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Chapter 6

Modular Arithmetic

6.1 Pascal’s Triangle

One easy way to compute the binomial coefficients is by building Pascal’s trian-

gle. It is a triangular table containing in row n the values of
(

n

k

)

for all possible
values of k:

n = 0 1
1 1 1
2 1 2 1
3 1 3 3 1
4 1 4 6 4 1
5 1 5 10 10 5 1

So for example
(

4

3

)

is the fourth element for the line for 4 (because the first

element is
(

4

0

)

), that is, 4.
There is an easy recursive way of computing the triangle, based on the

following fact.

Theorem 17 For every natural number n and every natural number k such

that 0 < k < n, we have that:

(

n

k

)

=

(

n− 1

k

)

+

(

n− 1

k − 1

)

Proof. We can prove this theorem in two ways: by using the definition of
binomial coefficient or by using the formula to compute it with factorials. Let’s
look at both proofs.

Proof 1: Remember that
(

n

k

)

is the number of subsets of size k in a set of
size n, for example in Zn. Now let’s divide these subsets in two groups: those
that contain n− 1 and those that don’t. The ones that don’t contain n− 1 are
subsets of size k of Zn−1 and we know that there are

(

n−1

k

)

ways of choosing
them. The ones that contain n − 1 will also have to contain k − 1 elements of
Zn−1; we know that there are

(

n−1

k−1

)

ways of selecting the latter. Putting the
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two groups together, we know that we have
(

n−1

k

)

+
(

n−1

k−1

)

ways of selecting our
subset, as the formula says.

Proof 2: Let’s write out both sides of the equality in terms of factorials and
verify that they are the same.

(

n

k

)

=
n!

(n− k)! · k!

(

n− 1

k

)

+

(

n− 1

k − 1

)

=
(n− 1)!

((n− 1)− k)! · k!
+

(n− 1)!

((n− 1)− (k − 1))! · (k − 1)!

=
(n− 1)!

(n− k − 1)! · k!
+

(n− 1)!

(n− k)! · (k − 1)!

=
(n− k) · (n− 1)! + k · (n− 1)!

(n− k)! · k!

=
(n− k + k) · (n− 1)!

(n− k)! · k!

=
n!

(n− k)! · k!

Since we obtained the same result from both expressions, the equality must be
true. �

The theorem allows us to give a recursive way to compute binomial coef-
ficients; we use as base cases the fact that there is only one subset with zero
elements, the empty set, and only one subset with n elements, the whole set.

Recursive computation of binomial coefficients:

(

n

0

)

= 1

(

n

n

)

= 1

(

n

k

)

=

(

n− 1

k

)

+

(

n− 1

k − 1

)

if 0 < k < n.

Pascal’s triangle is constructed using this recursive definition. The “sides” of
the triangle correspond to the base cases and are always 1. The internal values
are obtained by adding the two values that are immediately above and to the
left and right of the one we want to compute. So, for example, line number 6
is:

1 6 15 20 15 6 1.

6.2 Hilbert’s Hotel

One of the consequences of the pigeonhole principle was that for a function f :
Zn → Zn, injectivity is equivalent to surjectivity and, therefore, to bijectivity.
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This is not true for infinite sets. In fact, a set X is infinite exactly when there
is a function f : X → X that is injective but not surjective.

For example, for the natural numbers N, we can show these two functions:

f : N → N

f(n) = n+ 1 injective but not surjective;

g : N → N

g(n) = quot(n, 2) surjective but not injective.

The property of infinite sets of allowing injective but not surjective functions
to themselves (which can be taken as the definition of infinity) is exploited in a
whimsical tale about the “Hilbert’s Hotel”.

The hotel happens to have an infinite number of rooms, numbered 0, 1, 2,
etc. There’s a room for every natural number.

At present the hotel is completely booked. In the middle of the night a
traveller comes to the reception and asks for accommodation. The hotel owner,
Mr. Hilbert, tells him that, although at the moment all rooms are occupied, he
can find a place for the new customer. (In reality, David Hilbert was a German
mathematician who, around 1900, worked on the foundations of mathematics
and the problems of the infinite.) Hilbert asks the tenant of room 0, let’s call
him Tenant 0, to move to room 1; he asks Tenant 1 to move to room 2; Tenant
2 to move to room 3 and so on. In this way every tenant is moved to a new
room and room 0 is left free for the newcomer. You see that what Hilbert did
is to apply the function f(x) = x+1 to the tenants to determine what room to
put them in. Since the function is injective, no two people are sent to the same
room; and since it is not surjective, a new room is magically freed.

The properties of Hilbert’s Hotel are even more astonishing. Some time later
an “infinite bus” stops in front of the hotel. It contains an infinite number of
travellers, let’s call them Newcomer 0, Newcomer 1, Newcomer 2 and so on.
They ask Mr. Hilbert to find them a place to stay. Again, Hilbert is unfazed:
now he asks Tenant 1 to move to room 2, Tenant 2 to move to room 4, Tenant
3 to mover to room 6, and so on, Tenant n moves to room 2 × n. In this way,
an infinite number of rooms becomes available: Newcomer 0 is accommodated
in room 1, Newcomer 1 in room 3, Newcomer 2 in room 5 and so on, Newcomer
m is accommodated in room 2×m+ 1.

6.3 Modular Arithmetic

The operations of addition and multiplication can be extended to the sets Zn

by “wrapping the result around”, that is, by taking the remainder of the result
after division by n. If two natural numbers a and b have the same remainder
when they are divided by n then we say that they are equivalent modulo n and
we write:

a ≡ b (mod n).
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By definition this mean that we can write both a and b as:

a = q1 · n+ r

b = q2 · n+ r
with 0 ≤ r < n.

The remainder r is an element of Zn. If we are in a context in which it
is clear that we are talking exclusively about elements of Zn, then we could
consider also a and b as different ways of writing r.

We are all familiar with this way of seeing numbers: on a clock dial the hours
1 and 13 are represented by the same mark:

The clock actually represent the set Z12. We can perform addition on its ele-
ments: if two friends meet at 7 and agree to meet again 10 hours later, we know
that the appointment is for 5 o’clock. This operation is performed by adding
the numbers, 7 + 10 = 17, and then taking the remainder of the division by 12,
obtaining 5. (To be realistic we should distinguish between AM and PM, or use
a clock with 24 hours instead, working in Z24.)

Imagine a planet that rotates around its axis in 26 hours. The inhabitants
of that planet may have watches looking a bit like this:

The times on the planet are given as elements of Z26 (at least as long as we are
happy with the hours and don’t care about minutes and seconds). The number
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29, for example, is considered just a different way of writing 3. The negative
number −2 is a different way of writing 24.

We denote by the symbols ⊕ and ⊗ the operations of addition and mul-
tiplication in Z26. Remember that they are just the ordinary addition and
multiplication, but taking the remainder of the division by 26 at the end. For
example:

9⊕ 13 = 22 (in Z26)
14⊕ 15 = 3 (in Z26)
8⊕ 18 = 0 (in Z26)
6⊗ 3 = 18 (in Z26)
6⊗ 4 = 24 (in Z26)
6⊗ 5 = 4 (in Z26)
2⊗ 13 = 0 (in Z26)

It is important that we always specify clearly that we are working on a
specific set Zn, since the operations will generally have different results for
different values of n. For example, if we take n = 19 the operations above give:

9⊕ 13 = 3 (in Z19)
14⊕ 15 = 10 (in Z19)
8⊕ 18 = 7 (in Z19)
6⊗ 3 = 18 (in Z19)
6⊗ 4 = 5 (in Z19)
6⊗ 5 = 11 (in Z19)
2⊗ 13 = 7 (in Z19)

It is more common to use the normal symbols + and × for addition and mul-
tiplication in Zn, but always remember to specify that they must be computed
modulo n.

Modular Arithmetic satisfies most of the same properties as Arithmetic on
the natural numbers and integers. But it has some surprising idiosyncrasies.
Firs of all, there may be zero divisors. These are numbers x and y, both different
from zero, but whose product x⊗ y give zero. We have seen an example above:
2 ⊗ 13 = 0 (in Z26). This happens if n is a composite number: in our case it
happens because 26 = 2× 13.

It never happens if n is a prime number. But in that case something even
more interesting occurs: every non-zero number has a multiplicative inverse:

Theorem 18 If p is a prime number, then for every element x ∈ Zp, if x 6= 0
then there exists an element x−1 ∈ Zp such that x⊗ x−1 = 1.

For example, in Z7 we have that 5−1 = 3 because 5 ⊗ 3 = 1 (in Z7). You
may verify for yourself that the inverses of all non-zero elements of Z7 are the
following:

1−1 = 1, 2−1 = 4, 3−1 = 5, 4−1 = 2, 5−1 = 3, 6−1 = 6.
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6.4 The Monkey and the Coconuts

On the first lecture I proposed the following puzzle:

Five men and a monkey were shipwrecked on a desert island,
and they spent the first day gathering coconuts for food. They piled
them all up together and then went to sleep for the night.

But when they were all asleep one man woke up and decided to
take his share. He divided the coconuts in five piles. He had one
coconut left and he gave it to the monkey. He took his pile and put
the rest all back together.

Later a second man woke up and acted in exactly the same way:
He divided the coconuts into five piles; there was one coconut left
that he tossed to the monkey; he took his pile and put the rest all
back together.

One after the other all five men do the same thing and every
time there is one extra coconut that is given to the monkey.

The next morning they divided what coconuts were left into five
parts. Once again there was one coconut left that was given to the
monkey.

How many coconuts were there at the beginning?

If we call N the total number of coconuts at the beginning, we know that N
must give remainder 1 when divided by 5:

N = 5 ·A+ 1 for some natural number A.

The first man gives one coconut to the monkey and takes one fifth of the rest
for himself. The number of the remaining coconuts is 4 ·A.

When the second man comes, he starts with 4 · A coconuts and proceed in
the same way, so:

4 ·A = 5 ·B + 1 for some natural number B.

He gives one coconut to the monkey and takes one fifth of the rest for himself:
the remaining coconuts are 4 ·B.

The same process is repeated by every man, so we have five similar steps:

N = 5 ·A+ 1 for some natural number A
4 ·A = 5 ·B + 1 for some natural number B
4 ·B = 5 · C + 1 for some natural number C
4 · C = 5 ·D + 1 for some natural number D
4 ·D = 5 · E + 1 for some natural number E

At the end of the night 4 ·E coconuts are left. The next morning they still give
one coconut to the monkey and then divide the remaining in five equal parts:

4 · E = 5 · F + 1 for some natural number F.
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To solve the puzzle we must find numbers N,A,B,C,D,E, F that satisfy
these equation. Using some algebraic manipulation, we can reduce the six equa-
tions to a relation between the initial number N and the final share F :

1024 ·N = 15625 · F + 11529.

We must solve it by finding two natural numbers N and F satisfying this equa-
tion. It is not easy to find the solution without trying all the possible values.

One way to solve the puzzle is, first of all, to notice that there are many, in
fact infinite, different solutions. Suppose we have one solution, call it N0. Since
we divided the number of coconuts by 5 six times, it is easy to see that also
N0 + 56 must be a solution (try so substitute it for N in the equations, using
the fact that N0 already satisfies them).

But if we can obtain one solution by adding 56 to one that is already known,
then we could also look at negative solutions, as long as they are still larger than
−56. In particular we may notice that if we take N0 = −4 we have that we can
solve the first equation by taking A0 = −1:

−4 = 5 · (−1) + 1.

That would give that the number of coconuts left by the first man is 4 · (−1) =
−4, that is, equal to the initial number. This, of course, doesn’t make any sense
in the real situation, since talking of negative coconuts is meaningless. But as
a solution to the equations it is correct. The second equation can be solved in
exactly the same way, since we have the same number −4 on its left. Indeed,
by taking N0 = −4 all six equations are solved in the same way.

So −4 is a solution, but not a realistic one. However, as we said earlier,
when we have a solution we can get another one by adding 56 to it, therefore
the number

−4 + 56 = −4 + 15625 = 15621

and this number is the solution we are looking for.
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