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Chapter 5

Combinatorics

5.1 Quantifiers

When we want to say that each element of a set satisfies some property, we
use phrases like ‘for all ...’ or ‘for every ...’. Similarly, to say that at least
one object satisfies the property, we use phrases like ‘there exists ...’ or ‘for

some ...’. That’s what we have done so far. Now we want to use mathematical
symbols to express the same statements. They will make the sentences more
precise and it will be easier to do correct proofs. We call these new symbols
quantifiers: they are operators that use a variable name to denote an arbitrary
element of a set. Here are the two main quantifiers used in symbolic logic:

symbol name meaning
∀ Universal quantifier for all

for every

for each

∃ Existential quantifier there is

for some

there exists

Suppose S is a certain set and P is a property that elements of S may or may
not satisfy. Then to express that all elements of S satisfy it, or that at least one
element of S satisfies it, we would use the following two formulas, respectively:

∀x ∈ S.P (x) Every element of S satisfies P ;
∃x ∈ S.P (x) There exists an element of S that satisfies P .

For example, to state the existence of quotient and remainder for natural
numbers, we can express it in English:

For every two natural numbers n and m such that m > 0, there are a
quotient q and a remainder r such that n = q ·m+r and 0 ≤ r < m.
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Alternatively we can write the same statement more compactly in mathe-
matical notation:

∀n ∈ N.∀m ∈ N.m > 0⇒∃q ∈ N.∃r ∈ N.(n = q ·m+ r) ∧ (0 ≤ r < m).

Often, when the universal set has been specified in advance and there is no need
to explicitly state what kind of objects the variables denote, we can omit the set
over which we quantify. For example, if it is clear from the context that we are
talking about natural numbers, we can simplify the previous proposition to:

∀n.∀m.m > 0⇒∃q.∃r.(n = q ·m+ r) ∧ (0 ≤ r < m).

Another example of the use of the existential quantifier is the definition
of the less than or equal relation on natural numbers. Remember that we
defined n ≤ m to mean that m = n + h for some natural number h. We can
now formulate this definition as an equivalence expressed in purely symbolic
language:

n ≤ m ⇔ ∃h.n+ h = m.

There are formal rules to use the quantifiers, of the same kind as those that
we learnt for the connectives. However, they are not the topic of this course. So
we leave them for more advanced courses and we continue to use our intuitive
understanding to reason about the universal and existential quantifiers.

5.2 Finite sets

When talking about sets we intuitively defined their cardinality as the number of
elements they contained. We can now give a precise definition, using the notion
of bijection. This will help in reasoning rigorously about the size of collections.
We choose, for every natural number n, a canonical set with n elements, which
we indicate by Nn or Zn: it consists of the first n natural numbers.

Zn = {0, 1, 2, · · · , n− 1}
= {i ∈ N | i < n}

(Note: the number n itself doesn’t belong to Zn).
The set Z0 has zero elements, so it is the empty set. Here are the first few

of the canonical finite sets:

Z0 = {} = ∅

Z1 = {0}
Z2 = {0, 1}
Z3 = {0, 1, 2}
Z4 = {0, 1, 2, 3}

Now we can give a formal definition of finite cardinality: a set has cardinality
n if it can be put in bijective correspondence with Zn.

70



Definition 11 Let S be a set and n a natural number. We say that S has

cardinality n, and we write |S| = n, if there is a bijection from S to Zn. In

formulas:

|S| = n ⇔ ∃f : S → Zn.f is bijective.

For example, in the previous lecture we proved that the set {apple, banana, cherry, peach}
has four elements by giving the following bijection:

fn : {apple, banana, cherry, peach} → Z4

fn(apple) = 2
fn(banana) = 0
fn(cherry) = 3
fn(peach) = 1

The bijections from Zn to itself are particularly interesting. They are called
permutations and they have some elegant properties. For example, we can
always find the inverse of a permutation by composing it with itself a number
of times. Let’s consider, for example, the following bijection on the set with six
elements:

f : Z6 → Z6

f(0) = 3
f(1) = 5
f(2) = 0
f(3) = 2
f(4) = 4
f(5) = 1

Let’s now compose it with itself a number of times and see what happens.
We use the exponential notation fm to indicate the composition of f with itself
m times: f2 = f ◦ f , f3 = f ◦ f ◦ f = f ◦ f2, f4 = f ◦ f3 and so on. We also,
for completeness, put f0 = id and f1 = f .

f2 : Z6 → Z6;
f2(0) = 2
f2(1) = 1
f2(2) = 3
f2(3) = 0
f2(4) = 4
f2(5) = 5

f3 : Z6 → Z6;
f3(0) = 0
f3(1) = 5
f3(2) = 2
f3(3) = 3
f3(4) = 4
f3(5) = 1

f4 : Z6 → Z6;
f4(0) = 3
f4(1) = 1
f4(2) = 0
f4(3) = 2
f4(4) = 4
f4(5) = 5

f5 : Z6 → Z6;
f5(0) = 2
f5(1) = 5
f5(2) = 3
f5(3) = 0
f5(4) = 4
f5(5) = 1

f6 : Z6 → Z6

f6(0) = 0
f6(1) = 1
f6(2) = 2
f6(3) = 3
f6(4) = 4
f6(5) = 5.

We found out that f6 = id. This tells us that f5 is the inverse of f : f5 = f−1.
This is not a coincidence: it is always possible to write the inverse of a bijection
on a finite set as a composition with itself a certain number of times.

5.3 The pigeonhole principle

The pigeonhole principle: If a mailman has to deliver 21
letters to 20 pigeonholes, then there will be at least one pigeonhole
with at least two letters.
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The so-called pigeonhole principle is an apparently trivial fact, but it is very
useful in proving theorems about finite sets. It holds more generally: if n letters
must be delivered to m pigeonholes and n > m, then there will be at least one
pigeonhole with at least two letters. In mathematical terms, we can see the
delivery as a function from the set of letters to the set of pigeonholes. The fact
that there must be at least one pigeonhole with at least two letters amounts to
the function not being injective. We formulate the principle in the contrapositive
way:

Theorem 12 (The Pigeonhole Principle) Let f : Zn → Zm; if f is injec-

tive, then n ≤ m.

The proof is by induction on n and is not completely trivial. We omit it here.
There are other equivalent formulations and important consequences. Two

of the most useful ones are the following.

Theorem 13 Let f : Zn → Zm; if f is surjective, then n ≥ m.

Theorem 14 Let f : Zn → Zn; then

f is injective ⇔ f is surjective.

We formulated the principle and its consequences on the canonical finite sets
Zn, but it is of course valid for all finite sets. So if f : X → Y is an injective
function and |X| = n, |Y | = m, then we can conclude by the pigeonhole principle
that n ≤ m.

5.4 Shaking hands

Let’s try to solve the hand-shaking puzzle that we looked at on the first lecture:

Mr and Mrs Smith invited four other couples to their house. At the
party, some people shake hands with other guests, but not necessar-
ily with everybody. Nobody shakes hands with their own spouse.

At the end of the party, Mr Smith observes: If you don’t count me,

there are no two people who shook hands the same number of times.

How many times did Mrs Smith shake hands?

There are 10 people at the party. Mr. Smith’s observation tells us something
about 9 of them (everybody except him). Let’s assign conventional numbers to
these 9 guests: we give number 0 to Mrs. Smith, numbers 1 and 2 to one couple,
3 and 4 to to the next, then 5 and 6 for the third couple, and finally 7 and 8 to
the last couple. Now consider the function shakes that associates to every guest
the number of people that she/he shook hands with. This number is at most 8
(since nobody shakes hands with themselves or their spouse). We then have:

shakes : Z9 → Z9
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Mr. Smith’s observation tells us that this function is injective. One of the
consequences of the pigeonhole principle, Theorem 14, lets us conclude that it
must also be surjective. So it is a bijection, because it is both injective and
surjective. In particular, there must be one person that shook hands 0 times
and another that shook hands 8 times.

Notice that it is impossible that Mrs. Smith shook hands 8 times. If she
did, she should have shaken hands with all the guests except her husband. But
then there would be no one who shook hands 0 times.

So it must be somebody else who shook hands 8 times. Let’s say that it
was person 1 (since we didn’t make any distinction among the guests, apart
from Mrs. Smith, it doesn’t matter who we choose here). Then person 1 must
have shaken hands with everybody except his/her spouse. So the only person
who might have shaken hands 0 times is person 1’s spouse, since everybody else
shook hands with person 1. In conclusion it is person 2 who shook hands 0
times.

Now there also must be two people who shook hands 1 time and 7 times,
respectively. Reasoning as above, we can conclude that it is impossible that
Mrs. Smith shook hands 7 times (it would make it impossible for anybody to
have shaken hands exactly 1 time). So it must be somebody else: let’s say it
was person 3. Then it is sure that it was person 3’s spouse who shook hands 1
time (everybody else shook hands at least twice).

We can continue in the same line: the persons who shook hands 2 and 6
times must form a couple, those who shook hands 3 and 5 times must form
another couple.

By exclusion we have to conclude that Mrs. Smith shook hands exactly 4
times.

Did you notice that this line of reasoning resembles induction? We repeated
the same logical steps several times with a decreasing number: first for 8, then
for 7, then for 6 and so on.

In fact, it is possible to generalise this puzzle and give the solution induc-
tively. Suppose that the Smiths invited n couples to the party, where n can be
any natural numbers. If Mr. Smith observes that everybody except him shook
hands a different number of times, then Mrs. Smith must have shaken hands
exactly n times. You can prove this by induction on n using a slight variation
of the proof that we used for four couples.

5.5 Counting Functions and Subsets

How many different functions are there from Zn to Zm? How would you go
about counting them?

Let’s see: think about what information you need to determine one func-
tion, then count all the possible different ways of choosing that information. A
function f : Zn → Zm is picked by assigning values to every element of Zn; for
every element we have m possible choices for its value; we have n elements to
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which we assign values. So we need to multiply the number of possible choices
for each element: mn is the number of all possible functions.

Now let’s restrict our attention to functions from Zn to itself. We already
know that there are nn such functions. But how many of them are permutations?
(Remember that, by the pigeonhole principle, talking about bijections is the
same as talking about injections.) Proceeding as before, we just have to multiply
all the possible choices for each element. We have n choices for the first element;
but only n − 1 choices for the second element, because we cannot choose the
same value as for the first; then we have n− 2 choices for the third element (we
cannot choose the values of the first two; and so on. In conclusion: the number
of all possible permutations is n · (n− 1) · (n− 2) · · · 1 = n!.

Generalising a bit: how many injective functions are there from Zn to Zm

(assuming that n ≤ m, otherwise there are no injections at all)? Reasoning as
above we conclude that the number of injection is

m · (m− 1) · · · (m− n+ 1) =
m!

(m− n)!
.

Now let’s count the subsets of a finite set that have a fixed cardinality. We
already know that the number of all subsets of Zn is 2n.

Now we want to count the subsets of Zn that contain a fixed number of
elements. For example, how many subsets of Zn have exactly two elements?
How many have cardinality exactly 3? And so on. We have a special notation
for this number:

(

n

k

)

: number of subsets of Zn of cardinality k.

Read this as “n choose k.” These numbers are usually called binomial coef-

ficients.

Let’s start with an example. How many subsets with two elements does Z3

have? Let’s proceed as before: we multiply all the possible choices for the first
element with all the possible choices for the second element. We have 3 choices
for the first and 2 for the second, so we get 3 · 2 = 6; but this is not yet the
correct result. In fact, let’s write down all the possible choices:

{0, 1} {1, 0} {2, 0}
{0, 2} {1, 2} {2, 1}

Notice that, for example, {0, 1} is the same set as {1, 0}, because sets are deter-
mined by what elements they contain, not by the order in which they are listed.
Since every subset is repeated twice, their number is actually 3, not 6:

(

3

2

)

= 3.

So, in general, the number of subsets of Zn is obtained thus: we have n

choices for the first element, n− 1 choices for the second, but we get every pair

74



twice, so we have to divide by two.

(

n

2

)

=
n · (n− 1)

2

Let’s now consider how many subsets with three elements Zn has. Of course
we have n choices for the first element, n− 1 for the second, and n− 2 for the
third. But how many times do we get the same elements in different order? For
example, if we are counting the subsets of cardinality three in Z5, how many
times do we get {0, 1, 2}? Let’s write them down:

{0, 1, 2} {0, 2, 1} {1, 0, 2}
{1, 2, 0} {2, 0, 1} {2, 1, 0}

There are six different ways to get the same set. So we can conclude that:

(

n

3

)

=
n · (n− 1) · (n− 2)

6
.

In general, if we want to count the number of subsets of Zn with cardinality
k we will count them like this: we have n choices for the first element, n − 1
for the second, n− 2 for the third, and so on until n− k+1 choices for the kth
element. We multiply all these choices, but then we have to divide by all the
different ways to obtain the same k elements in a different order; this is just the
total number of permutations of k elements, that we already know to be k!. In
conclusion:

(

n

k

)

=
n · (n− 1) · · · (n− k + 1)

k!
=

n!

(n− k)! · k!
.

5.6 Pascal’s Triangle

An alternative way of determining the value of binomial coefficients uses a re-
cursive definition.

Theorem 15 Let n and k be two natural numbers, with n > 0 ad 0 < k < n.

Then
(

n

k

)

=

(

n− 1

k

)

+

(

n− 1

k − 1

)

.

Proof. We can prove the statement in two different ways. The first uses the
definition of the binomial coefficients as the number of subsets of cardinality k

of a set of cardinality n. The second uses the formula that gives the result of
the binomial coefficient using the factorial. Let’s look at both proofs, since they
show two different ways of reasoning.

Proof 1. We have defined the binomial coefficient
(

n

k

)

as the number of of
subsets of Zn with cardinality k. We can divide all those subsets in two groups:
those that don’t contain the element n− 1 and those that do.
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The subsets of the first group don’t contain n−1, so they are actually subsets
of Zn−1. Since each of them contains k elements, their total number is

(

n−1

k

)

.
The subsets of the second group will contain the element n − 1 plus other

k − 1 elements. In other words, they are obtained by taking a subset of Zn−1

with k− 1 elements and putting n− 1 in it. The total number of different ways
of doing this is equal to the number of subsets of Zn−1 with k − 1 elements:
(

n−1

k−1

)

.
Adding together the number of elements of the two groups, we get the for-

mula in the theorem.
Proof 2. Let’s use the formula for the binomial coefficients in terms of the

factorial functions. After a few arithmetical transformations we get what we
want:
(

n

k

)

=
n!

(n− k)! · k!
formula for binomial coefficients

=
n · (n− 1)!

(n− k)! · k!
definition of factorial

=
(n− k + k) · (n− 1)!

(n− k)! · k!
=

(n− k) · (n− 1)!

(n− k)! · k!
+

k · (n− 1)!

(n− k)! · k!
arithmetic

=
(n− 1)!

(n− k − 1)! · k!
+

(n− 1)!

(n− k)! · (k − 1)!
definition of factorial

=
(n− 1)!

(n− 1− k)! · k!
+

(n− 1)!

(n− 1− (k − 1))! · (k − 1)!
arithmetic

=

(

n− 1

k

)

+

(

n− 1

k − 1

)

formula for binomial coefficients.

�

We can use this theorem to give a recursive way to compute the binomial
coefficients. We know that there is only one subset of Zn with 0 elements, the
empty subset. We also know that there is only one subset with n elements, the
whole of Zn. Using these two pieces of knowledge as the base cases we have, for
every n > 0:

(

n

0

)

= 1

(

n

n

)

= 1

(

n

k

)

=

(

n− 1

k

)

+

(

n− 1

k − 1

)

if 0 < k < n.

You can see that at every recursive step we decrease the size of the top number
by one. So eventually the recursion must stop and give a result. Notice that
this recursion is a bit different from other recursive functions that we studied.
There is no explicit case for n = 0: in fact the only possible binomial coefficient
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with top number 0 is
(

0

0

)

, it has value 1 by either of the two base cases. We
always reach one of the two base cases, usually with n different from zero.

Let’s now arrange the binomial coefficients in lines. In every line we fix
the value of n and write down the results of the binomial coefficients for the n

possible values of k. So the first line will have just
(

0

0

)

= 1. The second line will

have
(

1

0

)

= 1 and
(

1

1

)

= 1. The third line will have
(

2

0

)

= 1,
(

2

1

)

= 2 and
(

2

2

)

= 1.
And so on. We get a table of all values, called Pascal’s triangle:

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

1 6 15 20 15 6 1
· · ·

The two sides of the triangle always contain the number 1; those are the base
cases of the recursion. The other values are obtained by adding the numbers
that are directly above them, slightly to the left and right; that’s what the
recursion step says.

5.7 Powers of a Binomial

Do you want to know why these numbers are called binomial coefficients?
In mathematics, a binomial is any expression which is the sum of two different

terms, for example x+y. Let’s compute the powers of this binomial: (x+y)0 = 1,
(x + y)1 = x + y, (x + y)2 = x2 + 2xy + y2, (x + y)3 = x3 + 3x2y + 3xy2 + y3

and so on. Now look at the coefficients of every term in these powers. For
example, in the formula for (x+ y)3 the term x3 has coefficient 1, the term x2y

has coefficient 3, the term xy2 has coefficient 3 and the term y3 has coefficient
1. Those are exactly the values of

(

3

0

)

,
(

3

1

)

,
(

3

2

)

and
(

3

3

)

. This is true in general.

Theorem 16 For every natural number n we have that:

(x+ y)n =

n
∑

k=0

(

n

k

)

· xn−k · yk.

We are not giving the proof of this fact. If you want to work it out for yourself,
I’ll give you a hint: do induction on n and use the recursive computation of
binomial coefficients and the properties of summations.
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