Mathematics for Computer Scientists
Lecture notes for the module G51MCS

Venanzio Capretta
University of Nottingham
School of Computer Science



Chapter 4

Sets, Functions and
Relations

4.1 Sets

Sets are such a basic notion in mathematics that the only way to ‘define’ them
is by synonyms like collection, class, grouping and so on. A set is completely
characterised by the elements it contains.

There are two main ways of defining a set: (1) by explicitly listing all its
elements or (2) by giving a property that all elements must satisfy. Here is a
couple of examples, the first is a set of fruits given by listing its elements, the
second is a set of natural numbers given by specifying a property:

A = {apple, banana, cherry, peach}
E ={n e N| 2 divides n}
The definition of E can be read: E is the set of those natural numbers that are
divisible by 2, that is, it’s the set of all even naturals.
The first definition method can be used only if the set has a finite number

of elements. In some cases both methods can be used to define the same set, as
in this example:

{n € N|nisodd An®+4+n <100} = {1,3,5,7,9}

To say that a certain object x is an element of a set S, we write x € S. To
say that it isn’t an element of S we write x € S. For example:

apple € A T¢E
strawberry & A 8ekE

If every element of a set X is also an element of another set Y, then we say
that X is a subset of Y and we write this symbolically as X C Y. Formally,
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the subset relation is defined as follows:
XCY & foreveryzx, ze X=zx€Y.
As example, here’s a couple of subsets of the sets A and E from above:

{apple, peach} C A
{z € N | n is a multiple of 4} C E.

There is a set that is contained in any other set: the empty set, that is, the
set with no elements. We use the symbol @ for it:

g={}

It is always trivially true that @ C X and also that X C X.

When we define a set by a property, we should also clarify in advance what
kind of objects we are talking about: in the examples above, we wrote n € N to
specify that we are talking about natural numbers. This larger set, containing
all the objects that we are interested in, is called the universal set or just the
universe. We will be using the letter U to denote the universal set.

Sets can be combined and manipulated by using the operations of intersec-
tion, union, difference, complement. Here are their intuitive meaning and their
rigorous mathematical definitions, assuming that .S and T are any two sets:

Intersection S NT: the elements that belong both to .S and to T.

SNT={zeU|zeSAxzeT}

Union S UT: the elements that belong either to S or to T' (or both).

SUT={zxeU|zeSVzeT}
Difference S\ T the elements that belong to S but not to 7.
S\T={zeUlzeSANx¢gT}

Complement S: elements (of the universe) that don’t belong to S.

S={zeU|z¢gS}

4.2 Venn Diagrams

We can represent arbitrary sets pictorially by some drawings called Venn di-
agrams. Sets are blobs that overlap each other. Any region of the drawing
can be characterised by some expression obtained by combining the sets by set
operations.
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The shaded area represents AN B

o

The shaded area represents AU B

S

The shaded area represents A\ B

Whenever we want to show also the boundaries of the universal set, it is

depicted as a big rectangle. For example, we need to show the universe when
representing the complement:

u

@

The shaded area represents A

Venn diagram associated to an expression. Given any expression com-
bining variable names for sets using the operators of intersection, union, differ-
ence and complement, we can draw a Venn diagram and identify on it the area
associated with the given expression. For example, here is a Venn diagram with
a shaded area associated to the expression (AU C) \ B:
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C
The shaded area represents (AU C)\ B

4.3 The algebra of sets

The expressions obtained by combining sets by set operations form a kind of
algebra. To check what equalities hold in this algebra, we can use Venn dia-
grams. Remember, however, that the diagrams are only intuitive drawings and
they are not considered a proper proof.
For example, we want to check if the following equality is true for all possible
sets A, B and C:
Au(BNC)=(AUB)N(AUCQC).

In other words: does union distribute over intersection?
Let’s construct two Venn diagrams depicting the left-hand and right-hand
side of this equality, respectively:

A B A B A B

C C C
shaded area: A shaded area: BNC shaded area: AU (BNC)

A B A B A B

C C C
shaded area: AUB  shaded area: AUC shaded area: (AU B)N(AUC)

We obtained the same area in the two diagrams for the two sides of the
equality. This tells us that the equality is probably true.



This was not a proper proof: Venn diagrams are only an intuitive way to
picture sets, they do not actually correspond to the real sets. If we want to
be mathematically sure of the equality, we must prove it rigorously from the
definitions.

Theorem 9 Given any three sets A, B and C'; the following equality holds:
AU(BNC)=(AuB)N(AUCQ).

Proof. Let’s unfold the definitions to check what it means to be an element of
those two sets. For every element x € U we have that:

reAUBNC)s (z€A)V(zeBN(C)
x€eA)V((xeB)A(zel));

adl
r€(AUB)N(AUC) e (z€e AUB)A(z e AUC)
S((xeA)V(@eB)A((zeA)V(xel)).

But now, by distributivity of disjunction over conjunction, we have that:
(zeA)V({(zeB)AN(zel)e(zeA)V(zeB)A(zeA)V(ze)).

[If you’re not convinced of this step, go back to the rules of Boolean algebra.
Check the rule of distributivity of disjunction over conjunction and make the
following substitutions: replace A by (x € A), replace B by (z € B) and replace
C by (x € C). You will obtain exactly the equivalence above.]

If we put all the equivalences together, we obtain:

reAUBNC)erxe(AUB)N(AUC).

This states that being an element of AU(BNC) is equivalent to being an element
of (AUB)N(AUC). In conclusion: AU(BNC)=(AUB)N(AUC). O

Notice that we exploited the Boolean law of distributivity of disjunction over
conjunction to prove distributivity of union over intersection. This works be-
cause intersection was defined using conjunction and union was defined using
disjunction. It is a general pattern: all the rules of Boolean algebra give corre-
sponding rules of set algebra. Complement corresponds to negation. So if you
take a Boolean equality, replace A by N, V by U and — by -, you obtain a set
equality.

For example, the first De Morgan law becomes:

ANB=AUB.

Try to prove this equality formally, like we did above for distributivity.

4.4 Cartesian Product

Another important binary operation on sets is the Cartesian Product: given two
sets A and B, their Cartesian product, indicated by A x B is the set of pairs
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of elements from them. If a € A and b € B, then we indicate by (a,b) the pair
that they form. So we have:

Ax B={{a,b)|ae ANbE B}.

The order of the pair is important: the same two elements may form two
different pairs in inverse orders. For example, take the two sets to be:

A = {apple, banana, cherry}, B = {peach, banana, apple, strawberry}.

Then both (apple, banana) and (banana, apple) are elements of A x B and they
are considered different:

(apple, banana) # (banana, apple).

Notice, in passing, that a pair like (peach, cherry) is not an element of the Carte-
sian product, because peach is not an element of A and also because cherry is
not an element of B:

(peach, cherry) € A x B.

On the other hand, the order of the elements is not important when we give
a set by enumerating its elements. In that case we are only interested in what
elements are in the set, not the way they are listed:

{apple, banana} = {banana, apple},
{peach, banana, apple, strawberry} = {strawberry, peach, apple, banana}.

4.5 Subsets

The subset relation, C, is a partial order relation on sets, that is, it satisfies the

properties of reflexivity, antisymmetry and transitivity:

Reflexivity: X C X
Antisymmetry: (XCY)AY CX)=X=Y
Transitivity: (X CY)A(Y CZ)=XCZ

It is clearly not total: given two sets, it is not necessary that one of the two
is contained in the other one.

A set can contain other sets, like a box containing smaller boxes. We can
collect all the subsets of a given set X into one bigger set, called the set of parts
of X, and denoted by P(X). Notice that the empty set @ and X itself are
always subsets of X. For example:

P({apple, banana, cherry})

= { @,{apple}, {banana}, {cherry},
{apple, banana}, {apple, cherry}, {banana, cherry},

{apple, banana, cherry}
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Its elements are themselves sets. Be careful to keep this distinction in mind.
For example we have:

banana ¢ P({apple, banana, cherry})
{banana} € P({apple, banana, cherry}).

The object banana is not an element of the set of parts, but the set containing
just banana is.

4.6 Cardinality.

The number of elements of a set is called its cardinality. Given a set X, its
cardinality is denoted by |X|. For example:

|[{apple, banana, cherry}| = 3
| P({apple, banana, cherry})| = 8
{n € N |nis odd A n? +n < 100}| = 5.

If a set has a finite number of elements, then its cardinality is a natural
number. For infinite sets there are other “infinite numbers” that can be used
to measure their cardinality, but we are not studying them in this course.

Suppose a set A has n elements, that is |A| = n, and another set B has m
elements, that is |B| = m. What is the cardinality of A x B. Remember that
the elements of this Cartesian product are the pairs (a,b) with a € A and b € B.
We have n different possible choices for A; for each of these, we have m possible
choices for b. So we have n x m different pairs:

A x B| = 4] -|BI.

Suppose we know that a set X has n elements, that is, |X| = n. Can we
compute the cardinality of P(X)? Each subset of X is determined by choosing,
for every element of X, whether it goes in the subset or not. So we have two
choices for each object. We obtain all possible subsets by making all possible
choices. Therefore, multiplying the possible choices for each element, we get 2™

subsets:
|P(X)] =21,

Another useful counting principle tells us about the relation of the cardinality
of two sets A and B with their union and intersection. It is called the inclusion-
exclusion principle:

|AUB| = |A|+|B| - |ANB.

Convince yourself that this formula is correct by testing it on a few examples.
The informal reasoning behind it is that if A and B have some elements in
common, then when we compute |A U B| we count those elements only once,
but when we compute |A| and | B| we count them twice; so we need to subtract
one of the double countings.
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4.7 Functions

A function between two sets is a rule or a correspondence that associates to
every element of the first set a unique element of the second set. For example,
consider a correspondence between a set of three people and a set of fruit; it’s
a function that associates to every person her/his favourite fruit:

Anna apple
Brian banana
Carla cherry

peach

This defines a function, let’s call it favourite, between two sets. We use the
following notation to denote this fact:

favourite : {Anna, Brian, Carla} — {apple, banana, cherry, peach}

favourite(Anna) = banana
favourite(Brian) = peach
favourite(Carla) = apple

The set from which the function starts is called its domain, the one where
it arrives is called its codomain.

When the domain is finite, as in the example above, we can define the
function by just giving its values on every element, as we did. This is clearly
impossible when the domain is an infinite set, for example the natural numbers.
In that case the function needs to be defined by a formula or by some rule.
Recursive definitions, which we studied a few lectures ago, are also a method to
define a function.

Injective Functions. We say that a function is injective if every element of
the domain is associated to a different result, that is, if no two elements share
the same result. Formally we can define it as follows. Suppose f: A — B:

f is injective & x #£y= f(x)# f(y) for all elements z,y € A.

The function favourite is injective because every person has a different favourite
fruit. It is very useful to apply the definition in the contrapositive way: if two
elements give the same result, then they must be equal:

fis injective < f(z) = f(y) = x = y for all elements z,y € A.
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Surjective Functions. We say that a function is surjective if every element
of the codomain is the result of applying the function to some element of the do-
main, that is, if every element is the “target” of the function for some argument.
Formally we can define it as follows.

f is surjective < for every b € B there is some a € A such that f(a) =b.

The function favourite is NOT surjective because cherry is nobody’s favourite
fruit.

Consider instead the following function, going in the opposite direction,
which associates to every fruit the person that owns it:

owner : {apple, banana, cherry, peach} — {Anna, Brian, Carla}

owner(apple) = Anna
owner(banana) = Carla
owner(cherry) = Anna
owner(peach) = Brian

This function is in fact surjective: every person owns at least one fruit. On the
other hand it is not injective: when applied to apple and cherry it gives the same
result, Anna.

Bijective Functions. A bijective function is one that is both injective and
surjective. Neither of the two functions defined above is bijective: favourite isn’t
because it’s not surjective and owner isn’t because it’s not injective.
Let’s consider the following function f that associates a number smaller than
4 to fruit:
fn : {apple, banana, cherry, peach} — {0, 1,2, 3}

fn(apple) = 2

fn(banana) =0

fn(cherry) = 3

fn(peach) =1

This function is injective (no two elements give the same result) and surjective
(every number in the codomain is the result for some argument), therefore it is
bijective.

Let’s look at three numerical functions now and determine which of the
properties of injectivity, surjectivity and bijectivity they satisfy.

f:N— N
fln)=2xn+1

This function is injective: suppose f(n) = f(m), that is, 2xn+1=2xm+ 1;
simple Arithmetic then tells us that n = m. On the other hand it is not
surjective: the values 0 and 2 (and all other even numbers) are not results of f.

half :N— N
half(n) = |n/2|
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This function is not injective: half(0) = 0 and half(1) = 0, so two distinct
arguments give the same result. But it is surjective: every number m can
be obtained as the result of this function on a certain argument, by taking
n = 2 x m; in fact, half(2 x m) = m.

swap: N —- N
swap(n) =n+1 if nis even
swap(n) =n—1 if nis odd

This function is both injective and surjective (I leave it to you to prove it). This
fact can be clearly seen if we draw it using arrows:

Composition. Suppose we have two functions such that the codomain of the
first coincides with the domain of the second: f: A — B and g: B — C. We
can compose them by applying one after the other: starting with an element
of A we first compute f on it and then we compute g on the result that we
obtained from the first step:
A4 L B 4 c
rom fl@) — g(f@)

The result is a function from A to C that we denote by go f. Attention: the first
function to be applied, f, is written to the right of the second to be applied, g.

gof:A—=C
(90 f)(x) =g(f(x))
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As an example, let’s compute the composition of the favourite fruit and
owner functions from above. The clearest way to do it is to represent them
using arrows to show the associations and then “follow the arrows” to find
the result of the composition. In our case we have: A = {Anna, Brian, Carla},
B = {apple, banana, cherry, peach} and C' = {Anna, Brian, Carla}.

A Beuge p B ¢
Anna apple Anna
Brian banana Brian
Carla cherry Carla
peach

owner o favourite : {Anna, Brian, Carla} — {Anna, Brian, Carla}

(owner o favourite)(Anna) = Carla
(owner o favourite) (Brian) = Brian
(owner o favourite)(Carla) = Anna

For a numeric example, let’s compose the two functions f and half on the
natural numbers:

halfof: N = N
(halfof)(n) = [(2xn+1)/2]

In this case the expression for the composition can be simplified:
(halfof)(n) = n.

The simplest of all functions is the one that doesn’t do anything: it gives as
result the argument itself. It is called the identity function:

id:A— A
id(a) =a

Suppose we have two functions going in opposite directions: f: A — B and
g : B — A. We say that they are inverse of each other if both go f = id and
fog=id. Be careful: both compositions must be checked, in general they give
different functions. In fact g o f is a function from A to A, while fo g is a
function from B to B.

For example notice that, as we showed above, half o f = id. But if we compose
the functions the other way around we don’t get the identity anymore: for

67



example, (fohalf)(2) = 3. So half and f are not inverse of each other. (We may
still say that half is a left inverse of f and that f is a right inverse of half).

If f: A — B has an inverse, this is denoted by f~1.

The most important fact about bijections is that they are exactly those
functions that can be inverted.

Theorem 10 The following equivalence is true for every function f: A — B:
f is bijective < f has an inverse.

(We will not look at the proof of this theorem, but you may want to try to
give it yourself.)

For example, we remarked earlier that the function fn is bijective. It is easy
to compute its inverse by associating to each number the fruit that’s mapped
to it by fn:

fnt: {0,1,2,3} — {apple, banana, cherry, peach}
fn1(0) =

Cardinality of functions We indicate by A — B the set of all functions
from A to B. If A and B are finite sets with cardinalities n = |A| and m = |B|,
we want to compute the number of functions between them, |A — B|. To
determine one function f we have to specify, for every element a € A, what the
value of f(a) is, and we have m different choices for it. This is true for every
element of A, and the choice that we make for each is independent from the
others. So we have to chose one value out of m possibilities, n times. The total
number of possible choices is then m™:

|A — B| = |B|I.
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