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Question 1: (25)

For the following questions, each correct answer gives 1 mark. Every
incorrect or blank answer receives a negative mark of -1.

(a) Consider the following three propositional variables, defined as state-
ments in English: (5)
A = Dinosaurs are extinct.

B = Colourless green ideas sleep furiously.

C = This sentence is prickly.

Translate the following two English sentences into propositional formu-
las:

(i) If colourless green ideas sleep furiously, then this sentence isn’t

prickly.

(ii) If dinosaurs aren’t extinct and this sentence is prickly, then colour-

less green ideas don’t sleep furiously.

(iii) Is the implication connective, ⇒, associative?

(iv) Write the truth table of the propositional formula A ∧ ¬(B ∨ A).

(v) Is the propositional formula A ∨ B ⇒ (A⇒¬B) a tautology?

(b) Compute the values of the following expressions: (5)

(i) ⌊| − 5.2|⌋

(ii) |⌈−2.7⌉|

(iii) ⌊⌈11/5⌉/2⌋

For each of the following propositions, state if it is true or false:

(iv) For every real number x, ⌊⌈x⌉⌋ = ⌈⌊x⌋⌉.

(v) For every real number x, ⌊x⌋ = ⌊y⌋ ⇒ ⌈x⌉ = ⌈y⌉.

(c) For each of the following propositions, state if it is true or false (5)
(all variables denote natural numbers):

(i) 1 divides every natural number.
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(ii) Divisibility is a symmetric order relation.

(iii) (k | n) ∧ (k | m)⇒ k | gcd(n,m).

(iv) If p is prime, then gcd(p, n) = p.

(v) The “larger or equal” relation, ≥, is antisymmetric.

(d) Consider the following two sets: (5)

A = {rose, tulip, dandelion, daisy}
B = {daisy, cyclamen, tulip, orchid}

List the elements of the following sets:

(i) B \ (A \B)

(ii) P(A ∩ B)

For each of the following propositions, state if it is true or false for all
sets X, Y and Z:

(iii) X \ (Y \X) = X

(iv) (X ⊆ Y )⇒ (X ∪ Y = X)

(v) X \ (Y ∩ Z) = (X \ Y ) ∪ (X \ Z)

(e) Compute the following: (5)

(i)
∑

0

i=1
(ii)

(ii)
∑

3

i=0

(

3

i

)

(iii) The number of subsets of Z5 of cardinality 3.

(iv) The number of subsets of P(Z5) of cardinality 3.

(v) The multiplicative inverse of 2 in Z7.
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Question 2:

This question is about propositional logic and Boolean algebra. (25)

(a) Write down the truth table for the following formula and state whether
it is a tautology or not: (5)

((A⇒B)⇒ C)⇒ A ∨ B ∨ ¬C.

(b) Complete the following derivation, which establishes that the two as-
sumptions 1 and 2 are contradictory: (10)

1 ¬A ∧ B

2 A ∨ ¬B

...
...

· · · ⊥ · · ·

(c) Using Boolean algebra, prove the following propositional equality, jus-
tifying every step by one of the rules: (10)

(C ⇒B)⇒ A = (¬C ⇒ A) ∧ (B ⇒ A).
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Question 3:

This question is about recursion and induction. (25)
Consider the recursive function defined as follows:

strangeFun(0) = 0
strangeFun(n) = 2 · n2 − strangeFun(n− 1) if n > 0

(a) Compute the following values of strangeFun: (5)

strangeFun(1)
strangeFun(2)
strangeFun(3)
strangeFun(4)

(b) Prove by induction that the following property holds for every natural
number n: (10)

P (n) : strangeFun(n) = n · (n+ 1).

(c) Complete the following recursive definition (replace the question marks
with two integers): (10)

mysteryFun(0) = 1
mysteryFun(1) = 2
mysteryFun(n) =? ·mysteryFun(n− 1) + ? ·mysteryFun(n− 2) if n > 1

knowing the following values of the function:

mysteryFun(2) = 7
mysteryFun(3) = 29
mysteryFun(4) = 124
mysteryFun(5) = 533
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Question 4:

This question is about sets and functions. (25)

(a) Let A, B and C be three sets. Write a set expression, using the union,
intersection and difference operators, that describes the shaded area in
the following Venn diagram: (10)

A B

C

(b) Now take the three sets A, B and C to be defined as follows: (5)

A = {n ∈ N | n is prime }
B = {n ∈ N | 7 ≤ n ∧ n < 23}
C = {n ∈ N | 11 divides n}

Which of the following numbers belong to the set that you wrote down
in part (a)?

5, 7, 11, 12, 13, 15, 19, 22, 23, 33.

(c) Consider the function: (10)

f : Z4 → Z4

f(x) = x3 + x2 + x+ 1

(i) Is the function a bijection?

(ii) If the answer to (i) is ‘yes’, write down the inverse of f by giving
its values on every element of Z4.

If the answer to (i) is ‘no’, give a counterexample (either an el-
ement of Z4 that is not in the image of f , or two elements that
have the same image through f).
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Question 5:

This question is about combinatorics and modular arithmetic. (25)
Consider the following function:

g : Z5 → Z5

g(0) = 3
g(1) = 2
g(2) = 1
g(3) = 3
g(4) = 1

(a) Write down a function f such that, for every x ∈ Z5, (5)

f(x)⊕ g(x) = x2 (in Z5).

(Give the function f by specifying its values, in the same way as func-
tion g is defined.)

(b) Is f bijective? If it is, write its inverse; if it isn’t, give two arguments
on which it has the same value. (10)

(c) What is the smallest number n such that fn = id? (10)
Give a justification of your answer.
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Appendix A: Rules of propositional logic.

m A

n B

p A ∧ B ∧I, m, n

m A ∧B

p A ∧E, m

m A ∧B

p B ∧E, m

m A

p A ∨ B ∨I, m

m B

p A ∨ B ∨I, m

m A ∨ B

h A

i C

j B

k C

p C ∨E, m, h–i, j–k

m A

n B

n+ 1 A⇒B ⇒I, m–n

m A⇒B

n A

p B ⇒E, m, n

m A

n ⊥

n+ 1 ¬A ¬I, m–n

m ¬A

n A

p ⊥ ¬E, m, n

m ⊥

p C ⊥E, m

m A

p A R, m
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m ¬¬A

p A ¬¬E, m
p A ∨ ¬A EM

Appendix B: Boolean algebra.

A ∧ B = B ∧ A Commutativity of conjunction
A ∨ B = B ∨ A Commutativity of disjunction

A ∧ (B ∧ C) = (A ∧ B) ∧ C Associativity of conjunction
A ∨ (B ∨ C) = (A ∨ B) ∨ C Associativity of disjunction

A ∧ (B ∨ C) = (A ∧ B) ∨ (A ∧ C) Distributivity of conj. over disj.
A ∨ (B ∧ C) = (A ∨ B) ∧ (A ∨ C) Distributivity of disj. over conj.

¬(A ∧B) = ¬A ∨ ¬B First De Morgan law
¬(A ∨B) = ¬A ∧ ¬B Second De Morgan law

A ∧ true = A Unit of conjunction
A ∨ false = A Unit of disjunction

A ∧ false = false Zero of conjunction
A ∨ true = true Zero of disjunction

A ∧ A = A Idempotence of conjunction
A ∨ A = A Idempotence of disjunction

A ∧ (A ∨B) = A First absorption law
A ∨ (A ∧B) = A Second absorption law

A ∧ ¬A = false Contradiction

¬¬A = A Double negation
A ∨ ¬A = true Excluded middle

A⇒B = ¬A ∨B Definition of implication
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