨B) ∧ true excluded middle
= A ∨B unit of conjunction

The second line is actually a combination of three steps:

1. A ∨ ¬A = true by the law of excluded middle;

2. By the law of congruence we can replace A ∨ ¬A with true inside any
formula, so (A ∨B) ∧ (A ∨ ¬A) = (A ∨B) ∧ true;

3. By the first line we have that A∨ (B ∧¬A) = (A∨B)∧ (A∨¬A) and we
just proved that (A ∨ B) ∧ (A ∨ ¬A) = (A ∨ B) ∧ true, so by transitivity
A ∨ (B ∧ ¬A) = (A ∨B) ∧ true.

A similar sequence of steps is implicit in the third line.

13



1.9 Examples of derivation of Boolean equalities

To illustrate how we use the laws of Boolean algebra to prove equalities, let’s
start with a simple one. The law of distributivity of disjunction over conjunction
tells us what we can do when we have a disjunction on the left of a conjunction.
We would like to have a similar equality when the disjunction is on the right:

(A ∧B) ∨ C = (A ∨ C) ∧ (B ∨ C).

Let’s prove it:

(A ∧B) ∨ C = C ∨ (A ∧B) commutativity of disjunction
= (C ∨A) ∧ (C ∨B) distributivity of disj. over conj.
= (A ∨ C) ∧ (B ∨ C) commutativity of disjunction (twice)

To check that you understood, I suggest that you give yourself a proof of the
right-side distributivity of conjunction over disjunction:

(A ∨B) ∧ C = (A ∧ C) ∨ (B ∧ C).

For another example, let’s prove this equality:

A ∨ ¬(A⇒B) = A.

We start by rewriting the implication in terms of negation and disjunction and
then we simplify using the laws of Boolean algebra:

A ∨ ¬(A⇒B) = A ∨ ¬(¬A ∨B) definition of implication
= A ∨ (¬¬A ∧ ¬B) De Morgan
= A ∨ (A ∧ ¬B) double negation
= (A ∨A) ∧ (A ∨ ¬B) distributivity of disj. over conj.
= A ∧ (A ∨ ¬B) idempotence of disjunction
= A absorption

14


