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Intro

Intro

Saunders MacLane Samuel Eilenberg
(1909 - 2005) (1913 - 1998)

Originally: tool for algebraic topology.
Relevance for Computer Science (Lambek’s obs)
E.g. Cartesian Closed Cats ≈ Simply Typed λ-calculus
Categorical concepts in Haskell: Functor, Monad, . . .
Is Category Theory Abstract Nonsense ?
Is Category Theory an alternative to Set Theory?
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Intro

Books

MacLane Pierce Awodey
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Categories What is a category?

The category Set
Objects: Sets |Set| = Set

Morphisms : Functions, given A,B ∈ |Set|

Set(A,B) = A→ B

Identity: Given A ∈ Set
idA ∈ Set(A,A)

idA = λa.a

Composition: Given f ∈ Set(B,C),g ∈ Set(A,B):

f ◦ g ∈ Set(A,C)

f ◦ g = λa.f (g a)Laws:

f ◦ id = f
id ◦ f = f

(f ◦ g) ◦ h = f ◦ (g ◦ h)
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Categories What is a category?

Exercise 1
Derive the laws for Set using only the equations of the simply typed
λ-calculus, i.e.

β (λx .t)u = t [x := u]

η λx .t x = t if x /∈ FV t

ξ
t = u

λx .t = λx .u
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Categories What is a category?

Definition: C is a category
A (large) set of objects:

|C| ∈ Set1

Morphisms: For every A,B ∈ |C| a homset

C(A,B) ∈ Set

Identity: For any A ∈ |C|:
idA ∈ C(A,A)

Composition: For f ∈ C(B,C),g ∈ C(A,B):

f ◦ g ∈ C(A,C)
Laws:

f ◦ id = f
id ◦ f = f

(f ◦ g) ◦ h = f ◦ (g ◦ h)
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Categories What is a category?

Size matters

I assume as given a predicative hierarchy of set-theoretic
universes:

Set = Set0 ∈ Set1 ∈ Set2 ∈ . . .

which is cummulative

Set0 ⊆ Set1 ⊆ Set2 ⊆ . . .

To accomodate categories like Set we allow that the objects are a
large set (|C| ∈ Set1) but require the homsets to be proper sets
C(A,B) ∈ Set = Set0.
A category is small, if the objects are a set |C| ∈ Set

We can repeat this definition at higher levels, a category at level n
has as objects |C| ∈ Setn+1 and homsets C(A,B) ∈ Setn
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Categories What is a category?

Dual category
Given a category C there is a dual category Cop with

Objects |Cop| = |C|
Homsets Cop(A,B) = C(B,A)

and composition defined backwards.

Notation
For n ∈ N we define

n̄ = {i < n}

Question
How many elements are in Set(2̄, 3̄) and in SETop(2̄, 3̄)?
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Categories Isos

Isomorphism
An isomorphism between A,B ∈ |C| is given by two morphisms
f ∈ C(A,B) and f−1 ∈ C(B,A) such that f ◦ f−1 = id, f−1 ◦ f = id:

Aid 88

f
++ B

f−1

jj id
xx

We say that A and B are isomorphic A ' B.

Isomorphic sets are the same upto a renaming of elements.
Concepts in category theory are usually defined up to
isomorphism.
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Categories Isos

Exercise 2
Which of the following isomorphisms hold in Set:

2̄ + 2̄ ' 4̄
2̄× 2̄ ' 4̄

2̄→ 2̄ ' 4̄
N + N ' N
N× N ' N
N→ N ' N

A× B is cartesian product

A× B = {(a,b) | a ∈ A,b ∈ B}

A + B is disjoint union

A + B = {inl a | a ∈ A} ∪ {inr b | b ∈ B}
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Categories Monos and epis

Monomorphism
f ∈ C(B,C) is a monomorphism (short mono), if for all g,h ∈ C(A,B)

f ◦ g = f ◦ h

g = h

In Set monos are precisely the injective functions.
We draw monos as A // //B
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Categories Monos and epis

Epimorphism
f ∈ C(A,B) is a epimorphism (short epi), if for all g,h ∈ C(B,C)

g ◦ f = h ◦ f

g = h

In Set epis are precisely the surjective functions.
We draw epis as A // //B
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Categories Monos and epis

Exercise 3
Show that every iso is both mono and epi.

Exercise 4
Show that the bijections (i.e. functions that are both mono and epi) in
Set are precisely the isos.

Exercise 5
Show that in Set every morphism f ∈ A→ B can be written as a
composition of an epi and a mono:

B

C
__

m
__???????

A

f

OO

e
?? ??�������
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Categories Monoids and preorders

Monoids

Definition: Monoid
A monoid (M,e, ∗) is given by M ∈ Set, e ∈ M and (∗) ∈ M → M → M
such that:

x ∗ e = x
e ∗ x = x

(x ∗ y) ∗ z = x ∗ (y ∗ z)

Example
(N,0,+) is a (commutative) monoid.

Question
Give an example of a non-commutative monoid.
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Categories Monoids and preorders

Monoids correspond to categories with one object.

Monoid as a category
Every monoid (M,e, ∗) gives rise to a category M

Objects: |M| = {()}
Morphisms M((), ()) = M
e is the identity, ∗ is composition.
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Categories Monoids and preorders

Preorder
(A,v) with A ∈ Set and (v) ∈ A→ A→ Prop is a preorder if R is

reflexive ∀a ∈ A.a v a
transitive ∀a,b, c ∈ A.a v b → b v c → a v c

Example
(N,≤) is a preorder.

(N,≤) is a partial order, because it also satisfies

m ≤ n n ≤ m

m = n

Question
Give an example of a preorder, which is not a partial order.
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Categories Monoids and preorders

Preorders correspond to categories where the homsets have at
most one element.

A preorder as a category
A preorder (A,v) can be viewed as a category A:

Objects |A| = A

Homsets A(a,b) =

{
{()} if a v b
{} otherwise

Monoids and preorders are degenerate categories.
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Categories Monoids and preorders

Categories of sets with structure

The category of Monoids: Mon
Objects: Monoids (M,e, ∗)

Morphisms Mon((M,e, ∗), (M ′,e′, ∗′)) is given by f ∈ M → M ′ such
that f e = e′ and f (x ∗ y) = (f x) ∗′ (f y).

Example
The embedding i ∈ Mon((N,0,+), (Z,0,+)) with i n = n

Exercise 6
Show that i is a mono and an epi but not an iso in Mon.

Exercise 7
Define the category Pre of preorders and monotone functions.
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Categories A menagerie of categories

Finite Sets

FinSet
Objects: Finite Sets

Morphisms: Functions

FinSet is a full subcategory of Set.

FinSetSkel
Objects: N

Morphisms: FinSetSkel(m,n) = m̄→ n̄

FinSetSkel is skeletal, any isomorphic objects are equal.
FinSet and FinSetSkel are equivalent (in the appropriate sense).
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Categories A menagerie of categories

Computational Effects

Error
Given a set of Errors E ∈ Set

Objects: Sets
Morphisms: Error(A,B) = A→ B + E

State
Given a set of states: S ∈ Set

Objects: Sets
Morphisms: State(A,B) = A× S → B × S

Exercise 8
Define identity and composition for both categories.
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Categories A menagerie of categories

λ-terms

Lam
Objects: Finite sets of variables

Morphisms: Lam(X ,Y ) = Y → Lam X where Lam X is the set of
λ-terms whose free variables are in X .

Exercise 9
1 Define identity and composition.
2 Extend the definition to typed λ-calculus.
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Categories A menagerie of categories

Product categories
Given categories C,D we define C× D:

Objects: C× D
Morphisms: C× D((A,B), (C,D)) = C(A,C)× D(B,D)

We abbreviate C2 = C× C

Slice categories
Given a category C and an object A ∈ |C| we define C/A as:

Objects: |C/A| = ΣB ∈ |C|.C(B,A)

Morphisms: C/A((B, f ), (C,g)):

B

f ��???????
h // C

g���������

A
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Categories A menagerie of categories

Computable sets

ω-Set
Objects: A Set A and a relation A⊆ N× A such that

∀a ∈ A.∃i ∈ N.i A a.
Morphisms:

ω−Set((A,A), (B,B))

= {f ∈ A→ B | ∃i ∈ N.∀j ,a.j A a
→ ∃k .{i}j ↓ k ∧ k B f a}

where {i}j ↓ k means the i th Turing machine applied to
input j terminates and returns k .
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Categories A menagerie of categories

Partial computations

ω-CPO
Objects: (A,vA,

⊔
A) such that (A,vA) is a partial order, and⊔
A

∈ {f ∈ N→ A | ∀i .fi vA f (i + 1)} → A

is the least upper bound of a chain, i.e. ∀i .f i v
⊔

A f and
(∀i .f i v a)→

⊔
A f v a.

Morphisms: ω−CPO((A,vA,
⊔

A), (B,vB,
⊔

B)) is given by functions
f ∈ A→ B which are:

monotone
a vA b

f a v f b

continuous f (
⊔

A h) =
⊔

B (f ◦ h)
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Functors and natural transformations Functors

Definition: Functor
Given categories C,D a functor F ∈ C→ D is given by
a map on objects F ∈ |C| → |D|
maps on morphisms Given f ∈ C(A,B), F f ∈ D(F A,F B)

such that
F idA = idF A

F (f ◦ g) = (F f ) ◦ (F g)

A functor F ∈ C→ C is called an endofunctor.

Example
List : Set→ Set, the list functor on morphisms is given by map

map f [] = []

map f (a : as) = f a : map f as

We just write List f = map f .

Thorsten Altenkirch (Nottingham) MGS 2009 March 31, 2011 26 / 76



Functors and natural transformations Functors

Exercise 10
Show that List satisfies the functor laws.

Question
We consider endofunctors on Set, given maps on objects:

1 Is F1 X = X → N a functor?
2 Is F2 X = X → X a functor?
3 Is F3 X = (X → N)→ N a functor?

All type expressions with only positive occurences of a set variable
give rise to (covariant) functors in Set→ Set.
All type expressions with only negative occurences of a set
variable give rise to (contravariant) functors in Setop → Set.

Exercise 11
Is there a type-expression which is not positive but still gives rise to a
covariant endofunctor on Set?
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Functors and natural transformations Natural transformations

Definition: natural transformation
Given functors F ,G ∈ C→ D a natural transformation α : F → G is
given by a family of maps

α ∈ ΠA∈|C|D(F A,G A)

such that for any f ∈ C(A,B) F A
αA //

F f
��

G A

G f
��

F B αB
// G B

Exercise 12
1 Show that reverse ∈ ΠX ∈ Set.List X → List X is a natural

transformation.
2 Give a family of maps with the same type, which is not natural.
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Functors and natural transformations Presheaves

Functor categories
Given categories C,D the functor category C→ D is given by:

Objects: Functors F ∈ C→ D
Morphisms Given F ,G ∈ C→ D, a morphism is a natural

transformation α ∈ F → G

If C is small, the functor category

PSh C = Cop → Set

is called the category of presheaves over C.

Exercise 13
Spell out the details of the objects and morphisms of PSh (N,≤).
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Functors and natural transformations The Yoneda lemma

We define a functor Y , the Yoneda embedding:

Y ∈ C→ PSh C
Y A = λX .C(X ,A)

Exercise 14
Show that Y is a functor.

The Yoneda Lemma
Given F ∈ PSh C the following are naturally isomorphic in A ∈ |C|

PSh C(Y A,F ) ' F A

Exercise 15
Prove the Yoneda Lemma.
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Functors and natural transformations The Yoneda lemma

The category of categories

CAT
The category of categories is given by:

Objects: Categories
Morphisms: Functors

This is a category on level 1, |CAT| ∈ Set2.
CAT is a 2-category because its homsets are categories
themselves and there is a horizontal composition of natural
transformations.

Thorsten Altenkirch (Nottingham) MGS 2009 March 31, 2011 31 / 76



Functors and natural transformations The Yoneda lemma

Horizontal composition of natural transformations
If α ∈ F → F ′, β ∈ G→ G′ then

α · β ∈ F ◦G→ F ′ ◦G′

(α · β)A = βG A ◦ F (αA)

Question
What is the difference between rev ◦ rev and rev · rev?

Question
We could have defined α · β as

(α · β)A = G′(αA) ◦ βFA

Why is this definition equivalent?
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Adjunctions Free Monoids

Free Monoids

The forgetful functor:

U ∈ Mon→ Set
U (M,e, ∗) = M

Can we go the other way?
The free functor:

F ∈ Set→ Mon
F A = (List A, [], (++))

How to specify that F is free?
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Adjunctions Free Monoids

We construct two natural families of maps:

Mon(F A, (M,e, ∗))
φ ..

Set(A,U (M,e, ∗))
φ−1

nn

φ ∈ (List A→ M)→ A→ M
φ f a = f [a]

φ−1 ∈ (A→ M)→ (List A→ M)

φ−1 g [] = e

φ−1 g (a :: as) = (g a) ∗ (φ−1 g as)

Exercise 16
Show:

1 φ ◦ φ−1 = id
2 φ−1 ◦ φ = id
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Adjunctions Definition

Definition: Adjunction
Given functors:

C
U

++ D
F

kk

we say that F is left adjoint to U (F a U)
or U is right adjoint to F
if there is a natural isomorphism (in A ∈ |D|,B ∈ |C|)

D(F A,B)
φ

--
C(A,U B)

φ−1
mm
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Adjunctions Definition

A semilattice (with zero) is a monoid (M,e, ∗) such that:
commutative , if for all x , y ∈ M:

x ∗ y = y ∗ x

idempotent , if for all x ∈ M:
x ∗ x = x

We define SLat as the category of semilattices with zero.
Morphisms and forgetful functors are defined as for Mon

Exercise 17
Construct the free functor F ∈ Set→ SLat and show that F is left
adjoint to U ∈ SLat→ Set.
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Products and coproducts Products

Products in Set

C

f||yyyyyyyyy
g

""EEEEEEEEE

<f ,g>
���
�
�

A A× Bπ0
oo

π1
// B

A× B = {(a,b) | a ∈ A,b ∈ B}
π0 (a,b) = a
π1 (a,b) = b
< f ,g > c = (f c, f c)

Laws:
π0◦ < f ,g >= f
π1◦ < f ,g >= g
π0 ◦ h = f π1 ◦ h = g

h =< f ,g >
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Products and coproducts Products

Products
Given objects A,B ∈ |C| we say that A× B is their product if the
morphisms π0, π1 exists and for every f ,g there is a morphism < f ,g >
so that the following diagram commutes:

C

f||yyyyyyyyy
g

""EEEEEEEEE

<f ,g>
���
�
�

A A× Bπ0
oo

π1
// B

Moreover, the morphism < f ,g > is the unique morphism which makes
this diagram commute, i.e.

π0 ◦ h = f π1 ◦ h = g

h =< f ,g >
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Products and coproducts Products

Exercise 18
Show that products in C give rise to a functor (×) ∈ C2 → C.

Exercise 19
Show that the following equation holds

< f ,g > ◦h =< f ◦ h,g ◦ h >

Exercise 20
Show that the following isomorphism exist in all categories with
products:

A× B ' B × A

and that the assignment is natural in A,B.
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Products and coproducts Coproducts

Coproducts in Set

C

A

f
<<yyyyyyyyy

inl
// A + B

[f ,g]

OO�
�
�

Binr
oo

g
bbEEEEEEEEE

A + B = {inl a | a ∈ A} ∪ {inr b | b ∈ B}
[f ,g] (inl a) = f a
[f ,g] (inr b) = g b

Laws:
[f ,g] ◦ inl = f
[f ,g] ◦ inr = g
h ◦ inl = f h ◦ inr = g

h = [f ,g]
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Products and coproducts Coproducts

Coproducts
Given objects A,B ∈ |C| we say that A + B is their coproduct if the
morphisms inl, inr exists and for every f ,g there is a morphism [f ,g] so
that the following diagram commutes:

C

A

f
<<yyyyyyyyy

inl
// A + B

[f ,g]

OO�
�
�

Binr
oo

g
bbEEEEEEEEE

Moreover, the morphism [f ,g] is the unique morphism which makes
this diagram commute, i.e.

h ◦ inl = f h ◦ inr = g

h = [f ,g]
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Products and coproducts Adjunction

Products and coproducts are dual concepts:
Products in |C| are coproducts in |Cop| and vice versa.
Products and coproducts are left and right adjoints of the diagonal
functor:

∆ ∈ C→ C2

∆ A = (A,A)

C ∆ //
⊥

⊥
C2

(×)

]]

(+)

��
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Products and coproducts Terminal and initial objects

Terminal objects
1 ∈ |C| is a terminal object, if for any object A ∈ C there is exactly one
arrow !A:

A
!A

//___ 1

Initial objects
0 ∈ |C| is an initial object, if for any object A ∈ C there is exactly one
arrow ?A:

0
?A

//___ A

Question
What are initial and terminal objects in Set?

Exercise 21
Show that any two terminal objects are isomorphic.
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Products and coproducts Terminal and initial objects

Global elements
In Set we have that

Set(1,A) ' A

Hence the elements of C(1,A) are called
the global elements of A.
A category C is well pointed, if for f ,g ∈ C(A,B) we have

∀a ∈ C(1,A).f ◦ a = g ◦ a

f = g

Set is well pointed.

Exercise 22
Consider PSh (N,≤) again. What is the terminal object and what are
global elements? Show that PSh (N,≤) is not well pointed.
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Products and coproducts Exercises

Exercise 23
Construct the following isomorphism in Set:

A× (B + C) ' A× B + A× C

Exercise 24
Show that CMon (the category of commutative monoids) has products
and coproducts.

Exercise 25
Give a counterexample for the isomorphism:

A× (B + C) ' A× B + A× C

in CMon.
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Exponentials

Exponentials in Set

In Set we have the curry/uncurry isomorphism:

A× B → C ' A→ (B → C)

Indeed this is an adjunction F a G for

F ,G ∈ Set→ Set
F X = X × B
G X = B → X

Set(F A,C) ' Set(A,G C)
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Exponentials

Exponentials
Given a category C with products. We say that the object B ∈ |C| is
exponentiable, if the functor F X = X × B has a right adjoint F a G,
which we write as G X = B → X .
A category with products where all objects are exponentiable is called
cartesian closed.

B → C is often written as CB.

Question
What are the exponentials in FinSetSkel?
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Exponentials

Exercise 26
Show that the category of typed λ-terms is cartesian closed.

Indeed, this is the initial cartesian closed category (or the
classifying category).

Exercise 27
Show that in a cartesian closed category with coproducts we have that

A× (B + C) ' (A× B) + (A× C)

Corollary
CMon is not cartesian closed.
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Exponentials

Exercise 28
Show that the presheaf categories (PSh C) are cartesian closed.

Exercise 29
Is there a cartesian closed category whose dual is also cartesian
closed?
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Limits and Colimits Pullbacks and pushouts

Pullbacks
Given arrows f ∈ C(A,C) and g ∈ C(B,C), (f ×C g, π0, π1) is their
pullback, if the diagram below commutes and for every (D,p0,p1) there
is a unique arrow < p0,p1 > such that the diagram commutes:

D

p1

��

p0

%%

<p0,p1>
F

F

""F
F

f ×C g π0
//

π1

��

A

f
��

B g
// C

Pullbacks in Set:

f ×C g = {(a,b) ∈ A× B | f a = g b}
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Limits and Colimits Pullbacks and pushouts

Pushouts
Given arrows f ∈ C(A,B) and g ∈ C(A,C), (f +A g, inl, inr) is their
pushout, if the diagram below commutes and for every (D, i0, i1) there
is a unique arrow [p0,p1] such that the diagram commutes:

A
f //

g
��

B

inl
�� i1

��

C inr
//

i0 ,,

f +A g

[i0,i1]
EE

""E
E

D

Exercise 30
What are pushouts in Set?
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Limits and Colimits In general

Limits and colimits
Given a small category of diagrams D, a D-diagram in C is given by a
functor F ∈ D→ C. A cone of a diagram is given by an object D ∈ C
and a natural transformation α ∈ KD → F where KD X = D is a
constant functor.
Morphisms between cones (D, α) and (E , β) are given by f ∈ D → E
such that α ◦ f = β.
The limit of F is the terminal object in the category of cones.
Dually, a cocone is given by a natural transformation α ∈ F → KD, and
a morphism of cocones (D, α) and (E , β) are given by f ∈ D → E such
that f ◦ α = β.
The colimit of F is the initial object in the category of cocones.
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Limits and Colimits In general

Examples
Products are given by limits of

• •

Note that we are leaving out identity arrows.
Dually, coproducts are given by colimits of the same diagram.
Pullbacks are limits of

•

��
• // •

Pushouts are colimits of the dual diagram:

• //

��

•

•
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Limits and Colimits In general

Equalizers are limits of
•

//
//•

Dually, coequalizers are colimits of the same diagram.

Exercise 31
What are equalizers and coequalizers in Set?

Exercise 32
Show that pullbacks can be constructed from equalizers and products.

Actually, all finite limits can be constructed from equalizers and
finite products (i.e. binary products and terminal objects).
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Limits and Colimits Infinite (co)limits

Diagrams of (N,≤) are called ω-chains:

A 0
a 0

//A 1
a 1

//A 2
a 2

// . . .

Note that we are leaving out the composites of arrows.
An ω-chain in Set is given by

A ∈ N→ Set

a ∈ Πn ∈ N.A n→ A (n + 1)

We write colim (A,a) for the colimit of an ω-chain.

Exercise 33
What is the colimit of the following chain?

A n = n̄
a n i = i
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Limits and Colimits Infinite (co)limits

Dually, Diagrams of (N,≥) are called ω-cochains:

A 0 A 1a 0oo A 2a 1oo . . .
a 2oo

An ω-cochain in Set is given by

A ∈ N→ Set

a ∈ Πn ∈ N.A (n + 1)→ A n

We write lim (A,a) for the limit of an ω-cochain.

Exercise 34
Given a set X ∈ Set. What is the limit of the following chain?

A n = n̄→ X
a n f = λi .f i
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Initial algebras and terminal coalgebras Initial algebras

Natural numbers N ∈ Set are given by:

0 ∈ N
' 1→ N

S ∈ N→ N

We can combine the two constructors in one morphism:

[0,S] ∈ 1 + N→ N

The functor T X = 1 + X is called the signature functor.
A pair (A ∈ Set, f ∈ 1 + A→ A) is a 1+-algebra.
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Initial algebras and terminal coalgebras Initial algebras

For any 1+-algebra (A, f ) there is a unique morphism fold (A, f )
such that the following diagram commutes:

1 + N
[0,S] //

1+(fold (A,f ))
��

N
fold (A,f )

��
1 + A

f
// A

with

fold (A, f ) 0 = f (inl ())

fold (A, f ) (S n) = f (inr (fold (A, f ) n))

Exercise 35
Define addition (+) ∈ N→ N→ N using fold.
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Initial algebras and terminal coalgebras Initial algebras

T -algebras
Given an endofunctor T ∈ C→ C the category of T -algebras is given
by

Objects T -algebras (A, f ) with

T A
f

//A

Morphisms Given T -algebras (A, f ),(B,g) a T-algebra morphism is a
morphism h ∈ C(A,B) such that

T A
f

//

T h
��

A

h
��

T B g
// B

commutes.
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Initial algebras and terminal coalgebras Initial algebras

Initial T -algebras
The initial object (if it exists) in the category of T -algebras is denoted
as (µT , inT ). For every T -algebra (A, f ) there is a unique morphism
foldT (A, f ) such that

T (µT )
inT //

T (fold (A,f ))

��

N
fold (A,f )

��
T A

f
// A

commutes.
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Initial algebras and terminal coalgebras Terminal coalgebras

Given A ∈ Set the set of streams over A: Aω comes with two
destructors

hd ∈ Aω → A
tl ∈ Aω → Aω

We can combine the two destructors in one morphism:

< hd, tl >∈ Aω → A× Aω

A pair (X ∈ Set, f ∈ X → A× X ) is a A×-coalgebra.
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Initial algebras and terminal coalgebras Terminal coalgebras

For any A×-algebra (X , f ) there is a unique morphism unfold (X , f )
such that the following diagram commutes:

X

unfold (X ,f )

��

f
// A× X

A×unfold (X ,f )
��

Aω
<hd,tl>

// A× Aω

with

hd(unfold (X , f ) x) = π0(f x)

tl(unfold (X , f ) x) = unfold (X , f ) (π1 (f x))

Exercise 36
Define the function from ∈ N→ Nω, which produces the stream of
natural numbers starting with a given number, using unfold.
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Initial algebras and terminal coalgebras Terminal coalgebras

T -coalgebras
Dually, given an endofunctor T ∈ C→ C the category of T -coalgebras
is given by

Objects T -coalgebras (A, f ) with

A
f

//T A

Morphisms Given T -coalgebras (A, f ),(B,g) a T-coalgebra morphism
is a morphism h ∈ C(A,B) such that

A
f //

h
��

T A

T h
��

B g
// T B

commutes.
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Initial algebras and terminal coalgebras Terminal coalgebras

Terminal T -coalgebras
The terminal object (if it exists) in the category of T -coalgebras is
denoted as (νT , outT ). For every T -coalgebra (A, f ) there is a unique
morphism unfoldT (A, f ) such that

A

unfold (A,f )

��

f // T A

T (unfold (X ,f ))
��

ν T outT
// T (ν T )
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Initial algebras and terminal coalgebras Lambek’s lemma

Lambek’s lemma

Initial algebras and terminal coalgebras are always isomorphisms.
We construct the inverse of inT ∈ C(T (µT ), µT ) as

in−1
T ∈ C(µT ,T (µT ))

in−1
T = foldT (T (µT ),T inT )

Dually, we construct an inverse to outT .

Exercise 37
Construct explicitely the inverses to [0,S] (for natural numbers) and
< hd, tl > (for streams).

Exercise 38
Prove Lambek’s lemma, i.e. show that in−1

T is inverse to inT .
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Initial algebras and terminal coalgebras Constructing . . .

A functor T is called ω-cocontinous if it preserves colimits of
ω-chains, that is

T (colim (A,a)) ' colim (λn.T (A n), λn.T (a n))

We can construct the initial T -algebra of an ω-cocontinous functor
T by constructing the colimit of the following chain:

0
?

//T 0
T ?

//T 2 0
T 2 ?

// . . .

Exercise 39
Complete the construction, and show that the colimit is indeed an
initial T -algebra.
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Initial algebras and terminal coalgebras Constructing . . .

Exercise 40
Dualize the previous slide. What is an ω-continous functor? How can
we construct its terminal coalgebra?

Exercise 41
Which of the following endofunctors on Set are ω-cocontinous, and
which are ω-continous:

T1 X = X × X
T2 X = N→ X
T3 X = (X → N)→ N
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Monads and Comonads Binary trees

We define the functor of binary trees with labelled leafs:

BT ∈ Set→ Set
BT X = µY .X + Y × Y

We write L = in ◦ inl and N = in ◦ inr for the constructors.
The natural transformation η constructs a leaf:

ηA ∈ A→ BT A
ηA = λa.L a

We define a natural transformation bind, which replaces each leaf
by a tree.

bindA,B ∈ (A→ BT B)→ BT A→ BT B
bindA,B f (L a) = f a
bindA,B f (N (l , r)) = N (bindA,B f l , bindA,B f r)

Haskell’s (>>=) can be defined as a >>= f = bind f a.
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Monads and Comonads Kleisli triples

Monads (Kleisli triple)
A monad on C is a triple (T , η, bind) with

T ∈ C→ C
η ∈ C(A,T A)

bind ∈ C(A,T B)→ C(T A,T B)

such that

(bind eta) = id

bind (f ) ◦ η = f
(bind f ) ◦ (bind g) = bind ((bind f ) ◦ g)

Exercise 42
Show that the operations on binary trees satisfy the laws of a monad.
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Monads and Comonads Kleisli triples

Exercise 43
Show that the following functors over Set give rise to monads
(assuming E ,S ∈ Set):

TError X = E + X
TState X = S → (X × S)
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Monads and Comonads Monads

Monad
A monad on C is a triple (T , η, µ) with

T ∈ C→ C
η ∈ I → T
µ ∈ T 2 → T

(where T 2 = T ◦ T ) such that the following diagrams commute.

T
ηT //

Tη
�� BBBBBBBB

BBBBBBBB T 2

µ

��
T 2

µ
// T

T 3
Tµ //

µT
��

T 2

µ

��
T 2

µ
// T

Exercise 44
Show that the two definitions are equivalent.
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Monads and Comonads Comonads

We define infinite, labelled binary trees:

BT∞ ∈ Set→ Set
BT∞ X = νY .X × (Y × Y )

The operation ε extracts the top label:

ε ∈ BT∞ A→ A
ε (a, (l , r)) = a

cobind relabels a tree recursively:

cobind ∈ (BT∞ A→ B)→ (BT∞ A→ BT∞ B)

cobind f t = (f t , cobind f (π2t), cobind f (π3t))

Exercise 45
Show that (BT∞, ε, cobind) is a comonad, i.e. a monad in Setop.
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Monads and Comonads Kleisli category

Kleisli category
Given a monad (T , η, bind) on C we define the Kleisli category CT as:

Objects: |C|
Morphisms: CT A B = C(A,T B)

Identity: η ∈ CT A A
Composition: Given f ∈ CT B C, g ∈ CT A B we define

f ◦T g = (bind f ) ◦ g

Exercise 46
Verify that that CT is indeed a category.

Exercise 47
Explicitely construct the Kleisli-categories of TError and TState
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Monads and Comonads Kleisli category

Given an adjunction F a U

D(F A,B)
φ

--
C(A,U B)

φ−1
mm

we define:

η ∈ C(A,U (F A))

η = φ (idF A)

ε ∈ D(F ,U B)B
ε = φ−1 (idU B)

this gives rise to a monad (T , ε, µ) on C

T = UF
µ = UεF
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Monads and Comonads Kleisli category

Exercise 48
Spell out the constructed monad in the case where F ∈ Set→ Mon is
the free monad functor and U ∈ Mon→ Set the forgetful functor

Exercise 49
Verify the monad laws of the construction of a monad from an
adjunction.
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Monads and Comonads Kleisli category

Using CT we can also go the other way: CT gives rise to an
adjunction FT a UT such that T = UT ◦ FT :

FT ∈ C→ CT

FT A = A
FT f = η ◦ f
UT ∈ CT → C
UT A = T A
UT f = µ ◦ T f

Exercise 50
Verify that FT a UT .

This is not the only way to factor a monad into an adjunction.
Another construction is the Eilenberg-Moore category CT , indeed
the two are initial and terminal objects in the category of
factorisations.
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