
Nominal Sets

c© 2011 Andrew M. Pitts

Contents

Preface page v

1 Permutations 1
1.1 The category of G-sets 1
1.2 Products and coproducts 3
1.3 Natural numbers 5
1.4 Functions 5
1.5 Power sets 6
1.6 Partial functions 10
1.7 Quotient sets 11
1.8 Finitary permutations 11
Exercises 13

2 Support 15
2.1 The category of nominal sets 15
2.2 Products and coproducts 18
2.3 Natural numbers 20
2.4 Functions 20
2.5 Power sets 22
2.6 Failure of choice 25
2.7 Partial functions 26
2.8 Quotient sets 27
2.9 α-Equivalence 27
Exercises 28

3 Freshness 30
3.1 Freshness relation 30
3.2 Freshness quantifier 32
3.3 Local fresh atomic names 34
3.4 Separated product 35

iv Contents

Exercises 37

4 Name Abstraction 38
4.1 Nominal set of name abstractions 38
4.2 Concretion 41
4.3 Functoriality 42
4.4 Freshness condition for binders 46
Exercises 48

5 Nominal Algebraic Data Types 50
5.1 Signatures 50
5.2 α-Equivalence 53
5.3 Algebraic functors 56
5.4 Initial algebra semantics 59
5.5 Primitive recursion 63
5.6 Induction 68
Exercises 72
Bibliography 75
Notation index 77
General index 78

Preface

Names and constructs that bind names are ubiquitous in programming languages.
Nominal sets provide a mathematical theory of structures involving names that
was introduced by the author and Jamie Gabbay about 10 years ago. The theory is
based on some simple, but subtle ideas to do with permutations of names and the
notion of ‘finitely supported’ mathematical structures which first arose in math-
ematical logic in the 1930s. The theory has turned out to have some interesting
logical and computational properties, with applications to programming language
semantics, machine-assisted theorem proving and the design of functional and log-
ical metaprogramming languages.

These notes on the underlying theory of nominal sets accompany a four-lecture
course on ‘Nominal Sets and Their Applications’ given at the Midland Graduate
School 2011. The material forms part of a book on Nominal Sets that is currently
in preparation. I would be very grateful if readers would notify me of any errors
they detect, or of any suggestions they have for improving the presentation.

Andrew Pitts
Andrew.Pitts@cl.cam.ac.uk

University of Cambridge
April 2011

1
Permutations

The characteristic feature of the nominal sets approach to the syntax and semantics
of formal languages is the use of permutations of names. As such, it is part of an
important theme in mathematics with a well-developed body of work, the study of
symmetry and the theory of groups. We need only a small amount of that theory,
which we review in this chapter.

1.1 The category of G-sets

A group is a set G equipped with an element e ∈ G (the group unit), a function
(g,′ g′) ∈ G × G 7→ g g′ ∈ G (the group multiplication operation) and a function
g ∈ G 7→ g−1 ∈ G (the group inverse operation). This structure is required to satisfy

(g g′) g′′ = g (g′ g′′) (1.1)

e g = g = g e (1.2)

g−1 g = e = g g−1 (1.3)

for all g, g′, g′′ ∈ G. A homomorphism of groups is a function θ : G → G′ satisfy-
ing

θ e = e (1.4)

θ(g g′) = (θ g)(θ g′) (1.5)

θ(g−1) = (θ g)−1 (1.6)

for all g, g′ ∈ G . A subgroup of a group G is a subset G′ ⊆ G that contains e and
is closed under the group multiplication and inverse operations.

Notation In this book we specify functions using a variety of informal notations.
If an expression e(x) denotes an element of a set Y as x ranges over the elements
of set X, then the function X → Y it determines will be denoted by either of the

2 Permutations

notations

x ∈ X 7→ e(x) ∈ Y

λx ∈ X � e(x).
(1.7)

When the set X has some structure, we use notations for patterns; for example if
X = X1 × X2 is a cartesian product, we write λ(x1, x2) ∈ X1 × X2 � e(x1, x2).

Example 1.1 If A is a set, then a permutation of A is a bijection π from A to itself.
The composition π′ ◦ π of two functions that are permutations is another such, as
is the inverse function π−1 of a permutation; and the identity function id on A is
a permutation. Therefore, taking the group multiplication to be function composi-
tion, the permutations of A form a group, called the symmetric group on the set A
and denoted S A. It is classic result of group theory (Cayley’s Theorem, a special
case of the Yoneda Lemma in category theory) that every group is a subgroup of a
symmetric group.

An action of a group G on a set X is a function G × X → X assigning to each
(g, x) ∈ G × X an element g · x of X satisfying

g · (g′ · x) = (g g′) · x (1.8)

e · x = x (1.9)

for all g, g′ ∈ G and x ∈ X. This is equivalent to specifying a homomorphism of
groups G → S X (see Exercise 1.1).

Definition 1.2 If G is a group, then a G-set is a set X equipped with an action of
G on X. We will usually refer to a G-set by naming its underlying set X, using the
same notation · for all group actions, whatever the set X. G-sets are the objects of
a category [G,Set] whose morphism from X to X′ are equivariant functions, that
is, functions F : X → Y satisfying

F(g · x) = g · (F x) (1.10)

for all g ∈ G and x ∈ X. Composition and identities in the category are the same as
in the category Set of sets and functions.

Example 1.3 If G is any subgroup of the symmetric group S A, we get a G-set
with underlying set A by taking the G-action to be given by function application:
π · a = π a.

Example 1.4 Let Σ be a (single-sorted) algebraic signature. Thus Σ = (Σn | n ∈
N) is a countably infinite family of sets. The elements of each set Σn are the n-ary
operations of the signature. The set Σ[X] of algebraic terms over Σ with variables

1.2 Products and coproducts 3

drawn from some set X is inductively defined by the following rules.

x ∈ X

x ∈ Σ[X]

t1 ∈ Σ[X] · · · tn ∈ Σ[X] op ∈ Σn

op(t1 , · · · , tn) ∈ Σ[X]

There is an action of S X on Σ[X] given by applying a finite permutation to
variables where they occur in algebraic terms:

π · x = π x

π · op(t1 , · · · , tn) = op(π · t1 , · · · , π · tn).
(1.11)

1.2 Products and coproducts

Given a group G and G-sets X1, . . . , Xn, we make the cartesian product

X1 × · · · × Xn , {(x1, . . . , xn) | x1 ∈ X1 ∧ · · · ∧ xn ∈ Xn} (1.12)

into a G-set by defining the group action coordinate-wise:

g · (x1, . . . , xn) , (g · x1, . . . , g · xn). (1.13)

In case n = 0, the cartesian product is just a singleton set 1 = {()} and the action is
g · () = (). Definition (1.13) ensures that the projection functions from a product of
G-sets to one of its components

proji : X1 × · · · × Xn → Xi

proji , λ(x1, . . . , xn) ∈ X1 × · · · × Xn � xi
(1.14)

are all equivariant and hence give morphisms in [G,Set]. Indeed they make X1 ×

· · · × Xn into the categorical product of the objects Xi in [G,Set]. For if (Fi :
X → Xi | i = 1..n) are some equivariant functions, then the unique function
〈F1, . . . , Fn〉 : X → X1 × · · · × Xn satisfying proji ◦ 〈F1, . . . , Fn〉 = Fi (for i = 1..n)
is easily seen to be equivariant.

Example 1.5 Given any set X, the second projection function λ(g, x) ∈ G× I � x
is trivially a G-action. We call X equipped with this action the discrete G-set on X.
If F : X → Y is an equivariant function whose domain X is a discrete G-set, then
for each x ∈ X, F x = F(g · x) = g · (F x). Thus F maps X into the subset

Γ Y , {y ∈ Y | (∀g ∈ G) g · y = y}. (1.15)

(See Exercise 1.2.) The terminal object 1 is a discrete G-set and the global sections
1→ X of any G-set X correspond to elements of Γ X. Note that Γ X may be empty
even if X as a set is non-empty. For example, when G = S A is the symmetric group
on a set A, the S A-set A from Example 1.3 satisfies Γ A = ∅ so long as A has at
least two elements. In this case proj1, proj2 : A × A → A are different morphisms

4 Permutations

in [S A,Set] that have equal compositions with every 1 → A (since there are no
such global sections). Thus [S A,Set] is not a well-pointed category. (In general a
category with a terminal object is well-pointed if any two morphisms with equal
domain and codomain are equal if their compositions with any global section are
equal.)

Example 1.6 The group G is itself a G-set once we endow it with the conjugation
action:

g · g′ , g g′ g−1. (1.16)

This is not the only possible action of G on itself, unless G = {e} is trivial; see
Exercise 1.3. However it has the distinction of making the action function F ,
λ(g, x) ∈ G×X � g · x for any G-set X into an equivariant function F : G×X → X.
For we have F(g ·g′, g ·x) = (g g′g−1) ·(g ·x) = (g g′g−1g) ·x = (g g′) ·x = g ·F(g′, x).

We make the disjoint union

X1 + · · · + Xn , {(i, x) | i ∈ {1, . . . , n} ∧ x ∈ Xi} (1.17)

into a G-set by defining the group action as follows:

g · (i, x) , (i, g · x). (1.18)

It is easy to see that definitions (1.13) and (1.18) inherit the required properties (1.8)
and (1.9) from the actions for each Xi. Definition (1.18) ensures that the functions
injecting a G-set into a disjoint union of G-sets

inji : Xi → X1 + · · · + Xn

inji , λx ∈ Xi � (i, x)
(1.19)

are morphisms in [G,Set] and make X1 + · · ·+ Xn into the coproduct of the objects
Xi in [G,Set].

These properties of cartesian product and disjoint union extend from the finite to
the infinite case. Thus if (Xi | i ∈ I) is a family of G-sets indexed by the elements
of a set I, then the cartesian product∏

i∈I Xi , {(xi | i ∈ I) | (∀i ∈ I) xi ∈ Xi} (1.20)

equipped with the G-action g · (xi | i ∈ I) = (g · xi | i ∈ I) is the product of the
objects Xi in [G,Set]. Similarly, the disjoint union∑

i∈I Xi , {(i, x) | i ∈ I ∧ xi ∈ Xi} (1.21)

equipped with the G-action g · (i, x) = (i, g · x) is their coproduct in [G,Set].

1.3 Natural numbers 5

1.3 Natural numbers

The coproduct
∑

i∈I Xi in the case I = N = {0, 1, 2, . . . } and each Xi is the terminal
1, is necessarily a natural number object in [G,Set]. In other words it is a G-set N
equipped with equivariant functions

1 zero // N suc // N (1.22)

with the universal property that for any other such diagram in [G,Set]

1
X0 // X F // X (1.23)

there is a unique equivariant function iter X0 F making

1 zero // N

iter X0 F
��

suc // N

iter X0 F
��

1
X0

// X
F
// X

(1.24)

commute.
Note that

∑
i∈I Xi is discrete (Example 1.5) when all the Xi are discrete G-sets.In

particular we can identify N with the discrete G-set on the setN of natural numbers
equipped with the usual zero and successor functions: zero() = 0, suc n = n + 1.
Given (1.23), the unique function iter X0 F : N → X making (1.24) commute is
recursively defined by

iter X0 F 0 = X0()

iter X0 F (n + 1) = F (iter X0 F n).

It is equivariant because N is discrete and X0 and F are equivariant.

1.4 Functions

Theorem 1.7 For any group G, the category [G,Set] is cartesian closed.

Proof This theorem can be deduced from the more general fact that categories of
Set-valued functors are cartesian closed (see Johnstone, 2002, Proposition 1.5.5,
for instance); this is because each group G can be regarded as a category with a
single object and whose morphisms are the group elements. However, unlike for
functor categories in general, in this particular case the cartesian closed structure
is almost as simple as that of the category of sets itself and is worth describing
explicitly. We saw in the previous section that [G,Set] has finite products, inherited
from Set. So we just have to describe exponentials.

If X and Y are G-sets for a group G, then we can make the set YX of functions

6 Permutations

with domain X and codomain Y into a G-set by defining the action of g ∈ G on a
function F ∈ YX to be

g · F , λx ∈ X � g · (F (g−1 · x)). (1.25)

The reader should check that this does give a group action on functions (Exer-
cise 1.4). Equivariant functions F : X → Y are precisely the elements of YX that
satisfy g · F = F for all g ∈ G; we leave this as an exercise (Exercise 1.5).

Definition (1.25) ensures that the application function

app : YX × X → Y
app , λ(F, x) ∈ YX × X � F x

(1.26)

is equivariant. For we have

app(g · F, g · x)
= {definition of app}

(g · F)(g · x)
= {definition of g · F}

g · (F (g−1 · (g · x)))
= {(1.8), (1.3) and (1.9)}

g · (F x)
= {definition of app}

g · app(F, x).

The equivariance of the currying function

curry : YZ×X → (YX)Z

curry , λF′ ∈ YZ×X , z ∈ Z, x ∈ X � F′(z, x)
(1.27)

is a similar calculation (Exercise 1.6).
It follows that app : YX × X → Y gives the exponential of Y by X in [G,Set].

For if we have F′ : Z × X → Y in [G,Set], then from the usual properties of ap-
plication and currying in Set, we have that curry F′ ∈ (YX)Z is the unique function
satisfying app ◦ (curry F′ × idX) = F′. So we just have to see that it is equivariant
and hence a morphism Z → YX in [G,Set]; but this follows from the equivariance
of application, of currying and of F′, using Exercise 1.5. �

1.5 Power sets

Let

B , {true, false} (1.28)

1.5 Power sets 7

denote the discrete G-set (Example 1.5) on a two element set. Given any G-set X,
we can use the bijection between functions X → B and subsets of X to transfer the
G-action on BX to one on the powerset

P X , {S | S ⊆ X}. (1.29)

Converting a subset S ⊆ X to a corresponding function χS : X → B

χS x ,

true if x ∈ S

false if x < S
(1.30)

and acting by g ∈ G to get g · χS , the subset {x ∈ X | (g · χS) x = true} gives the
action of g on S . Since B is discrete, (g · χS) x = g · (χS (g−1 · x)) = χS (g−1 · x). So
(g · χS) x = true if and only if g−1 · x ∈ S . Therefore

g · S = {x ∈ S | g−1 · x ∈ S }. (1.31)

Note that g−1 · x ∈ S ⇔ (∃x′ ∈ S) x = g · x′ and thus

g · S = {g · x | x ∈ S }. (1.32)

The associativity and unit properties of the G-action on functions transfer to give
the required properties for an action on subsets: g · (g′ ·S) = (g g′) ·S and e ·S = S .
Note also that subset inclusion is preserved by the G-action:

S ⊆ S ′ ⇒ g · S ⊆ g · S ′. (1.33)

Definition 1.8 The equivariant subsets of a G-set X are those S ⊆ X which are
closed under the G-action on X in the sense that for all x ∈ X and g ∈ G

x ∈ S ⇒ g · x ∈ S . (1.34)

So by (1.32), S ⊆ X is an equivariant subset if g · S ⊆ S holds for all g ∈ G.
Note that in this case we have

S = e · S = (g g−1) · S = g · (g−1 · S) ⊆ g · S

by (1.33); and hence g ·S = S for any g ∈ G. Thus equivariant subsets are precisely
the elements of P X that are fixed by the action of any g ∈ G. Compare this with the
similar characterization of equivariant functions as elements of YX in Exercise 1.5.

A morphism F : Y → X in a category C is a monomorphism if F ◦ F1 = F ◦ F2

implies F1 = F2 for any F1, F2 : · → Y . We write F : Y � X to indicate that F
is a monomorphism. The collection of monomorphisms with codomain X is pre-
ordered by the relation

(F1 : Y1 � X) ≤ (F2 : Y2 � X)⇔ (∃F : Y1 → Y2) F1 = F2 ◦ F. (1.35)

A subobject of X is an equivalence class of monomorphisms with codomain X for

8 Permutations

the equivalence relation generated by ≤. When the category is [G,Set] it is not hard
to see that the subobjects of a G-set X are in bijection with the equivariant subsets
of X; and under this bijection the partial order on subobjects induced by (1.35)
corresponds to subset inclusion. (See Exercise 1.7.)

We saw above (Theorem 1.7) that [G,Set] is a cartesian closed category. It also
has a subobject classifier and hence is a topos (Johnstone, 2002, Example 2.1.4).
This means there is an object Ω equipped with a morphism > : 1 → Ω so that for
any monomorphism F : Y � X there is a unique morphism χF : X → Ω making

Y
〈〉 //

��
F
��

1

>

��
X χF

// Ω

a pullback square in [G,Set]. In fact [G,Set] is Boolean (Johnstone, 2002, p 38)
since Ω = 1 + 1 is just the discrete two-element set G-set B. For if F : Y � X
corresponds to the equivariant subset S ⊆ X, then χF : X → Ω is the characteristic
function (1.30) which is an equivariant function, because S is an equivariant subset.

Since [G,Set] is a Boolean topos, it provides a model of classical higher-order
logic (Johnstone, 2002, chapter D4). Just as for the cartesian closed structure, the
interpretation of higher-order logic in [G,Set] is the same as in Set:

Proposition 1.9 Let X and Y be G-sets. The following are equivariant subsets:

1. Truth X ⊆ X.
2. Equality {(x, x′) ∈ X × X | x = x′} ⊆ X × X.
2. Membership {(x, S) ∈ X × P (X) | x ∈ S } ⊆ X × P (X).

The following are equivariant functions:

4. Conjunction ∩ : P (X) × P (X)→ P (X).
5. Negation ¬ : P (X)→ P (X), where ¬S , {x ∈ X | x < S }.
6. Universal quantification

⋂
: P (P (X)) → P (X), where

⋂
S , {x ∈ X | (∀S ∈

S) x ∈ S }.
7. Substitution f ∗ : P (Y) → P (X), where f : X → Y is an equivariant function

and f ∗S , {x ∈ X | f (x) ∈ S }.
8. Comprehension compr : P (X × Y) → P (Y)X , where compr S , λx ∈ X � {y ∈

Y | (x, y) ∈ S }.

Proof These equivariance properties follow easily from the definition of the ac-
tion of G on subsets. For example

x ∈ g · (¬S)⇔ g−1 · x ∈ ¬S ⇔ g−1 · x < S ⇔ x < g · S ⇔ x ∈ ¬(g · S)

1.5 Power sets 9

so that g · (¬S) = ¬(g · S). �

The proposition gives a very rich collection of equivariant subsets. Consider the
formulas of classical higher-order logic; they are built up from atomic formulas
using equality, membership, the propositional connectives, and quantification over
iterated product, function and power types. If ϕ(x1, . . . , xn) is such a formula with
free variables as indicated, and if each variable xi is interpreted as ranging over
a G-set Xi, then the Tarski interpretation of ϕ (with product, function and power
types interpreted as cartesian products, exponentials and powersets) determines a
subset of X1 × · · · × Xn in the usual way. If the function and relation symbols in ϕ
are all interpreted by equivariant functions and subsets, then Theorem 1.9 implies
that the interpretation of ϕ(x1, . . . , xn) is an equivariant subset of X1×· · ·×Xn. Thus
we have:

Equivariance Principle Any function or relation that is defined from equivariant
functions and relations using classical higher-order logic is itself equivariant.

We will use this principle to avoid proving that particular constructs are equiv-
ariant on a case-by-case basis. The next section gives a first example of this. We
end this section with two warnings about the Equivariance Principle.

Note 1.10 In applying the Equivariance Principle, one must take into account all
the parameters upon which a particular construction depends. For example, regard-
ing G as a G-set as in Example 1.6, we saw there that for any G-set X the action

F : G × X → X
F , λ(g, x) ∈ G × X � g · x

is an equivariant function. However, if we fix upon a particular g0 ∈ G, then the
function F0 = F(g0,−) : X → X is not in general equivariant unless G is a com-
mutative group (or g0 = e), since g · F0 x = (g g0) · x whereas F0(g · x) = (g0 g) · x.

Note 1.11 Classical higher-order logic is sometimes formulated using Hilbert’s
ε-operation, εx.ϕ(x), satisfying (∀x ∈ X) ϕ(x) ⇒ ϕ(εx.ϕ(x)). Unless G is a trivial
group, such an operation cannot be equivariant—see Exercise 1.8. Thus the Equiv-
ariance Principle does not apply to constructions employing this strong form of
choice. Toposes of the form [G,Set] do satisfy a weaker, internal version of the
Axiom of Choice (Johnstone, 2002, Examples 4.5.2(b)). However, when we move
from considering equivariance to finite support in the next chapter, even that form
of choice fails; see Sect. 2.6.

10 Permutations

1.6 Partial functions

Given sets X and Y , the set X ⇀ Y of partial functions from X to Y is the subset of
P (X × Y) consisting of all subsets F ⊆ X × Y that are single-valued

(∀x ∈ X)(∀y, y′ ∈ Y) (x, y) ∈ F ∧ (x, y′) ∈ F ⇒ y = y′. (1.36)

We write F x ≡ y to mean that F is defined at x ∈ X and takes value y ∈ Y . Thus

F x ≡ y⇔ (x, y) ∈ F. (1.37)

More generally, given partial functions F1 ∈ X1 ⇀ Y and F2 ∈ X2 ⇀ Y , for all
x1 ∈ X1 and x2 ∈ X2 we define

F1 x1 ≡ F2 x2 ⇔ (∀y ∈ Y) (x1, y) ∈ F1 ⇔ (x2, y) ∈ F2. (1.38)

(F x ≡ y is the special case of this when F1 = F and F2 = idY .) More generally
still, but less formally, if e and e′ are expressions denoting partially defined values
we write e ≡ e′ to mean that e is defined if and only if e′ is and in that case they
are equal values. This is sometimes referred to as Kleene equivalence.

The domain of definition of a partial function F ∈ X ⇀ Y is

Dom F , {x ∈ X | (∃y ∈ Y) (x, y) ∈ F}. (1.39)

(We reserve the notation ‘dom’ for the domain of a morphism in a category. Thus
in the category of sets and partial functions, given F ∈ X⇀Y we have dom F = X,
but Dom F may be strictly smaller than X.)

If X and Y are G-sets, then using the Equivariance Principle we have that X ⇀ Y
is an equivariant subset of P (X × Y) and hence a G-set. As the next result shows,
the G-action on partial functions agrees with the action on total functions (1.25).

Proposition 1.12 If X and Y are G-sets and F ∈ X ⇀ Y, then for all g ∈ G and
x ∈ X

(g · F) x ≡ g · (F(g−1 · x)). (1.40)

Proof If (g ·F) x is defined, say (x, y) ∈ g ·F, then (g−1 ·x, g−1 ·y) = g−1 ·(x, y) ∈ F;
so F(g−1·x) is defined and equal to g−1·y and therefore g·(F(g−1·x)) ≡ g·(g−1·y) = y.

Conversely if g · (F(g−1 · x)) ≡ y, then the subexpression F(g−1 · x) must also
be defined, that is, (g−1 · x, y′) ∈ F for some y′ with g · y′ = y. Hence (x, y) =

(g · (g−1 · x), g · y′) = g · (g−1 · x, y′) ∈ g · F and thus (g · F) x ≡ y. �

The elements of YX are those partial functions F ∈ X ⇀ Y that are also total

(∀x ∈ X)(∃y ∈ Y) (x, y) ∈ F. (1.41)

Thus YX is an equivariant subset of P (X × Y) and the proposition shows that the

1.7 Quotient sets 11

action of G on subsets (1.31) agrees with the action on functions (1.25) when re-
stricted to YX .

1.7 Quotient sets

We write X/∼ for the set of equivalence classes [x]∼ , {x′ ∈ X | x ∼ x′} of
an equivalence relation on a set X. Given a group G, an equivariant equivalence
relation on a G-set X is simply an equivalence relation on the underlying set of
X which is equivariant as a subset of X × X (see Definition 1.8). In this case, for
each g ∈ G, the function g · : X → X respects the equivalence relation and hence
induces a function on equivalence classes, X/∼ → X/∼, that we also write as g · .
Thus

g · [x]∼ = [g · x]∼ (1.42)

and we get a G-action on X/∼, which we call a quotient G-set.
Note that by virtue of (1.42), the quotient function

q : X → X/∼
q , λx ∈ X � [x]∼

(1.43)

is equivariant.
Any function F : X → Y that respects ∼, in the sense that

x ∼ x′ ⇒ F x = F x′

holds, induces a unique function F making

X

F !!

q // X/∼

F
��

Y

commute. Note that F is definable within higher-order logic from ∼ and F. Thus
assuming ∼ is an equivariant equivalence relation, by the Equivariance Principle,
if F is equivariant, then so is F.

1.8 Finitary permutations

So far in this chapter we have considered group actions for an arbitrary group G.
Now we specialize to the case we need in the rest of the book, groups of finitary
permutations and their actions.

Definition 1.13 A permutation π ∈ S A is finitary if {a ∈ A | π a , a} is a finite
subset of A. Note that id ∈ S A is finitary and that the composition and inverse of

12 Permutations

finitary permutations are finitary. Therefore we get a subgroup of S A of finitary
permutations, denoted Perm A.

The transposition (also known as swapping) of a pair of elements a1, a2 ∈ A is
the finitary permutation (a1 a2) ∈ Perm A given for all a ∈ A by

(a1 a2) a ,

a2 if a = a1

a1 if a = a2

a otherwise.

(1.44)

Note that this definition makes sense even if a1 = a2, in which case (a1 a2) = id.
If a1 , a2, then (a1 a2) is a 2-cycle, where in general the n-cycle (a1 a2 a3 · · · an)
is the element of Perm A that maps a1 to a2, a2 to a3, . . . , an−1 to an, and an to
a1, while leaving all other elements fixed; here a1, . . . , an have to be n mutually
distinct atoms with n ≥ 2.

Transpositions play a prominent role in what follows, because they generate the
group Perm A.

Theorem 1.14 Every element π of the group Perm A of finitary permutations on
a set A is equal to the composition of a finite sequence of transpositions (a a′) with

π a , a , a′ , π a′. (1.45)

(The sequence may be empty, in which case its composition is by definition the
identity function.)

Proof We argue by induction on the size of the finite set {a ∈ A | π a , a}.
In the base case when it is empty, π must be the identity function, which is the
composition of the empty sequence of transpositions. For the induction step, given
π ∈ Perm A with {a | π a , a} non-empty, pick some a0 in that set and consider
π′ = π ◦ (a0 π

−1a0). It satisfies π′a0 = a0 and (∀a , a0) π a = a⇒ π′a = a. Hence

{a | π′a , a} ⊆ {a | π a , a} − {a0}. (1.46)

In particular {a | π′a , a} is strictly smaller than {a | π a , a} and so by induction
hypothesis π′ is a finite composition of transpositions of elements satisfying (1.45)
for π′ and hence also for π in view of (1.46). Hence so is π, because

π

= {transpositions are idempotent!}
π ◦ (a0 π

−1a0) ◦ (a0 π
−1a0)

= {definition of π′}
π′ ◦ (a0 π

−1a0).

and this completes the induction step. �

Exercises 13

In view of the theorem, an action of Perm A on a set X is completely determined
by the swapping operation

swap : A × A × X → X

swap , λ(a, a′, x) ∈ A × A × X � (a a′) · x.
(1.47)

This is because every π ∈ PermA is equal to a composition of transpositions

π = (a1 a′1) ◦ (a2 a′2) ◦ · · · ◦ (an a′n) (1.48)

and hence

π · x = swap(a1, a′1, swap(a2, a′2, . . . swap(an, a′n, x) · · ·)). (1.49)

Proposition 1.15 For each PermA-set X, the function swap : A × A × X → X
defined in (1.47) is equivariant (regarding A as a PermA-set as in Example 1.3).

Proof Note that π ◦ (a a′) = (π a π a′) ◦ π, for any π ∈ PermA and a, a′ ∈ A.
Therefore π · swap(a, a′, x) = π · ((a a′) · x) = (π a π a′) · (π · x) = swap(π · a, π ·
a′, π · x). �

Exercises

1.1 If G is a group and X a G-set, show that λg ∈ G � (λx ∈ X � g · x) is
a homomorphism of groups from G to the group S X of permutations of X.
Show conversely that if θ : G → S X is a homomorphism, then λ(g, x) ∈
G × X � θ g x is a G-action on X.

1.2 Show that the function mapping a G-set Y to the set Γ Y defined in (1.15)
extends to a functor [G,Set] → Set. Writing ∆ X for the discrete G-set on a
set X, show that ∆ extends to a functor Set → [G,Set] that is left adjoint to
Γ. In other words there is a bijection [G,Set](∆ X,Y) � Set(X,Γ Y) which is
natural in X and Y .

1.3 If G is a group, show that its multiplication (g, g′) 7→ g g′ is an action of G
on itself. If G′ denotes the resulting G-set, show that there is no equivariant
function G → G′ (where G denotes the G-set from Example 1.6) unless G =

{e} is a trivial group.
1.4 Show that definition (1.25) has the properties (1.8) and (1.9) required of a

group action.
1.5 Let X and Y be G-sets. Show that a function F from X to Y is equivari-

ant (1.10) if and only if it satisfies g ·F = F for all g ∈ G, with g ·F as defined
in (1.25).

1.6 Show that currying (1.27) is equivariant: g · curry F′ = curry(g · F′).

14 Permutations

1.7 Show that an equivariant function F : X → Y is an isomorphism in [G,Set] if
and only if it is a bijection. Show that it is a monomorphism if and only if it is
an injective function. [Hint: consider the pullback of F along itself.] Deduce
that subobjects of a G-set are in bijection with equivariant subsets of X.

1.8 Let Pne X denote the set of non-empty subsets of a set X. Note that if X is a
G-set, then the G-action (1.31) restricts to Pne X and makes it a G-set. Now
let X be the G-set G′ from Exercise 1.3 and suppose that G is non-trivial (that
is, contains some element not equal to the group unit). Show that there is no
equivariant function c : Pne X → X satisfying (∀S ∈ Pne X) c S ∈ S . [Hint:
consider the action of some g , e on c S when S is the whole of G.]

1.9 Let ∼, F and F be as in section 1.7. Instead of appealing to the Equivariance
Principle, show by explicit calculation that if ∼ and F are equivariant, then F
satisfies g · (F[x]∼) = F(g · [x]∼) for all g ∈ G and x ∈ X.

2
Support

This chapter introduces the central concept of the theory of nominal sets, namely
the support of an element in a set equipped with a permutation action. From now on
A denotes a fixed, countably infinite set whose elements a, b, c, . . . we call atomic
names.

2.1 The category of nominal sets

Let X be a set equipped with an action of the group PermA of finitary permutations
of A. A set of atomic names A ⊆ A is a support for an element x ∈ X if for all
π ∈ PermA

((∀a ∈ A) π a = a)⇒ π · x = x. (2.1)

The following characterization of support in terms of transpositions is helpful.

Proposition 2.1 Suppose X is an PermA-set and x ∈ X. A subset A ⊆ A supports
x if and only if

(∀a1, a2 ∈ A − A) (a1 a2) · x = x. (2.2)

Notation We denote set subtraction by X − Y . Thus A − A = {a ∈ A | a < A}.

Proof If a1, a2 ∈ A − A, then (a1 a2) a = a for any a ∈ A. So if A supports x,
it clearly satisfies (2.2). Conversely, suppose A satisfies (2.2) and that π ∈ PermA

fixes each element of A. We have to show that π · x = x. Recall from Theorem 1.14
that π can be written as a composition of transpositions (a1 a2) satisfying π a1 ,

a1 , a2 , π a2. Since π fixes each element of A, such a transposition satisfies
a1, a2 < A and hence by (2.2), (a1 a2) · x = x. Therefore, letting each transposition
in the sequence whose composition is π act on x in turn, we eventually conclude
that π · x = x, as required. �

16 Support

Clearly each element of an PermA-set is supported by the whole of A, which is
an infinite set. We will be interested in elements that are finitely supported in the
sense that there is some finite set of atomic names that is a support for the element.

Definition 2.2 A nominal set is an PermA-set all of whose elements are finitely
supported. Nominal sets are the objects of a category Nom whose morphisms, com-
position and identities are as in the category of PermA-sets [PermA,Set]. Thus
Nom is a full subcategory of [PermA,Set]. The dependence of Nom upon A is left
implicit.

Proposition 2.3 If A1 and A2 are finite supports for an element x of an PermA-
set, then so is A1 ∩ A2.

Proof By Proposition 2.1 we just have to show that if a, a′ ∈ A − (A1 ∩ A2), then
(a a′) · x = x. The latter certainly holds if a = a′, so we may suppose a , a′. In
that case, picking any element a′′ of the infinite set A − (A1 ∪ A2 ∪ {a, a′}), then

(a a′) = (a a′′) ◦ (a′ a′′) ◦ (a a′′). (2.3)

Note that either a < A1, or a < A2; and similarly for a′. So each of the transpositions
on the right-hand side of (2.3) swaps atomic names that are either both not in the
support set A1, or both not in the support set A2 (since a′′ is definitely not in either
of A1 or A2). So (a a′) is a composition of transpositions each of which fixes x and
hence itself fixes x. �

Suppose X is a nominal set and x ∈ X. Since x possesses some finite support, by
the proposition

suppX x ,
⋂
{A ∈ PA | A is a finite support for x} (2.4)

is again a finite support for x and is the least one with respect to subset inclu-
sion. We write it as supp x when X is clear from the context. Exercise 2.1 gives an
equivalent formulation of supp x from Gabbay and Pitts (2002).

Example 2.4 The nominal set of atomic names is given by A regarded as an
PermA-set as in Example 1.3. Clearly each a ∈ A is finitely supported by {a} and
this is the smallest support, so that supp a = {a}.

Example 2.5 The discrete nominal set on a set X is given by the PermA-action
of Example 1.5, for which we have supp x = ∅ for each x ∈ X.

Example 2.6 We saw in Example 1.4 that the set Σ(A) of terms over an algebraic
signature Σ with variables from A is a PermA-set. It is in fact a nominal set with
supp t equal to the finite set var t of variables occurring in t. This set is recursively

2.1 The category of nominal sets 17

defined by:

var a = {a}

var op(t1 , · · · , tn) = var t1 ∪ · · · ∪ var tn.

That var t is the least support for t follows from the fact that it is a strong support
in the sense of the following theorem due to Tzevelekos (2008, section 2.1.2).
Property (2.5) for A = var t and x = t can be proved by induction on the structure
of the term t.

Theorem 2.7 By definition, a set of atomic names A ⊆ A strongly supports an
element x of a nominal set X if and only if

((∀a ∈ A) π a = a)⇔ π · x = x. (2.5)

In this case if A is finite, then A = supp x.

Proof If A strongly supports x, then it certainly supports x and hence supp x ⊆ A.
If A is finite, then we also have A ⊆ supp x. For then A − A is non-empty, say
a′ ∈ A − A, and for any a ∈ A − supp x, (a a′) a = a′ , a ∈ A. So from (2.5) we
conclude that (a a′) · x , x; but this contradicts the fact that a, a′ < supp x. �

Since A is a PermA-set, so is its powerset PA, as in section 1.5. It is not hard
to see that it contains elements that are not finitely supported (Exercise 2.2); but
as the next result shows, we can identify exactly which subsets of A are finitely
supported.

Proposition 2.8 A set A ⊆ A of atomic names is a finitely supported element of
PA if and only if either it or its complement A − A is finite. In the latter case one
says that A is cofinite.

Proof Note that (a a′) ·A = A if and only if (a ∈ A∧a′ ∈ A)∨ (a < A∧a′ < A). So
from Proposition 2.1 it follows that A′ ⊆ A supports A ∈ PA if and only if either
A ⊆ A′, or A − A ⊆ A′. Hence the result. �

Example 2.9 Each finite element of PA is supported by itself and this is the
least support. So we get a nominal set Pf A of finite sets a of atomic names with
π · a = {π a | a ∈ a} and supp a = a. Note that a is not a strong support for a in the
sense of Theorem 2.7, so long as it has at least two elements.

Proposition 2.10 For each nominal set X the support function supp : X → Pf A

is equivariant:

π · (supp x) = supp(π · x) (2.6)

holds for all π ∈ PermA and x ∈ X.

18 Support

Proof In view of (2.1) and (2.4), the support function is definable within classical
higher-order logic from the action function λ(π, x) ∈ PermA × X � π · x; and we
saw in Example 1.6 that the latter is equivariant. Therefore the theorem follows
from the Equivariance Principle. �

We will revisit the various constructions on G-sets from chapter 1 and see whether
they preserve the property of being a nominal set. The following results about sup-
port and equivariant functions will be useful for doing this.

Lemma 2.11 Suppose that f : X → Y is an equivariant function between
PermA-sets.

1. If A is a support for x ∈ X, then it is a support for f x ∈ Y. So if X and Y are
nominal sets, then

(∀x ∈ X) suppY (f x) ⊆ suppX x. (2.7)

2. If f is injective ((∀x, x′ ∈ X) f x = f x′ ⇒ x = x′), then A is a support for
x ∈ X if and only if it is a support for f x ∈ Y. So if Y is a nominal set, then so
is X and

(∀x ∈ X) suppX x = suppY (f x). (2.8)

3. If f is surjective ((∀y ∈ Y)(∃x ∈ X) f x = y) and X is a nominal set, then so is
Y.

Proof For part 1, suppose A supports x ∈ X. If π ∈ PermA satisfies (∀a ∈
A) π a = a, then by (2.1) x = π · x and hence f x = f (π · x) = π · (f x) since
f is equivariant. Thus A supports f x in Y . Therefore if X and Y are nominal sets
and x ∈ X, then suppX x supports f x and hence contains the smallest support,
suppY (f x).

For part 2, suppose f is injective and that A supports f x. So if π ∈ PermA

satisfies (∀a ∈ A) π a = a, then by (2.1) f x = π ·(f x) and hence f x = f (π · x) since
f is equivariant; as it is also injective this implies x = π · x. Therefore A is a support
for x. So if Y is nominal, each x ∈ X possesses a finite support, namely suppY (f x);
hence X is nominal. In this case suppY (f x) contains the smallest support for x,
suppX x; and conversely, suppY (f x) is contained in suppX x by part 1.

Finally, part 3 follows immediately from part 1, since each y ∈ Y possesses a
finite support, namely suppX x where x is some element of X such that f x = y. �

2.2 Products and coproducts

Coproducts in Nom are constructed just as in [PermA,Set], by taking disjoint
unions (see section 1.2). This is because, for any family of nominal sets (Xi | i ∈ I),

2.2 Products and coproducts 19

each element (i, x) of
∑

i∈I Xi is supported by suppXi
x. For if π fixes each a ∈

suppXi
x, then π · x = x and hence π · (i, x) = (i, π · x) = (i, x). Indeed, since

inji = λx ∈ Xi � (i, x) is an injective equivariant function from Xi to
∑

i∈I Xi, by
(2.8) we have

supp∑
i∈I Xi

(i, x) = suppXi
x. (2.9)

The situation for products is more complicated. Finite cartesian products of nom-
inal sets are again nominal, but infinite products in Nom are not given in general
by the product in [PermA,Set].

Proposition 2.12 The product X1×· · ·×Xn in [PermA,Set] of finitely many nomi-
nal sets is another such (and hence is their product in Nom). For each (x1, . . . , xn) ∈
X1 × · · · × Xn

suppX1×···×Xn
(x1, . . . , xn) = suppX1

x1 ∪ · · · ∪ suppXn
xn. (2.10)

Proof Recall from section 1.2 that the permutation action for products is given
componentwise: π · (x1, . . . , xn) = (π · x1, . . . , π · xn). So if π fixes each atomic
name in suppX1

x1 ∪ · · · ∪ suppXn
xn, then it also fixes (x1, . . . , xn). Therefore each

(x1, . . . , xn) is finitely supported by suppX1
x1∪· · ·∪suppXn

xn and X1×· · ·×Xn is a
nominal set. To prove (2.10) it just remains to show that suppX1

x1∪ · · ·∪ suppXn
xn

is contained in supp(x1, . . . , xn); but since each projection function proji : X1×· · ·×

Xn → Xi is equivariant, by (2.7) we have suppXi
xi = suppXi

(proji(x1, . . . , xn)) ⊆
supp(x1, . . . , xn) for each i ∈ I. �

Generalizing from finite to infinite cartesian products
∏

i∈I Xi, as in the above
proof we have that an element (xi | i ∈ I) is supported by

⋃
i∈I suppXi

xi, but that set
may not be finite (Exercise 2.3). Nevertheless, the category Nom does have infinite
products, because of the following result.

Theorem 2.13 For each PermA-set X there is an equivariant function Xfs → X
from a nominal set Xfs to X that is universal among all such. In other words, given
any equivariant function F from a nominal set Y to X

Y
F

F
��

Xfs // X

there is a unique equivariant function F making the above diagram commute. (Thus
Nom is a co-reflective subcategory of [PermA,Set].)

Proof First note that if x ∈ X is supported by A ∈ PA, then for any π ∈ PermA,

20 Support

π ·x is supported by π ·A. (This is a consequence of the Equivariance Principle men-
tioned in section 1.5; or one can prove it directly from the definition of support.)
So

Xfs , {x ∈ X | x is finitely supported in X}. (2.11)

is an equivariant subset of X and hence an PermA-set with permutation action
inherited from X. The inclusion Xfs ⊆ X gives an injective equivariant function
and therefore Xfs is a nominal set by (2.8). To see that it has the required universal
property it suffices to show that any F : Y → X in [PermA,Set] with Y ∈ Nom
maps elements of Y into the subset Xfs ⊆ X; but from part 1 of Lemma 2.11, for
each y ∈ Y we have that suppY y is a finite support for F y and hence F y ∈ Xfs. �

Combining the description of products in [PermA,Set] from section 1.2 with
the above theorem, we get:

Corollary 2.14 Given a family of nominal sets Xi indexed by the elements i of
some set I, their product in Nom is given by (

∏
i∈I Xi)fs with product projections

(
∏

i∈I Xi)fs ⊆
∏

i∈I Xi
proji // Xi.

Thus infinite products in Nom may contain rather few elements; see Exercise 2.4.

2.3 Natural numbers

We saw in section 1.3 that the natural numbers object in the category of G-sets is
given by N with the discrete G-action together with the usual zero and successor
functions. As we noted in Example 2.5, every discrete PermA-set is a nominal set.
It follows that

1 zero // N
suc // N

is also the natural numbers object in the category Nom of nominal sets and equiv-
ariant functions.

2.4 Functions

Recall from section 1.4 the definition of the function G-set YX . When G = PermA,
the following characterization of the support of elements of YX is useful.

Lemma 2.15 Given X,Y ∈ [PermA,Set], a set of atomic names A ⊆ A supports
F ∈ YX if and only if for all π ∈ PermA

((∀a ∈ A) π a = a)⇒ (∀x ∈ X) F(π · x) = π · (F x). (2.12)

2.4 Functions 21

In particular, F has empty support if and only if it is an equivariant function (Def-
inition 1.2).

Proof It follows from the definition of the action of permutations on functions
(1.25) that π · F = F holds if and only if (∀x ∈ X) F(π · x) = π · (F x). �

Definition 2.16 If X and Y are nominal sets, we write X �fs Y for the nominal set
(YX)fs formed from YX as in (2.11), and call it the nominal function set of X and Y .

Restricting the application function app : YX × X → Y to finitely supported
functions, we get an equivariant function

app : (X �fs Y) × X → Y
app , λ(F, x) ∈ (X �fs Y) × X � F x.

(2.13)

Currying an equivariant function F : Z × X → Y to get curry F : Z → YX as in
section 1.4, by Theorem 2.13 if Z is nominal then curry F factors through (YX)fs ⊆

YX to give an equivariant function

curry F : Z → (X �fs Y)
curry F , λz ∈ Z, x ∈ X � F(z, x).

(2.14)

Theorem 2.17 Nom is a cartesian closed category.

Proof We have already seen that Nom has finite products. Furthermore (YX)fs

gives the exponential of Y by X in Nom for general category-theoretic reasons:
Nom is a co-reflective full subcategory of [PermA,Set] (Theorem 2.13) and the
inclusion of Nom into [PermA,Set] preserves finite products. Thus there are bi-
jections of hom-sets

Nom(Z × X,Y)
= {binary products in Nom are as in [PermA,Set]}

[PermA,Set](Z × X,Y)
� {YX is the exponential in [PermA,Set]}

[PermA,Set](Z,YX)
� {Theorem 2.13}

Nom(Z, (YX)fs)
= {definition of X �fs Y}

Nom(Z, X �fs Y)

(natural in X,Y,Z ∈ Nom) given by sending F ∈ Nom(Z × X,Y) to curry F ∈
Nom(Z, X �fs Y). �

Not every function between nominal sets is finitely supported; in other words
X �fs Y can be a proper subset of YX . Here is an example that shows this.

22 Support

Example 2.18 Consider the function PermA-set YX where X is the set N of nat-
ural numbers regarded as a discrete nominal set (Example 2.5) and where Y is the
nominal set Pf A of finite sets of atoms, as in Example 2.9. Let F ∈ YX be a func-
tion that maps each natural number n ∈ N to some finite set of atoms of cardinality
n. Then there is no finite set of atoms A that supports F in YX . To see this we sup-
pose A is a finite support for F and derive a contradiction. Since each n ∈ N has
empty support, A is also a support for (F, n) ∈ YX × X; and then since application
app : YX × X → Y is equivariant, by part 1 of Lemma 2.11 we have that A is a sup-
port for F n ∈ Pf A. We noted in Example 2.9 that the least support of a finite set of
atoms is the set itself. Therefore we have proved (∀n ∈ N) F n ⊆ A. Taking n larger
than the cardinality of the finite set A gives a contradiction, since by assumption on
F, F n is a set of cardinality n and so cannot be a subset of A.

2.5 Power sets

Lemma 2.19 If S ⊆ X is an equivariant subset of a nominal set X, then restricting
the PermA-action on X to S , S is a nominal set.

Proof By part 2 of Lemma 2.11 applied to the inclusion S ⊆ X, the elements of
S are finitely supported because they are so in X. �

The subobjects of X ∈ Nom correspond to equivariant subsets of X. To see this
we need to describe pullbacks in Nom. A pullback for a pair of morphisms F1 and
F2 with common codomain in a category is a commutative square

P
P2 //

P1
��

X2

F2
��

X1 F1

// Y

with the universal property that given any Gi : Y → Xi with F1 ◦ G1 = F2 ◦ G2,
there is a unique morphism from Y to P making the two triangles commute:

Y

G1

��

G2

##
P

P2

//

P1
��

X2

F2
��

X1 F1

// Y.

When the category is Nom, as for binary products, pullbacks are created by taking

2.5 Power sets 23

pullbacks of the underlying functions:

P , {(x1, x2) ∈ X1 × X2 | F1 x1 = F2 x2}

Pi = λ(x1, x2) ∈ P � xi

(Note that P is an equivariant subset of the product X1 × X2 and hence by part 2
of Lemma 2.11 is a nominal set.) By considering the pullback of a monomorphism
against itself, it follows that a morphism F : X → Y in Nom is a monomorphism
if and only if F is an injective function. Combining this observation with part 2
of Lemma 2.11 we conclude that the subobjects of X in Nom are the same as its
subobjects in [PermA,Set] and correspond to equivariant subsets of X.

Theorem 2.20 The category Nom of nominal sets and equivariant functions is a
Boolean topos with a natural number object.

Proof We have already seen that Nom is cartesian closed and possesses a natural
number object. Just as in [PermA,Set], the discrete nominal set B = {true, false}
is a subobject classifier, because of the above observations about pullbacks and
subobjects in Nom. �

As in any topos, the exponential X �fs B = (BX)fs of the subobject classifier
by an object X gives a form of powerset object in Nom. The isomorphism in
[PermA,Set] between BX and P X (section 1.5) restricts to an isomorphism be-
tween the finitely supported elements of BX and P X. However, as the next result
shows, to check that S ⊆ X is a finitely supported element of P X it suffices to
check that containments π · S ⊆ S rather than equalities π · S = S hold for all
permutations π fixing the atomic names in a support set.

Lemma 2.21 Given X ∈ [PermA,Set], a set of atomic names A ⊆ A supports
S ∈ P X if and only if

(∀π ∈ PermA)((∀a ∈ A) π a = a)⇒ (∀x ∈ S) π · x ∈ S . (2.15)

In particular, S has empty support if and only if it is an equivariant subset of X
(Definition 1.8).

Proof Note that by (1.32), (∀x ∈ S) π · x ∈ S is equivalent to π · S ⊆ S . Note as
well that any π satisfying (∀a ∈ A) π a = a) also satisfies (∀a ∈ A) π−1a = a). So
if (2.15) holds, then we have π · S ⊆ S and π−1 · S ⊆ S and hence π · S = S . So
(2.15) implies that A supports S in P X; and the converse is immediate. �

The following simple corollary of this lemma will be useful.

Proposition 2.22 Given X,Y ∈ [PermA,Set], if A ⊆ A supports both S ∈ P (X ×
Y) and x ∈ X, then it also supports {y ∈ Y | (x, y) ∈ S } ∈ P Y.

24 Support

Proof Suppose π ∈ PermA satisfies (∀a ∈ A) π a = a. Then π·x = x and π·S = S .
So for all y in {y ∈ Y | (x, y) ∈ S }we have (x, π·y) = (π·x, π·y) = π·(x, y) ∈ π·S = S
and therefore π · y is also in {y ∈ Y | (x, y) ∈ S }. So we can apply Lemma 2.21 to
deduce that A supports {y ∈ Y | (x, y) ∈ S }. �

Definition 2.23 If X is a nominal set, we write Pfs X for the nominal set (P X)fs

formed from the power PermA-set P X using (2.11). We call Pfs X the nominal
powerset of X.

For any nominal set X, from parts 1–3 of Proposition 1.9 we have the following
equivariant and hence finitely supported subsets.

• Truth X ∈ Pfs X.
• Equality {(x, x′) ∈ X × X | x = x′} ∈ Pfs (X × X).
• Membership {(x, S) ∈ X × Pfs X | x ∈ S } ∈ Pfs (X × Pfs X).

Furthermore, if f : P X1×· · ·×P Xn → P X is an equivariant function and (S 1, . . . , S n) ∈
Pfs X1×· · ·×Pfs Xn, then by part 1 of Lemma 2.11 and (2.10), f (S 1, . . . , S n) is sup-
ported by the union of the supports of each S i and hence is in Pfs X. So parts 4–7
of Proposition 1.9 give us the following equivariant functions.

• Conjunction ∩ : Pfs X × Pfs X → Pfs X.
• Negation ¬ : Pfs X → Pfs X, where ¬S , {x ∈ X | x < S }.
• Universal quantification

⋂
: Pfs (Pfs X) → Pfs X, where

⋂
S , {x ∈ X | (∀S ∈

S) x ∈ S }.
• Substitution f ∗ : Pfs Y → Pfs X, where f : X → Y is an equivariant function and

f ∗S , {x ∈ X | f x ∈ S }.

Finally, the analogue of part 8 of Proposition 1.9 is the following equivariant func-
tion.

• Comprehension compr : Pfs (X × Y) → (X �fs Pfs Y), where compr S , λx ∈
X � {y ∈ Y | (x, y) ∈ S }. To see that this is well-defined, note that given
S ∈ Pfs (X × Y) and x ∈ X, by Proposition 2.22 compr S x = {y ∈ Y | (x, y) ∈ S }
is finitely supported by supp S ∪ supp x. Hence compr S ∈ (Pfs Y)X; but since we
know from Proposition 1.9 that compr is equivariant, by part 1 of Lemma 2.11
we have compr S ∈ ((Pfs Y)X)fs = X �fs Pfs Y .

From these facts we get a version for nominal sets of the Equivariance Principle
from section 1.5:

Finite Support Principle Any function or relation that is defined from finitely
supported functions and subsets using classical higher-order logic is itself finitely
supported, provided we restrict any quantification over functions or subsets to
range over ones that are finitely supported.

2.6 Failure of choice 25

2.6 Failure of choice

Although nominal sets provide a model of classical higher-order logic, as the fol-
lowing theorem shows, they do not model choice principles. Indeed Fraenkel and
Mostowski introduced permutations and finite supports into logic in the first place
in order to construct a model of set theory with atoms not satisfying the Axiom of
Choice.

Theorem 2.24 Let PnefsA be the nominal set of non-empty, finitely supported
subsets of A (where the PermA-action on such subsets is as for Pfs A). No function
C : PnefsA→ A satisfying

(∀S ∈ PnefsA) C S ∈ S (2.16)

can have finite support in the PermA-set (PnefsA)A.

Proof We suppose C satisfying (2.16) is supported by a finite subset A ⊆ A and
derive a contradiction. Let S be the cofinite set A − A. From Proposition 2.8 we
have that S ∈ Pfs A; and being cofinite, S is in particular non-empty. Therefore
we can apply C to S to get an atomic name a0 , C S ∈ S = A − A. Since
A ∪ {a0} is finite and A is infinite, there is some a1 ∈ A − (A ∪ {a0}) ⊆ S . Since
a0, a1 ∈ S , we have (a0 a1) · S = S ; and since A supports C and a0, a1 < A, we
also have (a0 a1) · C = C. So by definition of the PermA-action on (PnefsA)A,
(a0 a1) · (C S) = ((a0 a1) · C)((a0 a1) · S) = C S . Therefore a1 = (a0 a1) · a0 =

(a0 a1) · (C S) = C S = a0, contradicting the fact that a1 was chosen to be distinct
from a0. �

So in particular Nom does not model Hilbert’s ε-operator mapping non-empty
subsets at each type to elements of those subsets. We remarked in Note 1.11 that
this is already the case for [PermA,Set] and equivariant properties. However, when
we move to Nom and finitely supported properties even weaker, internal choice
principles fail to hold. For example, the above theorem shows that Nom fails to
satisfy the higher-order logic formula

(∀R ∈ P (X × Y))

((∀x ∈ X)(∃y ∈ Y) (x, y) ∈ R)⇒ (∃ f ∈ YX)(∀x ∈ X) (x, f x) ∈ R.

(Interpret X as PnefsA, Y as A and R as {(S , a) ∈ PnefsA × A | a ∈ S } and apply the
theorem.)

Nevertheless, many uses of choice in theorem-provers based on classical higher-
order logic (such as the HOL theorem prover, Gordon and Melham, 1993) are
for making definitions, where the thing defined is unique. Such restricted uses of
choice are consistent with the model of higher-order logic that Nom provides (see
Pitts, 2003, section 8).

26 Support

2.7 Partial functions

If X and Y are nominal sets, we saw in section 1.6 that the set X ⇀ Y of partial
functions is an equivariant subset of P (X × Y). Applying fs to it we obtain the set
of finitely supported partial functions

X ⇀fs Y , (X ⇀ Y)fs. (2.17)

Thus the elements of X ⇀fs Y are the finitely supported subsets of X × Y that are
single-valued (1.36). This gives the object of partial maps from X to Y in Nom;
that is, there is a natural correspondence between partial maps (Johnstone, 2002,
p 100)

· //
��

��

Y

Z × X

(2.18)

and morphisms Z → (X ⇀fs Y). Indeed, partial maps in Nom correspond to equiv-
ariant partial functions, that is, partial functions that are equivariant as subsets.
Given such an F ∈ (Z × X) ⇀ Y , the corresponding equivariant function curry F :
Z → (X ⇀fs Y) maps each z ∈ Z to

curry F z = {(x, y) ∈ X × Y | ((z, x), y) ∈ F}

This is a partial function because F is one; and it is finitely supported by supp z, be-
cause of Proposition 2.22. The correspondence between F and curry F is mediated
by the equivariant partial function

app ∈ (X ⇀fs Y) × X ⇀ Y

app , {((F, x), y) ∈ ((X ⇀fs Y) × X) × Y | (x, y) ∈ F}.
(2.19)

that applies a partial function to its argument. For each F, curry F is the unique
equivariant function Z → (X ⇀fs Y) satisfying

(∀z ∈ Z)(∀x ∈ X) app(curry F z, x) ≡ F(z, x) (2.20)

(where ≡ is Kleene equivalence—see section 1.6).
Since Nom is a Boolean topos (Theorem 2.20), there is a natural isomorphism

between X ⇀fs Y and the exponential X �fs (Y + 1). This is given by restricting to
finitely supported elements the usual correspondence between partial functions to
Y and total functions to Y augmented with an element for ‘undefined’, that is, to
Y + 1.

2.8 Quotient sets 27

2.8 Quotient sets

In section 1.7 we saw that if ∼ is an equivariant equivalence relation on a G-set,
then the set X/∼ of equivalence classes [x]∼ becomes a G-set once we endow it
with the G-action given by (1.42). The quotient function λx ∈ X � [x]∼ is a
surjective equivariant function X → X/∼. So if X is a nominal set, then by part 3
of Lemma 2.11 we have that X/∼ is also a nominal set.

By part 1 of that lemma we have supp [x]∼ ⊆ supp x, for all x ∈ X. In fact for
an equivalence class c ∈ X/∼, supp c is the intersection of the supports of all its
representatives x ∈ c; see Exercise 2.8.

The next section gives an important example of the quotient construction for
nominal sets.

2.9 α-Equivalence

Consider the set Λ/=α of terms of the untyped λ-calculus (Barendregt, 1984),
which we can take to be the quotient by α-equivalence of the set Λ of terms t
given by the grammar

t ∈ Λ ::= a | λa.t | t t

where a ranges over A, regarded as an infinite set of variables. The elements of
Λ are sometimes called raw terms to distinguish them from the elements of the
quotient Λ/=α.

The equivalence relation =α is α-equivalence, which can be inductively defined
by the following rules.

a =α a

t1 =α t′1 t2 =α t′2
t1 t2 =α t′1 t′2

(a1 a) · t1 =α (a2 a) · t2
a < var(a1 t1 a2 t2)

λa1.t1 =α λa2.t2
. (2.21)

Here we are using the action of PermA on terms defined as in Example 1.4; and
as in Example 2.6, Λ is a nominal set with supp t = var t, the finite set of variables
occurring in the term t:

var a = {a}

var(λa.t) = {a} ∪ var t

var(t t′) = var t ∪ var t′.

(2.22)

The relation of α-equivalence is more traditionally defined to be the congruence
generated by relating λa.t and λa′.{a′/a}t if there are no occurrences of a′ in t,
where {a′/a}t is the term obtained from t by replacing all free occurrences of a
with a′. The properties of this form of renaming are rather inconvenient, because

28 Support

the function λt ∈ Λ � {a′/a}t does not necessarily respect α-equivalence when
applied to terms that do contain occurrences of a′. This is because of the possi-
ble ‘capture’ of a′ by binders λa′. occurring in t. For example, if a, a1 and a2

are three distinct atomic names, then λa1.a =α λa2.a holds, but {a1/a}(λa1.a) =

λa1.a1 /α λa1.a1 = {a1/a}(λa2.a). In the traditional development of the theory
of lambda calculus (Barendregt, 1984), this inconvenient fact immediately leads
to the formulation of more complicated, ‘capture-avoiding’ notions of renaming
and substitution. However, it is possible to go in the other direction and replace
λt ∈ Λ � {a′/a}t with another, equally simple form of renaming which does re-
spect α-equivalence, namely the action of the transposition (a a′). For if a′ does
not occur in t, then {a′/a}t is α-equivalent to the term (a a′) · t obtained from t
by swapping all occurrences of a and a′. It is for this reason that definition (2.22)
coincides with the usual definition of α-equivalence (see Gabbay and Pitts, 2002,
Proposition 2.2).

We noted in Example 1.6 that group action functions are equivariant. It follows
from this and the Equivariance Principle that =α is equivariant:

t =α t′ ⇒ π · t =α π · t′. (2.23)

It is also an equivalence relation. Proofs of the reflexivity and symmetry of =α are
easy, whereas the proof of its transitivity is less so; we discuss it in more detail in
the proof of Lemma 5.5. From section 2.8 we have that the quotient set Λ/=α of
untyped λ-terms is a nominal set with supp [t]=α ⊆ var t. In fact the support of a
λ-term is equal to the set of free variables of any representative raw term:

supp [t]=α = fv t (2.24)

where
fv a = {a}

fv(λa.t) = (fv t) − {a}

fv(t t′) = fv t ∪ fv t′.

(2.25)

This is because for all t ∈ Λ

((∀a ∈ fv t) π a = a)⇔ π · t =α t (2.26)

and hence fv t strongly supports [t]=α in Λ/=α; so we can apply Theorem 2.7 to
conclude that supp [t]=α is equal to fv t. The proof of (2.26) is left as an exercise.

Exercises

2.1 If X is a nominal set and x ∈ X, show that

supp x = {a ∈ A | {a′ ∈ A | (a a′) · x , x} is an infinite set}. (2.27)

Exercises 29

[Hint: see the proof of (Gabbay and Pitts, 2002, Proposition 3.4).]
2.2 Give an example of an element of the power PermA-set PA that is not finitely

supported.
2.3 Consider the product PermA-set

∏
i∈I Xi for the case I = N = {0, 1, 2, . . .} and

Xi = A (as in Example 1.3) for each i ∈ N. Let (a0, a1, a2, . . .) be an element
of this product that enumerates the elements of A in the sense that each a ∈ A
is equal to ai for some i ∈ N. Show that this element is not finitely supported.

2.4 Give an example of a countably infinite family (Xn | n ∈ N) of non-empty
nominal sets whose product in the category Nom is empty. [Hint: for each n,
consider the set of finite subsets of A of cardinality n + 1.]

2.5 Consider PermA with PermA-action as in Example 1.6. Show that each π ∈
PermA is finitely supported by {a ∈ A | π a , a} and hence that PermA is a
nominal set. Show that a < supp π ⇒ π a = a and deduce that supp π = {a ∈
A | π a , a}.

2.6 Show that the nominal set PermA is the ‘object of bijections’ on A in the
topos Nom. In other words it is isomorphic to the subobject of the exponential
A �fs A given by the equivariant subset of functions that are both injective
and surjective.

2.7 Let X be a G-set for some group G. Show that for every subset S ⊆ X there
is a greatest equivariant subset contained in S and a least equivariant sub-
set containing S . Is the same true for finitely supported subsets when X is a
nominal set?

2.8 Suppose X is a nominal set and S is a non-empty, finitely supported subset
of X. Use Proposition 2.10 to show that for any a ∈ A − supp S there exists
x ∈ S with a < supp x. Deduce that if ∼ is an equivariant equivalence relation
on X and c ∈ X/∼, then supp c =

⋂
{supp x | x ∈ c}.

2.9 Prove (2.26) by induction on the size of raw terms t.

3
Freshness

In the previous chapter we explored the notion of the support of elements in sets
upon which permutations of names act. The complementary notion of an atomic
name not being in the support of an element is in many ways more important for
applications of nominal sets. This is the relation of freshness that we explore in this
chapter.

3.1 Freshness relation

Given nominal sets X and Y and elements x ∈ X and y ∈ Y , we write x # y and say
that x is fresh for y if the two elements have disjoint supports:

x # y⇔ suppX x ∩ suppY y = ∅. (3.1)

Most of the time we use the freshness relation when X = A and x = a is an atomic
name. In this case since supp a = {a} (Example 2.4), a # y means that a < supp y,
or equivalently that there some finite support for y that does not contain a. The
finiteness of supports compared with the infiniteness of A leads to the following
simple principle that we will use very often in what follows.

Choose-a-Fresh-Name Principle If X1, . . . , Xn are finitely many nominal sets
and if x1 ∈ X1, . . . , xn ∈ Xn are elements of them, then there is an atomic name
a ∈ A satisfying a # x1∧· · ·∧a # xn (indeed, there are infinitely many such names).

Note that by Proposition 2.10 the freshness relation is equivariant:

x # y⇒ (π · x) # (π · y). (3.2)

The following results restate some of the properties of supports from the previous
chapter in terms of the freshness relation.

Proposition 3.1 Let x ∈ X be an element of a nominal set X. For all a, a′ ∈ A, if
a # x and a′ # x, then (a a′) · x = x.

3.1 Freshness relation 31

Proof Apply Proposition 2.1. �

Proposition 3.2 For any atoms a, a′ ∈ A and finite sets of atoms a, a′ ∈ Pf A

a # a′ ⇔ a , a′

a # a⇔ a < a

a # a′ ⇔ a ∩ a′ = ∅.

Proof Use the facts established in Examples 2.4 and 2.9 that supp a = {a} and
supp a = a. �

Proposition 3.3 Let X1, . . . , Xn be nominal sets. Then for all x1 ∈ X1, . . . , xn ∈ Xn,
and a ∈ A

a # (x1, . . . , xn) ∈ X1 × · · · × Xn ⇔ a # x1 ∧ · · · ∧ a # xn

a # inji(xi) ∈ X1 + · · · + Xn ⇔ a # xi.

Proof These follow immediately from (2.10) and (2.9). �

Proposition 3.4 Let X and Y be nominal sets.

1. Suppose F ∈ Pfs (X × Y) is a partial function:

(∀x ∈ X)(∀y, y′ ∈ Y) (x, y) ∈ F ∧ (x, y′) ∈ F ⇒ y = y′. (3.3)

If (x, y) ∈ F, a # F and a # x, then a # y.
2. Suppose F ∈ X �fs Y and x ∈ X. If a # F and a # x, then a # F x.
3. Suppose F : X → Y in Nom. For all x ∈ X, if a # x, then a # F x.

Proof Part 2 is the special case of part 1 when F is total. Part 3 follows from
part 2, because when F is equivariant, then as noted in Lemma 2.15 supp F = ∅

and hence a # F always holds. So it just remains to prove part 1; and for this it
suffices to show that if (x, y) ∈ F and A ⊆ A supports F and x, then A supports y.

If π ∈ PermA satisfies (∀a ∈ A − A) π a = a, then π · x = x and π · F = F.
Therefore (x, π ·y) = (π · x, π ·y) = π · (x, y) ∈ π ·F = F and hence by (3.3), π ·y = y.
Thus A supports y. �

Example 3.5 Freshness is not a unary ‘logical relation’ for functions. Although
it is the case that a # F implies (∀x ∈ X) a # x ⇒ a # F x, the converse is
false in general. For example, given an atomic name a ∈ A, consider the function
Fa : Pf A → Pf A mapping a finite subset a to a − {a}. It is not hard to see that Fa

satisfies

(∀a1, a2 ∈ A − {a}) (a1 a2) · Fa = Fa

32 Freshness

and hence Fa is supported by {a}; and it also satisfies

(∀a′ ∈ A − {a}) (a a′) · Fa , Fa

and hence is not supported by ∅. Therefore F ∈ Pf A �fs Pf A and supp Fa = {a}.
So it is not the case that a # F holds. However Fa does satisfy

(∀a ∈ Pf A) a # a⇒ a # Fa a

since a < a − {a} = supp(a − {a}) = supp(Fa a).

3.2 Freshness quantifier

Here is a very common pattern when reasoning informally with fresh names. At
some point in a proof one chooses some fresh name with certain properties; later
on in the proof one may need to revise that choice to take account of extra names
that have entered the current context and so one needs to know that any fresh name
with the property would have done for the original choice. The following results
show that for finitely supported properties this switch from ‘some fresh’ to ‘any
fresh’ is always possible.

Lemma 3.6 Let S ∈ Pfs A be a finitely supported set of atomic names, supported
by a ∈ Pf A say. The following are equivalent.

1. (∃a ∈ A) a < a ∧ a ∈ S .
2. (∀a′ ∈ A) a′ < a⇒ a′ ∈ S .
3. S is cofinite.

Proof If a ∈ S − a, then for any a′ ∈ A − a we have (a a′) · S = S since a, a′ < a
and the latter supports S ; so a′ = (a a′) · a ∈ (a a′) · S = S . So 1 implies 2.

We know from Proposition 2.8 that Pfs A splits up as the disjoint union of two
equivariant subsets, one consisting of all the finite subsets and the other consisting
of all the cofinite subsets. Condition 2 says that S contains A − a and hence is not
finite. Therefore 2 implies 3.

Finally, if S is cofinite then so is (A − a) ∩ S and hence it is in particular non-
empty. Therefore 3 implies 1. �

Definition 3.7 We define N, {S ⊆ A | A − S is finite} to be the set of cofinite
sets of atomic names. If ϕ is the description (in higher-order logic, say) of some
property of atomic names a, the freshness quantifier

(Na) ϕ (3.4)

asserts that the set {a ∈ A | ϕ} is in N.

3.2 Freshness quantifier 33

Note that this is a monotone quantifier in the sense that

{a ∈ A | ϕ} ⊆ {a ∈ A | ϕ′} ⇒ (Na) ϕ⇒ (Na) ϕ′. (3.5)

By definition (Na) ϕ says that ϕ holds for all but finitely many atomic names; but in
view of the following theorem, we can also read it as ‘for some/any fresh a, ϕ’, so
long as the subset {a ∈ A | ϕ} determined by ϕ is finitely supported. By the Finite
Support Principle stated at the end of section 2.5, this is the case for a wide range
of properties, namely those expressible in classical higher-order logic (without the
axiom of choice) using finitely supported primitives.

Theorem 3.8 (‘Some/any’ theorem) Suppose that X is a nominal set and that
R ⊆ A × X is an equivariant subset. For each x ∈ X, the following are equivalent.

1. (∃a ∈ A) a # x ∧ (a, x) ∈ R.
2. (∀a ∈ A) a # x⇒ (a, x) ∈ R.
3. (Na) (a, x) ∈ R.

Proof Since R has empty support (by Lemma 2.21), it follows from Proposi-
tion 2.22 that for each x ∈ X the subset {a ∈ A | (a, x) ∈ R} is supported by supp x.
So we can apply Lemma 3.6 with S = {a ∈ A | (a, x) ∈ R} and a = supp x. �

For example, the third rule in (2.21) for inductively generating α-equivalence
between raw λ-terms can be restated as

(Na′′) (a a′′) · t =α (a′ a′′) · t′

λa.t =α λa′.t′

because {(a′′, (a, t, a′, t′)) | (a a′′) · t =α (a′ a′′) · t′} is an equivariant subset of
A × (A × Λ × A × Λ) and a′′ # (a, t, a′, t′) holds if and only if a′′ < var(a t a′ t′).

The theorem expresses the freshness quantifier in terms of the freshness relation
a # x. The converse is also possible:

a # x⇔ (Na′) (a a′) · x = x. (3.6)

To see this, we can take X = A×X and R = {(a′, (a, x)) ∈ A×(A×X) | (a a′) ·x = x}
in Theorem 3.8.

As the next result shows, the freshness quantifier has very regular behaviour
with respect to the Boolean operations. Exercise 3.1 explores its commutation with
existential and universal quantification.

Proposition 3.9 Suppose ϕ and ϕ′ are properties of atomic names for which {a ∈
A | ϕ} and {a ∈ A | ϕ′} are finitely supported subsets of A. Then the following

34 Freshness

properties hold.

¬(Na) ϕ⇔ (Na) ¬ϕ (3.7)

((Na) ϕ ∧ (Na) ϕ′)⇔ (Na) ϕ ∧ ϕ′ (3.8)

and hence also

((Na) ϕ ∨ (Na) ϕ′)⇔ (Na) ϕ ∨ ϕ′ (3.9)

((Na) ϕ⇒ (Na) ϕ′)⇔ (Na) ϕ⇒ ϕ′. (3.10)

Proof Since S , {a ∈ A | ϕ(a)} and S ′ , {a ∈ A | ϕ′(a)} are elements of Pfs A, by
Proposition 2.8 they are either finite or cofinite. So S < Nif and only if S is finite
if and only if A − S ∈ N; so we have (3.7). Since the union of two sets is finite if
and only if they are both finite, we also have S ∩ S ′ ∈ N⇔ S ∈ N∧ S ′ ∈ N, which
gives (3.8). �

3.3 Local fresh atomic names

Many constructions on syntax, especially ones involving binding operations, make
use of fresh names and involve verifying that the construction is independent of
which fresh name is chosen. As the following theorem shows, the notion of ‘fi-
nite support’ built in to nominal sets can be used to give a simple condition that
guarantees this independence.

Theorem 3.10 (Freshness theorem) Let X be a nominal set. If a finitely sup-
ported partial function F ∈ A⇀fs X satisfies

(Na)(∃x ∈ X) a # x ∧ F a ≡ x (3.11)

then there is a unique element freshX F ∈ X satisfying

(Na) F a ≡ freshX F. (3.12)

Furthermore, supp(freshX F) ⊆ supp F.

Proof Consider the equivariant subset

freshX , {(F, x) ∈ (A⇀fs X) × X | (Na) F a ≡ x}. (3.13)

To prove the first sentence of the theorem we have to show that (3.13) is a partial
function whose domain of definition contains those F satisfying (3.11); and then

3.4 Separated product 35

the second sentence follows by part 1 of Proposition 3.4. Note that

(F, x) ∈ freshX ∧ (F, x′) ∈ freshX

⇒ {by (3.8)}
(Na) (a, x) ∈ F ∧ (a, x′) ∈ F
⇒ {since F is single-valued}

x = x′.

So freshX is single-valued. If F satisfies (3.11), then by the ‘some/any’ theorem
(Theorem 3.8) there exists a ∈ A and x ∈ X with a # (F, x) and (a, x) ∈ F; hence
(Na) F a ≡ x holds and therefore F ∈ Dom freshX . �

Definition 3.11 If λa ∈ A � ϕ(a) is the description of some finitely supported
partial function in A⇀fs X satisfying condition (3.11) in the above theorem, then
we write the element freshX(λa ∈ A � ϕ(a)) of X as

fresh a in ϕ(a). (3.14)

With this notation we can summarize the freshness theorem by the formula

((Na)(∃x ∈ X) a # x ≡ ϕ(a))⇒ (Na) ϕ(a) ≡ (fresh a in ϕ(a)). (3.15)

3.4 Separated product

Since the freshness relation (3.1) is equivariant, for any nominal sets X1 and X2

X1 ∗ X2 , {(x1, x2) ∈ X1 × X2 | x1 # x2} (3.16)

is again a nominal set (by Lemma 2.19). We call it the separated product of X1 and
X2. We get a functor ∗ : Nom ×Nom→ Nom by sending equivariant functions
F1 : X1 → X′1 and F2 : X2 → X′2 to the equivariant function

F1 ∗ F2 : X1 ∗ X2 → X′1 ∗ X′2
F1 ∗ F2 , λ(x, y) ∈ X1 ∗ X2 � (F1 x, F2 y)

(3.17)

since by part 1 of Lemma 2.11, x1 # x2 ⇒ F1 x1 # F2 x2.
Note that if X2 is a discrete nominal set then the support of any of its elements is

empty and therefore X1 ∗ X2 = X1 × X2. In particular the terminal object 1 satisfies
X1 ∗ 1 = X1 × 1 � X1. There are also natural isomorphisms X1 ∗ X2 � X2 ∗ X1 and
X1∗(X2∗X3) � (X1∗X2)∗X3 inherited from those for cartesian product. Altogether
(Nom, ∗, 1) is a symmetric monoidal category (MacLane, 1971, chapter VII) that
is affine, in the sense that the terminal object 1 is the unit for the tensor product ∗.
The following result of Schöpp (2006, section 3.3.1) says that the affine symmetric
monoidal structure is closed.

36 Freshness

Theorem 3.12 For each nominal set X, the functor ∗ X : Nom → Nom has a
right adjoint X −∗ : Nom → Nom. In other words for each Y ∈ Nom there is
a nominal set X −∗ Y and an equivariant function ε : (X −∗ Y) ∗ X → Y with the
universal property that given any equivariant function F as shown

Z ∗ X

F̂∗idX
��

F

%%
(X −∗ Y) ∗ X ε

// Y

(3.18)

there is a unique equivariant function F̂ : Z → (X −∗Y) making the above diagram
commute.

Proof In certain cases a simple description for X −∗ is possible—such as when
X = A (see Theorem 4.11). However, in general no very simple description of X−∗
is known. Schöpp gives both an abstract, category-theoretic construction (building
on previous work of Menni, 2003) and a more concrete description in terms of
partial functions. We give the latter here, but it is not particularly edifying.

Using the nominal set of finitely supported partial functions (X ⇀fs Y , sec-
tion 2.7) and the associated notion of Kleene equivalence (≡, section 1.6), define

E , {F ∈ X ⇀fs Y | (∀x ∈ X) x # F ⇔ x ∈ Dom F} (3.19)

∼ , {(F, F′) ∈ E × E | (∀x ∈ X) x # (F, F′)⇒ F x ≡ F′ x} (3.20)

F ,
⋃
{F′ ∈ E | F′ ∼ F} (3.21)

X −∗ Y , {F ∈ E | F = F}. (3.22)

The important definition is the first one, but unfortunately E may be slightly too
large to be X −∗ Y . The relation ∼ identifies partial functions in E if they agree
where both are defined. It is evidently reflexive and symmetric; not so evidently, it
is also transitive (Exercise 3.2). It turns out that X −∗ Y � E/∼, but we can identify
X −∗ Y with a subset of E using the closure operation F 7→ F taking the union of
the partial functions in the equivalence class [F]∼. One can show that if F ∈ E,
then F ∈ E and F ∼ F.

By definition of E, the subset {((F, x), y) | (x, y) ∈ F} ⊆ ((X −∗ Y) ∗ X) × Y is the
graph of an equivariant function ε : (X−∗Y)∗X → Y . We claim that this inherits the
required universal property from the universal property of app ∈ (X⇀fs Y)×X⇀Y
described in section 2.7.

For the existence part of the universal property, note that each F : Z ∗ X → Y is
in particular an equivariant partial function (Z × X) ⇀ Y via the inclusion Z ∗ X ⊆
Z × X. So it uniquely determines an equivariant function curry F : Z → (X ⇀fs Y)

Exercises 37

satisfying (2.20). We claim that curry F maps Z into E, that is

(∀z ∈ Z)(∀x ∈ X) x # (curry F z)⇔ x ∈ Dom(curry F z). (3.23)

To see this, first note that if x ∈ Dom(curry F z), then (∃y ∈ Y) z # x∧((z, x), y) ∈ F.
Since curry F is equivariant, Lemma 2.11 implies that supp(curry F z) ⊆ supp z; so
from z # x we conclude that x # curry F z. Conversely if x # (curry F z), then as in
Exercise 3.2 we can find a finitary permutation π ∈ PermA satisfying (π · x) # z
and (∀a ∈ supp(curry F z)) π a = a; hence (x, π−1 · (F(z, π · x))) ∈ curry F z and
therefore x ∈ Dom(curry F z). So we get an equivariant function

F̂ : Z → (X −∗ Y)

F̂ , λz ∈ Z � curry F z
(3.24)

that satisfies (3.18) because curry F satisfies (2.20).
For the uniqueness part of the universal property, suppose F′ : Z → (X −∗ Y)

also satisfies (3.18), that is

(∀z ∈ Z)(∀x ∈ X) z # x⇒ F′z x ≡ F(z, x). (3.25)

Given z ∈ Z, for any x ∈ X with x # (F′z, curry F z), as above we can use some
π ∈ PermA that fixes the atomic names in supp(F′z, curry F z), but moves x to
π · x # z, to deduce from (3.25) that F′z x ≡ curry F z x. Therefore F′z ∼ curry F z
and hence F′z = F′z = curry F z = F̂ z, for all z ∈ Z. �

Exercises

3.1 Show that if X ∈ Nom and R ∈ Pfs (A × X), then

(∃x ∈ X)(Na) (a, x) ∈ R⇒ (Na)(∃x ∈ X) (a, x) ∈ R (3.26)

(Na)(∀x ∈ X) (a, x) ∈ R⇒ (∀x ∈ X)(Na) (a, x) ∈ R (3.27)

but that the reverse implications do not necessarily hold. [Hint: consider R1 =

{(a, a) | a ∈ A} and R2 = {(a, a′) ∈ A × A | a , a′}.]
3.2 Given X ∈ Nom, a ∈ Pf A and x ∈ X satisfying a # x, show that for any

other finite set of atomic names a′ ∈ Pf A, there exists π ∈ PermA with
(∀a ∈ a) π a = a and a′ # π · x. Deduce that the relation ∼ in (3.20) is
transitive.

4
Name Abstraction

The original motivation for developing the theory of nominal sets was to extend the
range of structural induction and recursion for algebraic data types to encompass
quotients associated with the use of name-binding operations. Quotients of sets of
algebraic terms by α-equivalence, like Λ/=α from section 2.9, are isomorphic in
Nom to nominal sets inductively defined using products X×Y , coproducts X+Y and
a name abstraction construct [A]X for representing the domains of name-binding
operations, which is the subject of this chapter.

4.1 Nominal set of name abstractions

Section 2.9 gave a structurally inductive characterization of α-equivalence (=α)
for the untyped λ-calculus that makes use of name permutations rather than more
general renaming operations on λ-terms. This suggests a generalized form of α-
equivalence that applies to the elements of any nominal set X and not just to nomi-
nal sets of algebraic terms. Define the binary relation ≈α on A × X by

(a1, x1) ≈α (a2, x2)⇔ (Na) (a1 a) · x1 = (a2 a) · x2. (4.1)

Since the swapping operation is equivariant (Proposition 1.15), by Theorem 3.8 we
have

(a1, x1) ≈α (a2, x2)⇔ (∃a # (a1, x1, a2, x2)) (a1 a) · x1 = (a2 a) · x2

⇔ (∀a # (a1, x1, a2, x2)) (a1 a) · x1 = (a2 a) · x2.
(4.2)

Equivariance of swapping implies that ≈α is an equivariant relation:

(a1, x1) ≈α (a2, x2)⇒ (π a1, π · x1) ≈α (π a2, π · x2). (4.3)

Lemma 4.1 ≈α is an equivalence relation.

4.1 Nominal set of name abstractions 39

Proof It is immediate from its definition that ≈α is reflexive and symmetric. Tran-
sitivity follows from the fact that the freshness quantifier commutes with conjunc-
tion:

(a1, x1) ≈α (a2, x2) ∧ (a2, x2) ≈α (a3, x3)
⇔ {by definition}

(Na) (a1 a) · x1 = (a2 a) · x2 ∧ (Na) (a2 a) · x2 = (a3 a) · x3

⇔ {by Proposition 3.9}
(Na) (a1 a) · x1 = (a2 a) · x2 ∧ (a2 a) · x2 = (a3 a) · x3

⇒

(Na) (a1 a) · x1 = (a3 a) · x3

⇔ {by definition}
(a1, x1) ≈α (a3, x3). �

Lemma 4.2 For all a ∈ A and x1, x2 ∈ X, (a, x1) ≈α (a, x2) holds if and only if
x1 = x2.

Proof Immediate from the definition of ≈α. �

Lemma 4.3 (a1, x1) ≈α (a2, x2) holds if and only if either a1 = a2 and x1 = x2,
or a1 # (a2, x2) and x1 = (a1 a2) · x2.

Proof We split the proof into two cases, according to whether or not a1 and a2

are equal. In case a1 = a2 we can just apply Lemma 4.2. So suppose a1 , a2.
If (a1, x1) ≈α (a2, x2), then by (4.2) (a1 a) · x1 = (a2 a) · x2 holds for some
a # (a1, x1, a2, x2). Therefore

a1

= {since a1 , a2, a}
(a2 a) · (a1 a) · a

{by (3.2), since a # x1}

(a2 a) · (a1 a) · x1

= {since (a1 a) · x1 = (a2 a) · x2}

(a2 a) · (a2 a) · x2

= {since (a2 a) ◦ (a2 a) = id}
x2

40 Name Abstraction

and hence also

(a1 a2) · x2

= {by Theorem 3.1, since a1 # x2 and a # x2}

(a1 a2) · (a1 a) · x2

= {since (a1 a2) ◦ (a1 a) = (a1 a) ◦ (a2 a)}
(a1 a) · (a2 a) · x2

= {since (a1 a) · x1 = (a2 a) · x2}

(a1 a) · (a1 a) · x1

= {since (a1 a) ◦ (a1 a) = id}
x1.

Conversely, if a1 # (a2, x2) and x1 = (a1 a2) · x2, then for any a # (a1, x1, a2, x2) we
have

(a1 a) · x1

= {since x1 = (a1 a2) · x2}

(a1 a) · (a1 a2) · x2

= {since (a1 a) ◦ (a1 a2) = (a2 a) · (a1 a)}
(a2 a) · (a1 a) · x2

= {by Theorem 3.1, since a1 # x2 and a # x2}

(a2 a) · x2.

Therefore (a1, x1) ≈α (a2, x2), by (4.2). �

So ≈α is an equivariant equivalence relation and as in section 2.8, the quotient
of A × X by ≈α is a nominal set.

Definition 4.4 Given a nominal set X, let ≈α be as in (4.1). We denote the nominal
quotient set (A×X)/≈α by [A]X and call it the nominal set of name abstractions of
elements of X. The equivalence class of (a, x) ∈ A× X is denoted 〈a〉x and called a
name abstraction. Thus the PermA-action on [A]X is well-defined by

π · 〈a〉x , 〈π a〉(π · x). (4.4)

We noted in section 2.8 that an equivalence class is supported by any set of
atomic names that supports a representative of the class. Therefore in [A]X we
have supp 〈a〉x ⊆ supp(a, x) = {a} ∪ supp x. However, we can do better than this.

Proposition 4.5 Given any nominal set X, for all a ∈ A and x ∈ X, supp 〈a〉x =

supp x − {a}. Hence for all a′ ∈ A

a′ # 〈a〉x⇔ a′ = a ∨ a′ # x. (4.5)

Proof First note that if π ∈ PermA satisfies π · 〈a〉x = 〈a〉x and π a = a, then
by Lemma 4.2 and (4.4) it also satisfies π · x = x. Therefore if A ⊆ A supports

4.2 Concretion 41

〈a〉x in [A]X, then A ∪ {a} supports x in X. Hence supp x ⊆ {a} ∪ supp 〈a〉x. Since
we noted above that supp 〈a〉x ⊆ {a} ∪ supp x, it just remains to show that a <

supp 〈a〉x, that is, a # 〈a〉x. Using the Choose-a-Fresh-Name Principle to pick
some a′ # (a, x), from Lemma 4.3 we have (a′, (a′ a) · x) ≈α (a, x) and hence
(a′ a) · 〈a〉x = 〈a′〉((a′ a) · x) = 〈a〉x. Since a′ # (a, x), we have a′ # 〈a〉x; so by
equivariance of # we get a = (a′ a) · a′ # (a′ a) · 〈a〉x = 〈a〉x, as required. �

Example 4.6 If X is a discrete nominal set, then a # x holds for all a ∈ A and
x ∈ X. So in this case (a1, x1) ≈α (a2, x2) ⇔ x1 = x2. Thus 〈a〉x 7→ x is a well-
defined equivariant function witnessing the isomorphism

[A]X � X (X discrete). (4.6)

4.2 Concretion

In this section we compare name abstraction with the more familiar notion of func-
tion abstraction. Recall that each 〈a〉x ∈ [A]X is an equivalence class for the rela-
tion ≈α and hence in particular is a subset of A × X. Lemma 4.2 implies that it is
single-valued; and of course it is finitely supported. So we have an inclusion

[A]X ⊆ (A⇀fs X). (4.7)

Lemma 4.7 The domain of definition of each F ∈ [A]X regarded as a partial
function from A to X is the cofinite set of atomic names that are fresh for it:

Dom F = {a ∈ A | a # F} = A − supp F.

Proof Suppose F = 〈a〉x. Then Dom F = {a′ | (∃x′) (a′, x′) ≈α (a, x)}. Applying
Lemma 4.3, we get Dom F = {a′ | a′ = a ∨ a′ # x}, from which the result follows
by Proposition 4.5. �

Definition 4.8 Given a nominal set X, the result of applying a name abstraction
F ∈ [A]X, regarded as a partial function from A to X, to an atomic name a ∈
Dom F = A − supp F will be denoted F @ a and called the concretion of F at a.

Thus from Lemma 4.3 we have for all a, a′ ∈ A and x ∈ X

(〈a〉x) @ a′ ≡

x if a′ = a

(a a′) · x if a′ , a and a′ # x

undefined otherwise.

(4.8)

Property (4.8) is the analogue for name abstraction/concretion of β-equivalence
for function abstraction/application. The analogue of η-equivalence is given by the
following result.

42 Name Abstraction

Proposition 4.9 Given a nominal set X and a name abstraction F ∈ [A]X, for
some/any a # F it is the case that F = 〈a〉(F @ a).

Proof Suppose F = 〈a′〉x′. If a # F then by Proposition 4.5 either a = a′, or
a # (a′, x′). In the first case F @ a = x′ and so 〈a〉(F @ a) = 〈a′〉x′ = F. In the
second case F @a = (a′ a) · x′ and so 〈a〉(F @a) = 〈a〉((a′ a) · x′) = 〈a′〉x′ = F. �

We can sum up the theorem by the formula

(∀F ∈ [A]X)(Na) 〈a〉(F @ a) ≡ F. (4.9)

Just as η-equivalence is connected to function extensionality, so here we have an
extensionality principle for name abstractions

(∀F, F′ ∈ [A]X) F = F′ ⇔ (Na) F @ a ≡ F′ @ a. (4.10)

For if the concretions of F and F′ at a # (F, F′) are equal, to x ∈ X say, then by the
theorem F = 〈a〉x = F′.

4.3 Functoriality

If X,Y ∈ Nom and F ∈ X �fs Y , we can use the freshness theorem (Theorem 3.10)
to get a finitely supported function

[A]F ∈ [A]X �fs [A]Y

[A]F , λz ∈ [A]X � fresh a in 〈a〉(F(z @ a)).
(4.11)

satisfying

(Na) [A]F z = 〈a〉(F(z @ a)) (4.12)

for all z ∈ 〈A〉X.

Lemma 4.10 [A]idX = id[A]X and [A](F′ ◦ F) = ([A]F′) ◦ ([A]F).

Proof For each z ∈ [A]X, pick some a # (z, F, F′). Then [A]idX z = 〈a〉(idX(z @
a)) = 〈a〉(z @ a) = z, by Proposition 4.9. Also [A]F z = 〈a〉(F(z @ a)) and so
a # [A]F z by Proposition 4.5; therefore [A]F′([A]F z) = 〈a〉(F′(([A]F z) @ a)) =

〈a〉(F′(F(z @ a))) = [A](F′ ◦ F)z. �

Note that if F : X → Y is equivariant and hence an element of X �fs Y with
empty support, then [A]F is an equivariant function [A]X → [A]Y; and in this case
from (4.12) we have for all a ∈ A and x ∈ X

[A]F(〈a〉x) = 〈a〉(F x) (F equivariant). (4.13)

4.3 Functoriality 43

Remark The lemma implies that [A] is not just a functor Nom → Nom, but
is a ‘strong’ one. For being cartesian closed, the category Nom is enriched over
itself (see Johnstone, 2002, section B2.1) and in view of the lemma, the equivariant
functions

(X �fs Y) → ([A]X �fs [A]Y)
F ∈ (X �fs Y) 7→ [A]F

(X,Y ∈ Nom)

make [A] into a Nom-enriched functor. (Such functors are sometimes called strong.)

Theorem 4.11 The functor [A] : Nom → Nom is right adjoint to the functor
∗ A : Nom→ Nom given by taking the separated product with A. Thus

[A] � A −∗

where −∗ is as in Theorem 3.12.

Proof Given X ∈ Nom, by Lemma 4.7 the partial operation of concretion has
([A]X) ∗ A for its domain of definition and so gives an equivariant function

concX : ([A]X) ∗ A→ X

concx , λ(z, a) ∈ ([A]X) ∗ A � z @ a.
(4.14)

We claim this has the universal property needed for [A]X to be the value of the
right adjoint to ∗ A at X, namely that given any equivariant function F as shown

Y ∗ A

F̂∗idA
��

F

$$
([A]X) ∗ A concX

// X

(4.15)

there is a unique equivariant function F̂ : Y → [A]X making the above diagram
commute. For using the freshness theorem (Theorem 3.10) we can define

F̂ , λy ∈ Y � fresh a in 〈a〉(F(y, a)) (4.16)

to get such an equivariant function. It is the unique such, since if F′ is any other,
then for any y ∈ Y , picking some a ∈ A with a # y, we also have a # F′y (by part 3

44 Name Abstraction

of Proposition 3.4) and hence

F′ y
= {by Proposition 4.9}
〈a〉((F′y) @ a)

= {since concX ◦ (F′ ∗ idA) = F}
〈a〉(F(y, a))

= {by definition of F̂, since a # y}
F̂ y. �

Theorem 4.12 The functor [A] : Nom→ Nom has a right adjoint.

Proof For each X ∈ Nom

R X , {F ∈ A�fs X | (∀a ∈ A) a # F a} (4.17)

is an equivariant subset of A �fs X and hence a nominal set by Lemma 2.19. Be-
cause of the way R X is defined, we can use the partial operation of concretion
from section 4.2 and the freshness theorem (Theorem 3.10) to obtain an equivari-
ant function

εX : [A](R X)→ X

εX , λz ∈ [A](R X) � fresh a in (z @ a) a.
(4.18)

We will show that this has the universal property required to make R X the value
of the right adjoint to [A] at X, namely that given any equivariant function F as
shown

[A]Y

[A]F̂
��

F

##
[A](R X) εX

// X

(4.19)

there is a unique equivariant function F̂ : Y → R X making the above diagram
commute. First note that by (4.13) and (4.18), commutation of (4.19) is equivalent
to

(∀a ∈ A)(∀y ∈ Y) F̂ y a = F(〈a〉y). (4.20)

So there is at most one such F̂. If y ∈ Y and a ∈ A, then a # F(〈a〉y) (by Proposi-
tions 3.4 and 4.5) and hence F̂ , λy ∈ Y � (λa ∈ A � F(〈a〉y)) does indeed give
an equivariant function Y → R X satisfying (4.20). �

This theorem shows that [A] gives a notion of abstraction rather different from
the function abstraction A�fs , which most certainly does not have a right adjoint.
For note that functors with right adjoints preserve colimits. In particular we have

[A](X1 + X2) � ([A]X1) + ([A]X2) (4.21)

4.3 Functoriality 45

whereasA�fs(X1+X2) is not in general isomorphic to the disjoint union ofA�fs X1

and A�fs X2. (Just consider the case X1 = X2 = 1 to see this.)
Since by Theorem 4.11 [A] has a left adjoint, it also preserves limits in Nom.

In particular

[A](X1 × X2) � ([A]X1) × ([A]X2). (4.22)

It is a useful exercise to construct the isomorphisms in (4.21) and (4.22) explicitly
(Exercises 4.3 and 4.4).

The adjoint properties of the name abstraction functor do not explain the fol-
lowing somewhat surprising preservation property discovered by Gabbay (2000,
Corollary 9.6.9).

Proposition 4.13 The functor [A] : Nom→ Nom preserves exponentials:

[A](X �fs Y) � ([A]X) �fs ([A]Y).

Proof Using the partial operation of concretion and the freshness theorem (The-
orem 3.10) we get equivariant functions

I : [A](X �fs Y)→ ([A]X) �fs ([A]Y) (4.23)

I , λu ∈ [A](X �fs Y) � λz ∈ [A]X � fresh a in 〈a〉((u @ a)(z @ a))

J : ([A]X) �fs ([A]Y)→ [A](X �fs Y) (4.24)

J , λF ∈ ([A]X) �fs ([A]Y) � fresh a in 〈a〉(λx ∈ X � F(〈a〉x) @ a).

that we show that they are mutually inverse.
First note that for all a ∈ A, F ∈ X �fs Y and x ∈ X, the definition of @ and I

give I(〈a〉F)(〈a〉x) = 〈a〉(F x). Hence by definition of J we have

J(I(〈a〉F)) = 〈a〉(λx ∈ X � (〈a〉(F x)) @ a) = 〈a〉(λx ∈ X � F x) = 〈a〉F.

Thus J ◦ I = id. Conversely, given any F ∈ ([A]X) �fs ([A]Y) and z ∈ [A]X, pick
some a ∈ A with a # (F, z). Then by definition of J

(J F) @ a = λx ∈ X � F(〈a〉x) @ a (4.25)

46 Name Abstraction

and hence
I(J F)z

= {by definition of I}
〈a〉(((J F) @ a)(z @ a))

= {by (4.25)}
〈a〉(F(〈a〉(z @ a)) @ a))

= {by Proposition 4.9}
〈a〉((F z) @ a)

= {by Proposition 4.9}
F z.

Thus I ◦ J = id. �

4.4 Freshness condition for binders

In this section we give analysis of what is needed to specify functions of name
abstractions somewhat different from the one in Theorem 4.12. By construction,
functions with domain [A]X correspond to functions with domain A × X that re-
spect the generalized α-equivalence relation ≈α. The next theorem shows that the
requirement that a function respects ≈α is equivalent to a simpler condition involv-
ing freshness, called the freshness condition for binders in (Pitts, 2006). At the
same time the theorem embodies another common pattern when defining functions
on α-equivalence classes, namely that one only specifies the function for bound
names avoiding some finite set of ‘bad’ names. (The support of F plays this role
in the theorem below.) For example, when defining capture-avoiding substitution
for a λ-term λa.t one can just say what to do when a avoids the finite set of free
variables of the term to be substituted.

Theorem 4.14 Given X,Y ∈ Nom and a finitely supported partial function F ∈
(A × X) ⇀fs Y satisfying

(Na)(∀x ∈ X)(∃y ∈ Y) a # y ∧ F(a, x) ≡ y (4.26)

there is a unique finitely supported total function F ∈ ([A]X) �fs Y satisfying

(Na)(∀x ∈ X) F(a, x) ≡ F(〈a〉x). (4.27)

In this case supp F ⊆ supp F.

Proof If F satisfies (4.26), then for each z ∈ [A]X we can apply the freshness
theorem to the partial function {(a, y) | a # (F, z) ∧ F(a, z @ a) ≡ y} to get

F z , fresh a in F(a, z @ a). (4.28)

4.4 Freshness condition for binders 47

Thus for all z ∈ [A]X and y ∈ Y

F z = y⇔ (Na)(∃x ∈ X) z = 〈a〉x ∧ y = F(a, x). (4.29)

By Proposition 2.22, the right-hand side in (4.29) defines a subset of ([A]X) × Y
that is supported by supp F; hence F ∈ ([A]X) �fs Y and supp F ⊆ supp F. This
function satisfies property (4.27), because given any a # (F, F) and x ∈ X, since
a # (F, 〈a〉x), definition (4.28) gives us F(〈a〉x) ≡ F(a, (〈a〉x) @ a) ≡ F(a, x); thus

(∀a ∈ A) a # (F, F)⇒ (∀x ∈ X) F(a, x) ≡ F(〈a〉x) (4.30)

and so (4.27) holds by Theorem 3.8. Finally, the uniqueness of F is immediate from
property (4.27), since if F′ is any other such function, then by the Choose-a-Fresh-
Name Principle and Lemma 4.3 for every z ∈ [A]X we can find a # (F, F, F′) and
x ∈ X with z = 〈a〉x and hence with F′ z ≡ F′(〈a〉x) ≡ F(a, x) ≡ F(〈a〉x) ≡ F z. �

Notation The theorem justifies the following use of name abstraction patterns
in notation for functions with domain [A]X. If λ(a, x) ∈ A × X � ϕ(a, x) is the
description of some finitely supported partial function F ∈ (A×X)⇀fs Y satisfying
condition (4.26), then we write the function F ∈ ([A]X) �fs Y from Theorem 4.14
as

λ〈a〉x ∈ [A]X � ϕ(a, x). (4.31)

The following corollary of the theorem gives a simple criterion for defining
equivariant functions with parameters on nominal sets of name abstractions.

Corollary 4.15 Given X,Y,Z ∈ Nom, suppose the equivariant function F : X ×
A × Y → Z satisfies

(∀x ∈ X)(Na)(∀y ∈ Y) a # F(x, a, y). (4.32)

Then there is a unique equivariant function F : X × [A]Y → Z satisfying

(∀x ∈ X)(Na)(∀y ∈ Y) F(x, 〈a〉y) = F(x, a, y). (4.33)

Proof If F satisfies (4.32), then for each x ∈ X

curry F x ∈ (A × Y) �fs Z

curry F x = λ(a, y) ∈ A × Y � F(x, a, y)

satisfies property (4.26) in Theorem 4.14. So by that theorem there is a unique

curry F x ∈ ([A]Y) �fs Z

satisfying (4.27) and with supp(curry F x) ⊆ supp(curry F x). Since curry F x is

48 Name Abstraction

supported by supp x (because supp F = ∅), it follows that the function X × [A]Y →
Z defined by

F , λ(x, u) ∈ X × [A]Y � curry F x u

satisfies (4.33). The uniqueness property of curry F x implies that

π · curry F x = curry F (π · x)

and hence that F is equivariant. It is clearly the only function satisfying (4.33),
because by the Choose-a-Fresh-Name Principle and Lemma 4.3, given any (x, u) ∈
X × [A]Y there is some a ∈ A with a # x and u = 〈a〉y for some y ∈ Y . �

Example 4.16 In the corollary take X = 1 = (), Y = A, Z = A + 1 = A ∪ {()} and
F to be the equivariant function

F((), a, a′) =

() if a = a′

a′ if a , a′.

In this case condition (4.32) is equivalent to (∀a ∈ A)(∀a′ ∈ A) a # F((), a, a′),
which is true. So applying the corollary we get an equivariant function F : [A]A→
A + 1 satisfying F(〈a〉a′) = F(a, a′) for all a, a′ ∈ A. Since F is surjective, so is F.
It is also injective since if F(〈a1〉a′1) = F(〈a2〉a′2), then F(a1, a′1) = F(a2, a′2) and
hence either a1 = a′1 and a2 = a′2, or a1 , a′1 = a′2 , a2; and hence by Lemma 4.3,
〈a1〉a′1 = 〈a2〉a′2. Thus F gives an isomorphism in Nom:

[A]A � A + 1 (4.34)

which using the notation as in (4.31), we can write as

λ〈a〉a′ ∈ [A]A � if a = a′ then () else a′.

Exercises

4.1 For each nominal set X show that there is an isomorphism making the follow-
ing diagram commute.

A ∗ ([A]X)

proj1 ��

� A × X

proj1��
A

4.2 Given F : X → Y in Nom, regarding each z ∈ [A]X as a finitely supported
partial function A⇀fs X as in section 4.2, show that [A]F z ∈ [A]Y is equal
to the composition F ◦ z = {(a, y) ∈ A × Y | (∃x ∈ X) (a, x) ∈ z ∧ F x = y}.
What happens if F is finitely supported, but not equivariant? [Hint: consider

Exercises 49

the effect of [A] on the finitely supported function 1 �fs A corresponding to
an element a ∈ A.]

4.3 Given X1, X2 ∈ Nom, show that there is an isomorphism I : ([A]X1) ×
([A]X2) � [A](X1 × X2) satisfying

I(z1, z2) = fresh a in 〈a〉(z1 @ a, z2 @ a)

for all (z1, z2) ∈ ([A]X1) × ([A]X2).
4.4 Given X1, X2 ∈ Nom, show that there is an isomorphism J : ([A]X1) +

([A]X2) � [A](X1 + X2) satisfying

J(inji z) = fresh a in 〈a〉(inj1(z @ a))

for all z ∈ [A]Xi (i = 1, 2).
4.5 Show that the functors ∗A and R from Theorems 4.11 and 4.12 do not give

Nom-enriched adjoints for [A] , because in general

(X ∗ A) �fs Y � X �fs ([A]Y)

([A]X) �fs Y � X �fs R Y.

[Hint: consider X = 1 and Y = B.]

5
Nominal Algebraic Data Types

In this chapter we consider initial algebras for functorial constructions on nomi-
nal sets that combine products, coproducts and name-abstraction. They give a se-
mantics for languages involving names and name-binding operations where term
equality is α-equivalence. This generalizes the classic initial algebra semantics of
algebraic data types (Goguen et al., 1977) and associated principles of structural
recursion and induction.

5.1 Signatures

In the literature of programming language theory, the syntax of a language is usu-
ally specified by an algebraic signature. This gives a number of sorts, or ‘syntactic
categories’, into which the terms of the language are divided, together with a num-
ber of operations for constructing terms of the various sorts. As well as giving the
sorts and the operations, the signature specifies the type of each operation, namely
how many arguments each operation takes, what the sorts of those arguments are,
and what sort of term the operation constructs. We will use the notation

op : S1 , · · · , Sn → S (5.1)

to indicate that an operation op constructs a term op(t1 , · · · , tn) of sort S from
terms t1, . . . , tn of sorts S1, . . . , Sn. (When n = 0 such an operation amounts to a
constant of sort S.)

The following two related features of languages that occur in practice are not
covered by this notion of algebraic signature, but are so common that it is worth
enhancing the notion to formalize them.

• Some syntactic categories are ‘sorts of name’. Language terms of such a sort
form an infinite collection of elements whose only attribute, from the point of
view of the semantics of the language, is their identity. For example there might

5.1 Signatures 51

be sorts of ‘identifier’ and ‘type variable’ whose terms are represented concretely
by strings of alphanumeric characters formed according to specific grammatical
rules; but such concrete details are usually irrelevant to the semantics of the lan-
guage, so we abstract away from such details and just assume there are disjoint
infinite sets of names of sort ‘identifier’ and ‘type variable’.

• Some operations are binders. That is, the sorts of one or more of their arguments
are sorts of name in the above sense; and when the operation is applied to form
a term, such an argument (‘binding name’) is linked, in some way that has to
be specified for the binding operation, to occurrences of the same name (‘bound
names’) elsewhere in the term. The concrete detail of which particular name is
used for a binding-bound linkage is usually irrelevant to the semantics of the
language. In other words, whatever the meaning of a term, it should be invariant
under ‘α-converting’ such a linkage to use another, so far unused name.

To take account of these two features, following (Urban et al., 2004) we will use
sorts that are built up from name-sorts N and data-sorts D according to the following
grammar.

S ::= N | D | 1 | S , S | N . S (5.2)

The compound sort N . S classifies terms that bind a name of sort N in a scope
given by a term of sort S. The compound sort S1 , S2 classifies terms that are pairs
of terms of the indicated sorts. Iterating, we get sorts of the form (S1 , · · ·) , Sn

classifying tuples, with the n = 0 case given by the unit sort 1.

Notation To reduce parentheses in sort expressions, we take . to bind more
tightly than , and make the latter associate to the left. Thus for example, S1 ,

N . S2 , S3 stands for (S1 , (N . S2)) , S3.

Definition 5.1 A nominal algebraic signature is specified by a set of name-sorts,
a set of data-sorts and a set of operations, each of which comes with typing infor-
mation of the form op : S → D, where D is a data-sort and S is a compound sort
given by the grammar in (5.2). Given such a signature Σ, fixing disjoint countably
infinite sets AN of atomic names of sort N (as N ranges over the signature’s name-
sorts), the sets Σ(S) of raw terms of sort S are inductively defined by the following
rules.

a ∈ AN

a ∈ Σ(N)

t ∈ Σ(S) op : S→ D

op t ∈ Σ(D) () ∈ Σ(1)

t1 ∈ Σ(S1) t2 ∈ Σ(S2)

t1 , t2 ∈ Σ(S1 , S2)

a ∈ AN t ∈ Σ(S)

a . t ∈ Σ(N . S)

52 Nominal Algebraic Data Types

Note that operations of a nominal algebraic signature construct terms of data-
sort, but not of name-sort; this is because we wish each name-sort to classify terms
that are atomic names without any compound structure. Note also that the usual
notion of (many-sorted) algebraic signature can be regarded as the special case of
Definition 5.1 in which the set of name-sorts is empty.

Remark We call the elements generated by the above rules raw terms to distin-
guish them from the objects of primary interest, nominal algebraic terms, which
are quotients of raw terms by the relation of α-equivalence to be introduced in the
next section. Pitts (2006) uses the phrase ‘term’ for what we call a raw term and
‘α-term’ for its α-equivalence class.

Example 5.2 A nominal algebraic signature for the untyped λ-calculus (Baren-
dregt, 1984) has a name-sort Var for variables, a data-sort Term for terms, and
operations

V : Var→ Term

L : Var . Term→ Term

A : Term , Term→ Term.

For example, if x and y are atomic names of sort Var, then the raw term L(x.A(V x,
V y)) represents the λ-term λx.x y.

Example 5.3 A nominal algebraic signature for the π-calculus (Sangiorgi and
Walker, 2001, Definition 1.1.1) has a name-sort Chan for channel names, data-
sorts Proc, Sum and Pre for processes, summations and prefixed processes, and
operations

S : Sum→ Proc

Comp : Proc , Proc→ Proc

Nu : Chan . Proc→ Proc

! : Proc→ Proc

Out : Chan , Chan , Proc→ Proc

In : Chan , Chan . Proc→ Proc

P : Pre→ Sum

O : 1→ Sum

Plus : Sum , Sum→ Sum

Tau : Proc→ Pre

Match : Chan , Chan , Pre→ Pre.

Thus there are two operations involving binding, Nu and In. Assuming x and z are

5.2 α-Equivalence 53

atomic names of sort Chan and that P is a raw term of sort Proc, then the raw terms
Nu(x . P) and Out(x , (z . P)) of sort Proc represent restricted and input-prefixed
processes that are written in the π-calculus as νx P and x(z).P respectively.

5.2 α-Equivalence

In a nominal algebraic signature, sorts of the form N . S are used in the type of an
operation to indicate where it binds names. From this typing information one can
generate a version of α-equivalence that identifies raw terms up to renaming such
bound names. We use the theory of nominal sets to define this equivalence relation
and develop it properties. In general this requires a ‘many-sorted’ extension of the
theory of nominal sets to cope with the fact that a nominal algebraic signature
may have many name-sorts; see Pitts (2006). For simplicity’s sake, we will restrict
attention to signatures with at most one name-sort; the general case is treated in
(Pitts, 2006). We will also only consider nominal algebraic signatures that are finite,
in the sense of having only finitely many data-sorts and operations.

Let Σ be such a finite nominal algebraic signature with a single name-sort N. We
use elements of the fixed setA as the atomic names of sort N. For each sort S, the set
Σ(S) of raw terms of sort S possesses a PermA-action, extending the definition of
the PermA-action for ordinary algebraic terms given in Example 1.4. It is defined
for all sorts simultaneously as follows.

π · a = π a

π · op t = op(π · t)

π · () = ()

π · (t1 , t2) = π · t1 , π · t2
π · (a . t) = (π a) . (π · t).

(5.3)

One can prove by induction on the structure of t that

• t ∈ Σ(S) implies π · t ∈ Σ(S);

• (π, t) 7→ π · t has the properties (1.8) and (1.9) required of an action;

• with respect to this action, each t ∈ Σ(S) is strongly supported (cf. Theorem 2.7)
by the finite set of atomic names occurring in any position in t.

54 Nominal Algebraic Data Types

Thus each Σ(S) is a nominal set with:

supp a = {a}

supp(op t) = supp t

supp() = ∅

supp(t1 , t2) = supp t1 ∪ supp t2
supp(a . t) = {a} ∪ supp t.

(5.4)

The way we defined α-equivalence for untyped λ-terms in section 2.9 extends in a
straightforward way from the signature in Example 5.2 to arbitrary nominal alge-
braic signatures.

Definition 5.4 Given a nominal algebraic signature Σ (with single name sort), the
binary relations of α-equivalence =α ⊆ Σ(S) × Σ(S) for each sort S, are simultane-
ously inductively defined by the following rules.

a ∈ A

a =α a

t =α t′

op t =α op t′ () =α ()

t1 =α t′1 t2 =α t′2
t1 , t2 =α t′1 , t′2

(a1 a) · t1 =α (a2 a) · t2 a # (a1, t1, a2, t2)

a1 . t1 =α a2 . t2

The first four of these rules express congruence properties of =α, while the fifth
one combines a congruence property

t1 =α t2 ⇒ a . t1 =α a . t2 (5.5)

with a renaming property (cf. Lemma 4.3)

a # (a1, t1)⇒ a1 . t1 =α a . (a1 a) · t1. (5.6)

Both (5.5) and (5.6) are simple consequences of the definition of =α and the fact
that it is equivariant. Indeed we have the following result.

Lemma 5.5 The relations =α are equivariant equivalence relations.

Proof Equivariance of =α is a consequence of the Equivariance Principle. The
fact that =α is reflexive and symmetric is immediate from its definition. To prove
transitivity it suffices to show that the sets

HS , {(t1, t2) ∈ Σ(S) × Σ(S) | (∀t ∈ Σ(S)) t2 =α t ⇒ t1 =α t} (S a sort of Σ)

are closed under the rules in Definition 5.4 inductively defining =α. For then =α is

5.2 α-Equivalence 55

contained in HS and hence is transitive. Closure of HS under the first four rules is
straightforward. For the fifth rule, suppose

((a1 a) · t1, (a2 a) · t2) ∈ HS (5.7)

with a # (a1, t1, a2, t2). We have to show that (a1 . t1, a2 . t2) ∈ HN.S. If a2 . t2 =α

t, then the syntax-directed nature of the rules defining =α implies that this instance
of α-equivalence must have been deduced by an application of the fifth rule; in
other words t = a′ . t′ for some a′ ∈ A and t′ ∈ Σ(S), and there is some a′′ #
(a2, t2, a′, t′) with

(a2 a′′) · t2 =α (a′ a′′) · t′. (5.8)

Use the Choose-a-Fresh-Name Principle to pick some a′′′ ∈ A with

a′′′ # (a1, t1, a2, t2, a, a′, t′, a′′).

Note that HS is equivariant, because =α is. So applying (a a′′′) · to (5.7) we get
((a1 a′′′)·t1, (a2 a′′′)·t2) ∈ HS; and applying (a′′ a′′′)· to (5.8) we get (a2 a′′′)·t2 =α

(a′ a′′′) · t′. So by definition of HS, we have (a1 a′′′) · t1 =α (a′ a′′′) · t′; and since
a′′′ # (a1, t1, a′, t′), we can apply the fifth rule in Definition 5.4 to conclude that
a1 . t1 =α a′ . t′ = t. Therefore we do indeed have (a1 . t1, a2 . t2) ∈ HN.S. �

Remark Note that =α is a decidable relation (given a suitable Gödel numbering
of raw terms). A decision procedure is implicit in the inductive definition, because
of the syntax-directed nature of the rules in Definition 5.4 and the fact that the size
(number of symbols) of raw terms goes down reading the rules for compound terms
bottom-up. (Note that the size function is equivariant: the size of π · t is equal to the
size of t for any π ∈ PermA.)

Definition 5.6 For each sort S of a nominal algebraic signature Σ, the elements
of the quotient nominal set

Σα(S) , Σ(S)/=α (5.9)

are called nominal algebraic terms of sort S. We call nominal sets of the form Σα(S)
nominal algebraic data types.

Proposition 5.7 For each sort S of a nominal algebraic signature Σ, the least
support supp e of a nominal algebraic term e ∈ Σα(S) is equal to the finite set fn t
of free atomic names of any representative raw term t:

e = [t]=α ⇒ supp e = fn t (5.10)

56 Nominal Algebraic Data Types

where
fn a = {a}

fn(op t) = fn t

fn() = ∅

fn(t1 , t2) = fn t1 ∪ fn t2
fn(a . t) = (fn t) − {a}.

(5.11)

Proof One can prove that fn t strongly supports [t]=α in exactly the same way as
for the special case of λ-terms in section 2.9. Hence by Theorem 2.7, supp([t]=α) =

fn t. �

When working with languages involving binders, it is common to use notation
that blurs the distinction between a raw term t and the α-equivalence class [t]=α

it determines. Accordingly, we use the following notation for nominal algebraic
terms.

Definition 5.8

op e , [op t]=α where e = [t]=α (5.12)

e1 , e2 , [t1 , t2]=α where e1 = [t1]=α and e2 = [t2]=α (5.13)

a . e , [a . t] where e = [t]=α . (5.14)

We will also write [a]=α just as a and [()]=α just as () when it is clear from the
context that we are referring to nominal algebraic terms.

These notational conventions are justified by the following properties of =α,
which are simple consequences of its definition and of Lemma 5.5.

• For each operation op : S → D there is a function Σα(S) → Σα(D), well-defined
by [t]=α 7→ [op t]=α .

• Given sorts S1 and S2, there is a function Σα(S1) × Σα(S2) → Σα(S1 , S2), well-
defined by ([t1]=α , [t2]=α) 7→ [t1 , t2]=α .

• For each sort S there is a function A × Σα(S) → Σα(N . S), well-defined by
(a, [t]=α) 7→ [a . t]=α .

• For each a ∈ A, the equivalence class [a]=α is the singleton {a}.
• The equivalence class [()]=α is the singleton {()}.

5.3 Algebraic functors

To each finite nominal algebraic signature Σ, with a single name-sort N and n data-
sorts D1, . . . , Dn, we associate a functor T : Nomn → Nomn. To do so we first

5.3 Algebraic functors 57

re-organize the typing information for a signature’s operations so as to present, for
each data-sort, the different ways of constructing terms of that sort. Thus

D1 = op1,1(S1,1) | · · · | op1,m1(S1,m1)
...

Dn = opn,1(Sn,1) | · · · | opn,mn(Sn,mn).

(5.15)

is the signature with operations opi, j : Si, j → Di (i = 1..n, j = 1..mi). For example,
the signature in Example 5.3 written in this way looks like this:

Proc = S(Sum) | Comp(Proc , Proc) | Nu(Chan . Proc) | !(Proc) |
Out(Chan , Chan , Proc) | In(Chan , Chan . Proc)

Sum = P(Pre) | O(1) | Plus(Sum , Sum)
Pre = Tau(Proc) | Match(Chan , Chan , Pre).

The sorts Si, j in (5.15) are built up from D1, . . . , Dn and the name-sort N as in (5.2).
Given an n-tuple of nominal sets X = (X1, . . . , Xn) ∈ Nomn, each such sort S gives
rise to a nominal set ~S�X, defined by recursion on the structure of S as follows.

~N�X = A

~Di�X = Xi

~1�X = 1

~S1 , S2�X = ~S1�X × ~S2�X

~N . S�X = [A](~S�X).

(5.16)

The mapping X 7→ ~S�X extends to a functor ~S� : Nomn → Nom using the
functoriality of products and of name abstraction (section 4.3).

Definition 5.9 If Σ is the signature given by (5.15), then the associated functor
T : Nomn → Nomn has components Ti : Nomn → Nom (for i = 1..n) given by
mapping each X = (X1, . . . , Xn) ∈ Nomn to

Ti X , ~Si,1�X + · · · + ~Si,mi�X (5.17)

and similarly for n-tuples of equivariant functions. We call functors that arise in
this way nominal algebraic functors.

Example 5.10 If Σ is the signature from Example 5.2, then the associated functor
Nom → Nom maps a nominal set X to A + ([A]X) + (X × X). Whereas for the
signature in Example 5.3, the associated functor Nom3 → Nom3 maps a triple of

58 Nominal Algebraic Data Types

nominal sets (X1, X2, X3) to the triple whose components are

X2 + (X1 × X1) + ([A]X1) + (A × A × X1) + (A × ([A]X1)),

X3 + 1 + (X2 × X2)

and X1 + (A × A × X3).

In the next section we will need to use the fact that the action of nominal al-
gebraic functors on equivariant functions extends to one on all finitely supported
functions. Given X = (X1 . . . , Xn) and Y = (Y1 . . . ,Yn) in Nomn, define

X �n
fs Y , (X1 �fs Y1) × · · · × (Xn �fs Yn). (5.18)

This is the hom-object in Nom for the the Nom-enriched category Nomn. We noted
in section 2.4 that the functor [A] : Nom→ Nom is Nom-enriched; and the same
is true for the product and coproduct functors for more standard reasons. Using
these we get a Nom-enrichment for each T. Concretely this means that there are
equivariant functions

(X �n
fs Y)→ (TX �n

fs TY) (X,Y ∈ Nomn) (5.19)

that preserve identity and composition and agree with the application of T to equiv-
ariant functions (recalling that these are the elements of X �n

fs Y with empty sup-
port). Following (5.17), the functions in (5.19) are defined using coproduct (disjoint
union) from Nom-enrichments

(X �n
fs Y)→ (~S�X �fs ~S�Y) (X,Y ∈ Nomn) (5.20)

for the functors ~S� : Nomn → Nom; and following (5.16), these are defined by
recursion on the structure of the sort S using the enrichments for product and name
abstraction. Thus given F ∈ X �n

fs Y , the function ~S� F ∈ ~S�X �fs ~S�Y has the
following properties according to the structure of S:

~N� F a = a

~Si� F d = Fi d

~1� F () = ()

~S1 , S2� F (d1, d2) = (~S1� F d1, ~S2� F d2)

a # F ⇒ ~N . S� F (〈a〉d) = 〈a〉(~S� F d)

(5.21)

where the last, conditional equation uses the functorial action of [A] on finitely
supported functions (4.12).

5.4 Initial algebra semantics 59

5.4 Initial algebra semantics

Let Σ be the signature given by (5.15) and define D ∈ Nomn to be

D , (Σα(D1), . . . ,Σα(D1)). (5.22)

We can define equivariant functions IS : ~S�D → Σα(S) by recursion on the struc-
ture of sorts S as follows (using the notational conventions of Definition 5.8 and, in
the last clause, the definition (4.13) of the action of [A] on equivariant functions).

IN a = a

IDi e = e

I1 () = ()

IS1,S2(d1, d2) = IS1 d1 , IS2 d2

IN.S(〈a〉d) = a . IS d

(5.23)

If T : Nomn → Nomn is the functor associated with Σ as in Definition 5.9, then
using these functions for each i = 1..n we get an equivariant function Ii : Ti D =

~Si,1�D + · · · + ~Si,mi�D→ Σα(Di), given by

Ii(inj j d) = opi, j(ISi, j d) (j = 1..mi, d ∈ ~Si, j�D). (5.24)

So altogether we get a morphism in Nomn:

I , (I1, . . . , In) : T D→ D. (5.25)

We will show that this gives an initial T-algebra for the functor T : Nomn →

Nomn. Thus given any T-algebra, that is, any morphism F : T X → X, there is a
unique morphism F̂ : D→ X making the following diagram commute.

T D T F̂ //

I
��

T X

F
��

D
F̂
// X

(5.26)

(In particular, I is an isomorphism: see Exercise 5.2.)
In general, such a universal property is of interest because it gives rise to recur-

sion principles for the initial algebra. In this case, in order to capture some common
informal uses of recursion in the presence of α-equivalence, we need to establish
a stronger version of (5.26), one in which equivariant functions are generalized to
finitely supported functions. The following familiar example illustrates the need
for this.

Example 5.11 Let Σ be the signature for untyped λ-calculus from Example 5.2.
In this case D = Σα(Term) is the nominal set of λ-terms modulo α-equivalence

60 Nominal Algebraic Data Types

from section 2.9; the functor T : Nom → Nom is A + ([A]) + (×); and the
morphism I : A + [A]D + D × D→ D satisfies

I(inj1 a) = V a

I(inj2(〈a〉e)) = L a . e

I(inj3(e1, e2)) = A(e1 , e2).

(5.27)

A T-algebra is given by equivariant functions F1 : A → X, F2 : [A]X → X and
F3 : X × X → X. The unique F̂ : D → X making (5.26) commute satisfies the
following recursion equations.

F̂(V a1) = F1 a1

F̂(L a1 . e1) = F2(〈a1〉(F̂ e1))

F̂(A(e1 , e2)) = F3(F̂ e1, F̂ e2).

(5.28)

Contrast this with the operation (a := e) : D→ D of capture-avoiding substitution
of a λ-term e for all free occurrences of a variable V a in a λ-term. Being finitely
supported by {a} ∪ fv e, this operation cannot be an instance of the above initial
T-algebra property (with X = Σα(Term)), since that produces an emptily supported
function F̂ from emptily supported functions (F1, F2, F3). Nevertheless, it has a
recursive specification that is quite similar to (5.28):

(a := e)(V a1) = F1 a1

a1 < {a} ∪ fv e⇒ (a := e)(L a1 . e1) = F2(〈a1〉((a := e)e1))

(a := e)(A(e1 , e2)) = F3((a := e)e1, (a := e)e2)

(5.29)

where F1 ∈ A �fs D is λa1 ∈ A � if a1 = a then e else V a1 (which has support
{a} ∪ fv e), and where F2 and F3 are the equivariant functions I ◦ inj2 and I ◦ inj3
from (5.27).

The middle clause in (5.29) is the essence of the capture-avoiding aspect of
this form of substitution: it is only necessary to say how to unwind the recursive
definition for sufficiently fresh bound variables a1. Since (a := e) is uniquely de-
termined by (F1, F2, F3) and the latter has support {a}∪ fv e, this middle clause can
be rephrased using a freshness quantifier

(Na1) (a := e)(L a1 . e1) = F2(〈a1〉((a := e)e1)).

It turns out that this use of the freshness quantifier corresponds exactly to the way
it occurs in the definition of the action of the functor [A] on finitely supported
functions, as in (4.12). Thus the recursive definition of (a := e) is an instance of
the following initial algebra property of nominal data types.

Theorem 5.12 (Initial algebra theorem for nominal algebraic data types) Let

5.4 Initial algebra semantics 61

Σ be a nominal algebraic signature with a single name-sort N, with n data-sorts
D1, . . . , Dn, and with operations as shown in (5.15). The n-tuple of nominal alge-
braic data types

D = (Σα(D1), . . . ,Σα(Dn))

equipped with the morphism (5.25) is an initial algebra for the Nom-enriched func-
tor T : Nomn → Nomn associated with Σ as in section 5.3. In other words, for each
X ∈ Nomn and F ∈ TX �n

fs X there is a unique F̂ ∈ D �n
fs X satisfying

F ◦ (TF̂) = F̂ ◦ I. (5.30)

Moreover, supp F̂ ⊆ supp F.

Remark The fact that any nominal algebraic functor T has a Nom-enriched ini-
tial algebra follows from general, category-theoretic considerations. It can be con-
structed by taking the colimit of the countable chain ∅ → T∅ → T(T∅) → · · ·
and using the fact that the Nom-enriched functor T preserves such colimits. So the
force of the theorem is that this initial algebra can be presented in terms of the sets
of nominal algebraic terms associated with the signature.

Proof of existence of F̂ Define relations FS ⊆ Σ(S)×~S�X, as S ranges over sorts,
simultaneously inductively by the following rules.

a ∈ A

(a, a) ∈ FN

(t, d) ∈ FSi, j i ∈ {1..n} j ∈ {1..mi}

(opi, j t, Fi(inj j d)) ∈ FDi

((), ()) ∈ F1

(t1, d1) ∈ FS1 (t2, d2) ∈ FS2

(t1 , t2, (d1, d2)) ∈ FS1,S2

((a1 a) · t, (a2 a) · d) ∈ FS a # (a1, t, a2, d, F)

(a1 . t, 〈a2〉d) ∈ FN.S

(5.31)

These relations have the following properties.

1. Each FS is supported by supp F as a subset of the nominal set Σ(S) × ~S�X,
because the set of rules inductively defining these subsets is supported by this
finite set.

2. The relations respect α-equivalence in their first components and are single-
valued:

(t, d) ∈ FS ∧ t =α t′ ⇒ (t′, d) ∈ FS (5.32)

(t, d) ∈ FS ∧ (t, d′) ∈ FS ⇒ d = d′. (5.33)

These are proved, simultaneously for all sorts S, by induction on the derivation
of (t, d) ∈ FS from the rules in (5.32). The only interesting induction step is

62 Nominal Algebraic Data Types

for name abstractions, which uses a typical ‘some/any’ argument to replace the
atomic name a in the hypothesis of the last rule in (5.32) by one that is also
fresh for some a′ . t′ (for the first property), or for some 〈a′〉d′ (for the second
property).

3. The relations are total:

(∀t ∈ Σ(S))(∃d ∈ ~S�X) (t, d) ∈ FS. (5.34)

For this we prove a slightly stronger property, namely that the sort-indexed fam-
ily of subsets

HS , {t ∈ Σ(S) | (∀π ∈ PermA)(∃d ∈ ~S�X) (π · t, d) ∈ FS}

is closed under the rules in Definition 5.1 inductively defining the sets Σ(S) of
raw terms of each sort, and hence that HS = Σ(S). (The quantification over
all finitary permutations π ∈ PermA in the definition of HS is there to ensure
that these subsets are equivariant, despite the fact that FS may have non-empty
support; indeed, it is easy to see from the definition that we have t ∈ HS ⇒
π · t ∈ HS.) The only non-trivial induction step is for closure of the subsets
under formation of raw terms of the form a . t, which is proved as follows.

Suppose t ∈ HS and a ∈ A; we prove that a . t ∈ HN.S. Given any π ∈ PermA

we can use the Choose-a-Fresh-Name Principle to pick some a′ # (a, π, t, F).
Since t ∈ HS, there exists d ∈ ~S�X with

((π a a′) · π · t, d) ∈ FS. (5.35)

Now pick some a′′ # (a, π, t, F, a′, d); applying (a a′) to (5.35) and using the
fact that a′, a′′ < supp F ⊇ sup F, we get ((π a a′′) · π · t, (a′ a′′) · d) ∈ FS.
Hence by definition of F, ((π a) . (π · t), 〈a′〉d) ∈ FN.S. Therefore a . t ∈ HN.S,
as required.

In view of properties 1–3, for each sort S the relation FS induces a function from
Σα(S) to ~S�X that is supported by supp F. Taking S to be Di this gives us a function
F̂i ∈ Σα(Di) �fs Xi satisfying

(∀t ∈ Σ(Di)) (t, F̂i[t]=α) ∈ FDi . (5.36)

So we have constructed F̂ = (F̂1, . . . , F̂n) ∈ D �n
fs X supported by supp F and it

remains to prove that it satisfies (5.30), that is, Fi◦(TiF̂) = F̂i◦ Ii holds for i = 1..n.
From the definitions of Ti and Ii, this amounts to proving that for all j = 1..mi and
all d ∈ ~Si, j�D

Fi(inj j(~Si, j� F̂ d)) = F̂i(opi, j(ISi, j d)). (5.37)

5.5 Primitive recursion 63

One can see this by proving for all sorts S, all d ∈ ~S�D and all t ∈ Σ(S) that

IS d = [t]=α ⇒ (t, ~S� F̂ d) ∈ FS. (5.38)

For then if ISi, j d = [t]=α , we have (t, ~Si, j� F̂ d) ∈ FSi, j and therefore by definition
of F, also (opi, j t, Fi(inj j(~Si, j� F̂ d))) ∈ FDi ; but then (5.36) and (5.33) together
imply (5.37).

That leaves the proof of property (5.38). This can be done by induction on the
structure of the sort S. The induction step when S = Di uses (5.36); and the in-
duction step for name abstraction sorts uses the fact that every d ∈ ~N . S�D =

[A](~S�D) is of the form 〈a〉d′ for some a # F, together with the fact that

a # F ∧ (t, d) ∈ FS ⇒ (a . t, 〈a〉d) ∈ FN.S (5.39)

which is a consequence of the definition of F and the fact that it is supported by
supp F. �

Proof of uniqueness of F̂ Suppose F′ ∈ D �n
fs X also satisfies F ◦ (TF′) = F′ ◦ I

and hence for all i = 1..n, all j = 1..mi and all d ∈ ~Si, j�D

Fi(inj j(~Si, j� F′ d)) = F′i (opi, j(ISi, j d)). (5.40)

From this it follows by induction of the structure of sorts S that for all d ∈ ~S�D
and all t ∈ Σ(S)

IS d = [t]=α ⇒ (t, ~S� F′ d) ∈ FS. (5.41)

Taking S = Di, this gives (t, F′i [t]=α) ∈ FDi for each t ∈ Σ(Di). Combining this
with (5.36) and (5.33), we get F′i [t]=α = F̂i[t]=α for all t ∈ Σ(Di) and all i = 1..n.
Therefore F′ = F̂. �

5.5 Primitive recursion

The initial algebra property of ordinary algebraic data types is equivalent to a fa-
miliar and widely used principle of structural recursion for such data. When we
add names and name abstraction to get nominal algebraic data types, it turns out
that the initial algebra property (Theorem 5.12) gives rise to a principle of struc-
tural recursion ‘modulo α-equivalence’. This formalizes many common informal
uses of structural recursion in the presence of binding operations, where one iden-
tifies α-equivalence classes with representative raw terms, dynamically freshening
bound names as necessary. Pitts (2006) investigates this ‘α-structural’ recursion in
some generality. Here we will just treat one simple example, untyped λ-terms.

Let Σ be the signature from Example 5.2. The associated nominal algebraic func-
tor Nom→ Nom is T = A + [A] + (×). Thus to give a T-algebra F ∈ TX �fs X

64 Nominal Algebraic Data Types

is equivalent to giving a nominal set X equipped with three finitely supported func-
tions, F1 ∈ A�fs X, F2 ∈ ([A]X)�fs X and F3 ∈ X×X �fs X. By Theorem 4.14, F2

is induced by a finitely supported partial function (A × X) ⇀fs X satisfying (4.26).
It seems that the added generality of using a partial function is not needed in prac-
tice; so we will use a total function F′2 ∈ (A × X) �fs X, for which condition (4.26)
becomes (Na)(∀x ∈ X) a # F′2(a, x). In particular, the intial T-algebra Σα(Term)
is the nominal set of λ-terms modulo α-equivalence equipped with the equivariant
functions

I1 : A→ Σα(Term)

I1 , λa ∈ A � V a

I′2 : A × Σα(Term)→ Σα(Term)

I′2 , λ(a, e) ∈ A × Σα(Term) � L a . e

I3 : Σα(Term) × Σα(Term)→ Σα(Term)

I3 , λ(e1, e2) ∈ Σα(Term) × Σα(Term) � A(e1 , e2).

The initial algebra theorem for nominal algebraic data types in this case gives the
following recursion principle for λ-terms.

Theorem 5.13 (α-Structural primitive recursion for λ-terms) Let Σ be the sig-
nature from Example 5.2. Given a nominal set X and finitely supported functions

F1 ∈ A�fs X

F2 ∈ A × Σα(Term) × X �fs X

F3 ∈ Σα(Term) × Σα(Term) × X × X �fs X

with F2 satisfying the following ‘freshness condition for binders’

(Na ∈ A)(∀e ∈ Σα(Term))(∀x ∈ X) a # F2(a, e, x), (5.42)

then there is a unique finitely supported function F̂ ∈ Σα(Term) �fs X satisfying for
all a ∈ A and e, e1, e2 ∈ Σα(Term)

F̂(V a) = F1 a

a # (F1, F2, F2)⇒ F̂(L a . e) = F2(a, e, F̂ e)

F̂(A(e1 , e2)) = F3(e1, e2, F̂ e1, F̂ e2).

(5.43)

Proof Let D = Σα(Term). Define G1 ∈ A�fs (X×D), G2 ∈ [A](X×D)�fs (X×D)

5.5 Primitive recursion 65

and G3 ∈ (X × D) × (X × D) �fs (X × D) as follows.

G1 , λa ∈ A � (F1 a, V a)

G2 , λ〈a〉(x, e) ∈ [A](X × D) � (F2(a, e, x), L a . e)

G3 , λ((x1, e1), (x2, e2)) ∈ (X × D) × (X × D) � (F3(e1, e2, x1, x2), A(e1 , e2)).

The definition of G2 uses the name abstraction pattern notation introduced after
Theorem 4.14. Thus G2 is the unique function corresponding as in that theorem
to (a, (x, e)) 7→ (F2(a, e, x), L a . e); it is well-defined, because (Na)(∀(x, e) ∈ X ×
D) a # (F2(a, e, x), L a . e) holds by (5.42) and Proposition 5.7.

From (G1,G2,G3) we get a T-algebra G ∈ T(X × D) �fs (X × D) for the functor
T = A+ [A] + (×). Applying Theorem 5.12, there is a unique Ĝ ∈ D�fs (X×D)
satisfying G ◦ (TĜ) = Ĝ ◦ I. Define

F , proj1 ◦ Ĝ ∈ D �fs X

J , proj2 ◦ Ĝ ∈ D �fs D.

Then G ◦ (TĜ) = Ĝ ◦ I gives

(∀a ∈ A) (F(V a), J(V a)) = (F1 a, V a)

∧ (Na)(∀e ∈ D) (F(L a . e), J(L a . e)) = (F2(a, J e, F e), L a . (J e))

∧ (∀e1, e2 ∈ D) (F(A(e1 , e2)), J(A(e1 , e2))) =

(F3(J e1, J e2, F e1, F e2), A((J e1) , (J e2))). (5.44)

The second components of the equalities in (5.44) give

(∀a ∈ A) J(V a) = V a

∧ (Na)(∀e ∈ D) J(L a . e) = L a . (J e)

∧ (∀e1, e2 ∈ D) J(A(e1 , e2)) = A((J e1) , (J e2)).

So J satisfies I ◦ (T J) = J ◦ I; but so does idD and by Theorem 5.12 there is only
one such function corresponding to the T-algebra I : T D→ D. Therefore J = idD

and hence the first components of the equalities in (5.44) imply that we can take
F̂ = F to satisfy (5.43).

For the uniqueness of F̂, note that if F′ is any other such function, then G′ ,
〈F′, idD〉 ∈ D �fs (X × D) satisfies G ◦ (T G′) = G′ ◦ I. So by the uniquness part of
Theorem 5.12, G′ = Ĝ and hence F′ = proj1 ◦G′ = proj1 ◦ Ĝ = F = F̂. �

Remarks 1. The proof of the theorem uses a standard technique for deriving
primitive recursion from the more simple, ‘iterative’ form of recursion inher-
ent in the existence part of the initial algebra property, using the uniqueness
part of initiality.

66 Nominal Algebraic Data Types

2. The ‘freshness condition on binders’ (5.42) ensures that the functions F1, F2

and F3 induce a T-algebra structure on X. Similar conditions can be given for
any nominal algebraic signature: see (Pitts, 2006, Theorem 5.1).

Example 5.14 (Counting λ-abstractions) Here is a simple example to illustrate
the use of Theorem 5.13. Taking X to be the discrete nominal set of natural number
N (section 2.3), consider the functions F1, F2, F3 given by

F1 a , 0

F2(a, e, x) , x + 1

F3(e1, e2, x1, x2) , x1 + x2.

(5.45)

Note that these functions have empty support; and since every element of N has
empty support, the freshness condition for binders (5.42) is trivially satisfied. So
the theorem gives us a function | | , F̂ : Σα(Term)→ N satisfying

|V a| = 0

|L a . e| = |e| + 1

|A(e1 , e2)| = |e1| + |e2|.

(5.46)

Note also that the theorem tells us that | | is supported by supp(F1, F2, F3) = ∅ and
hence is equivariant.

For example |L a . V a| = |V a| + 1 = 0 + 1 = 1 and in general |e| is the num-
ber of occurrences of λ-abstractions in the λ-term e. Although the well-definedness
of such a function is a simple application of the theorem, it is interesting to note
that previous formal recursion schemes for α-equivalence classes of raw λ-terms
find it troublesome: see (Gordon and Melham, 1996, Sect. 3.3) and (Norrish, 2004,
Sect. 3). It is also interesting to compare the ease with which | | can be defined
compared with schemes for primitive recursion based on using higher-order ab-
stract syntax: see (Schürmann et al., 2001, Example 4.4).

Example 5.15 (Capture-avoiding substitution) Given a ∈ A and e ∈ Σα(Term),
if in Theorem 5.13 we take X = Σα(Term) and

F1 a1 , if a1 = a then e else V a1

F2(a1, e1, x1) , L a1 . x1

F3(e1, e2, x1, x2) , A(x1 , x2),

then F2 clearly satisfies the freshness condition for binders (5.42) and the function
F̂ given by the theorem is the operation (a := e) ∈ Σα(Term) �fs Σα(Term) of
capture-avoiding substitution from Example 5.11.

In the previous two examples it was easy to verify that the freshness condition

5.5 Primitive recursion 67

for binders (5.42) held. The following example illustrates that this is not always the
case.

Example 5.16 (Counting bound variable occurrences) We wish to define a
function cbv : Σα(Term) → N that counts the number of occurrences of bound
variables in a λ-term. For example, assuming a and b are distinct, the λ-term
(λa.λb.a) b contains a single bound variable occurrence (named a in the raw term
we have used to represent the λ-term) and correspondingly we want the value of
cbv at A(L a . L b . V a , V b) ∈ Σα(Term) to be 1.

We define cbv using the approach of (Schürmann et al., 2001, Example 4.3). We
first define an auxiliary function cbvs satisfying

cbvs(V a) ρ = ρ a

cbvs(L a . e) ρ = (cbvs e)(ρ[a 7→ 1])

cbvs(A(e1 , e2)) = (cbvs e1 ρ) + (cbvs e2 ρ)

(5.47)

where ρ ranges over environments mapping atomic names to numbers; in the sec-
ond clause above, ρ[a 7→ 1] indicates the updated environment mapping a to 1 and
otherwise acting like ρ. Then we define cbv e , cbvs e ρ0 where ρ0 is the environ-
ment mapping all atomic names to 0.

For environments we do not use aritrary functions from names to numbers, but
rather finitely supported ones. Then as a first attempt to use α-structural primi-
tive recursion to prove the existence of a function cbvs satisfying (5.47), in The-
orem 5.13 one could try taking X to be (A �fs N) �fs N and using the functions
F1, F2, F3 given by

F1 a , λρ ∈ (A�fs N) � ρ a

F2(a, e, x) , λρ ∈ (A�fs N) � x(ρ[a 7→ 1])

F3(e1, e2, x1, x2) , λρ ∈ (A�fs N) � x1 ρ + x2 ρ.

(5.48)

The problem is that F2 does not satisfying the freshness condition for binders; in
other words there is an a ∈ A and x ∈ (A �fs N) �fs N for which a # λρ ∈

(A�fs N) � x(ρ[a 7→ 1]) does not hold (see Exercise 5.3(ii)).
To solve this problem we identify a property of environment functionals that is

preserved by the operations needed in (5.47). (This is analogous to ‘strengthening
the induction hypothesis’ in a proof by induction, given the close relationship that
exists between recursion and induction.) Specifically, we cut down to those x ∈
(A �fs N) �fs N whose value at an environment ρ only depends on the values of
ρ at names in the support of x. More precisely, consider the nominal subset of
(A�fs N) �fs N given by

X , {x ∈ (A�fs N) �fs N | (Na)(∀ρ ∈ A�fs N)(∀n ∈ N) x(ρ[a 7→ n]) = x ρ}.

68 Nominal Algebraic Data Types

It is not hard to see that the functions F1, F2, F3 defined in (5.48) are equivariant
and satisfy

F1 a ∈ X

x ∈ X ⇒ F2(a, e, x) ∈ X

x1, x2 ∈ X ⇒ F3(e1, e2, x1, x2) ∈ X.

So they give morphisms in Nom

F1 : A→ X

F2 : A × Σα(Term) × X → X

F3 : Σα(Term) × Σα(Term) × X × X → X.

Furthermore, F2 satisfies the freshness condition for binders (5.42), because for
any a ∈ A and x ∈ X, using the Choose-a-Fresh-Name Principle to pick a1 #
(a, x, λρ � x(ρ[a 7→ 1])), we have

a
=

(a a1) · a1

{since a1 # λρ � x(ρ[a 7→ 1])}
(a a1) · (λρ � x(ρ[a 7→ 1]))

= {by definition of the action of permutations on functions}
λρ � (a a1) · (x(((a a1) · ρ)[a 7→ 1]))

= {by Exercise 5.3(i) and since a1 , a}
λρ � (a a1) · (x(ρ[a 7→ 1][a1 7→ ρ a]))

= {since x ∈ X and a1 # x}
λρ � (a a1) · (x(ρ[a 7→ 1]))

= {since x(ρ[a 7→ 1]) ∈ N and hence has empty support}
λρ � x(ρ[a 7→ 1]).

Therefore we can apply Theorem 5.13 to get F̂ ∈ Σα(Term)�fs X satisfying (5.43);
and since supp(F1, F2, F3) = ∅, this implies that we do have the required recursion
properties (5.47) once we take cbvs = F̂.

5.6 Induction

Initial algebras I : T D → D for functors T : C → C automatically satisfy a
category-theoretic induction principle: if a subobject of D, given by a monomor-

5.6 Induction 69

phism M : P� D say, is such that I ◦ T M factors through M

T P T M //

��

T D

I
��

P //
M
// D

(5.49)

then the subobject is necessarily the whole of D, that is, M is an isomorphism. We
leave the proof of this as an exercise (Exercise 5.4).

When C is Nom, we know from section 2.5 that subobjects correspond to equiv-
ariant subsets. Just as for recursion, in order to capture some common informal
uses of induction in the presence of α-equivalence, we need to establish a stronger
version of this induction principle, one that applies to finitely supported subsets
rather than just equivariant ones. To do so we exploit the fact that not only do nom-
inal algebraic functors preserve monomorphisms and hence act on subobjects, but
also this action internalizes to Nom’s power objects, the nominal sets of finitely
supported subsets. (See Exercise 5.5.)

Given X = (X1, . . . , Xn) ∈ Nomn, define

Pn
fs X , Pfs X1 × · · · × Pfs Xn. (5.50)

If Σ is a nominal algebraic signature with a single name-sort N and n data-sorts
D1, . . . , Dn, then we get a sort-indexed family of equivariant functions

^S : Pn
fs X → Pfs (~S�X) (5.51)

defined by recursion on the structure of the sort S as follows.

^NP = A

^Di P = Pi

^1P = 1

^S1,S2 P = {(d1, d2) | d1 ∈ ^S1 P ∧ d2 ∈ ^S2 P}

^N.SP = {〈a〉d | a # P ∧ d ∈ ^SP}.

(5.52)

Theorem 5.17 (α-Structural induction for nominal algebraic data types) Let
Σ be a nominal algebraic signature with a single name-sort N, with n data-sorts
D1, . . . , Dn, and with operations as shown in (5.15). The initial algebra

D = (Σα(D1), . . . ,Σα(Dn))

for the associated nominal algebraic functor T : Nomn → Nomn has the following
induction property: for any P = (P1, . . . , Pn) ∈ Pn

fs D, to show that Pi = Σα(Di) for

70 Nominal Algebraic Data Types

each i = 1..n it suffices to show for each of the signature’s operations opi, j : Si, j →

Di that

(∀d ∈ ~Si, j�D) d ∈ ^Si, j P⇒ opi, j(ISi, j d) ∈ Pi (5.53)

where ISi, j : ~Si, j�D→ Σα(Si, j) is as in (5.23).

Proof Given P ∈ Pn
fs D satisfying (5.53) for all i = 1..n and j = 1..mi, we will

show that the sort-indexed family of subsets

HS , {t ∈ Σ(S) | (∀π ∈ PermA)(∃d ∈ ^SP) IS d = [π · t]=α}

is closed under the rules in Definition 5.1 inductively defining the sets Σ(S) of
raw terms of each sort, and hence that HS = Σ(S). (The quantification over all
finitary permutations π ∈ PermA in the definition of HS is there to ensure that
these subsets are equivariant, despite the fact that P may have non-empty support;
indeed, it is easy to see from the definition that we have t ∈ HS ⇒ π · t ∈ HS.). We
get Pi = Σα(Di) from HS = Σ(S) in case S = Di, since Σα(Di) = Σ(Di)/=α, ^Di P = Pi

and IDi = idΣα(Di).
Closure of HS under the rules in Definition 5.1 for atomic name, unit and pair

raw terms is straightforward. Closure under the rule for raw terms of the form op t
follows directly from the assumption (5.53). So it just remains to show closure
under the rule for raw terms of the form a . t. So suppose t ∈ HS, a ∈ A and
π ∈ PermA. We have to find d ∈ ^N.SP with IN.S d = [π · (a . t)]=α . Use the
Choose-a-Fresh-Name Principle to pick a′ # (a, π, t, P). Since t ∈ HS, there exists
d′ ∈ ^SP with IS d′ = [(π a a′) · π · t]=α . Since a′ # P, by definition of ^N.SP
it contains 〈a′〉d′; and by definition of IN.S, we have IN.S(〈a′〉d′) = a′ . (IS d′) =

[a′ . ((π a a′) · π · t)]=α = [(π a) . (π · t)]=α , since a′ # (π a, π · t). So we can take
d = 〈a′〉d′. �

We saw by example in section 5.5 that the structure needed for a T-algebra is
equivalent to giving some functions not directly involving the name abstraction
construct, together with a ‘freshness condition for binders’. Similarly, the induction
hypothesis (5.53) in the α-structural induction theorem is equivalent to a more
elementary, albeit more involved condition involving the freshness relation. See
(Pitts, 2006, Theorem 5.2) for the general case. Here we just illustrate this for the
signature from Example 5.2. In this case D = Σα(Term) is the nominal set of λ-
terms modulo α-equivalence. The induction hypothesis (5.53) for the signature’s
three operations, V, L and A is equivalent to asserting of a finitely supported subset

5.6 Induction 71

P ∈ Pfs (Σα(Term)) that it satisfies

(∀a ∈ A) V a ∈ P

∧ (Na)(∀e ∈ Σα(Term)) e ∈ P⇒ L a . e ∈ P

∧ (∀e1, e2 ∈ Σα(Term)) e1 ∈ P ∧ e2 ∈ P⇒ A(e1 , e2) ∈ P.

(5.54)

(In the case of L we use the equivalence of

(∀a ∈ A)(∀e ∈ Σα(Term)) a # P ∧ e ∈ P⇒ L a . e ∈ P

with

(Na)(∀e ∈ Σα(Term)) e ∈ P⇒ L a . e ∈ P

which follows from the ‘some/any’ theorem.) So we get the following corollary of
Theorem 5.17.

Corollary 5.18 (α-Structural induction principle for λ-terms) With Σ as in
Example 5.2, for any finitely supported subset P ∈ Pfs (Σα(Term)), if (5.54) holds,
then (∀e ∈ Σα(Term)) e ∈ P.

Example 5.19 Consider the definition (5.29) in Example 5.11 of capture-avoiding
substitution (a := e)e′ of e for free occurrences of the variable V a in e′. We saw
above that (a := e) : Σα(Term) → Σα(Term) is the function F̂ in Theorem 5.13
when F1, F2, F3 are defined as in Example 5.15. We illustrate the α-structural in-
duction principle for λ-terms by using Corollary 5.18 to prove

a # e1 ⇒ (a := e)e1 = e1.

Given a ∈ A and e ∈ Σα(Term), define

P , {e1 ∈ Σα(Term) | a # e1 ⇒ (a := e)e1 = e1}.

Thus P ∈ Pfs (Σα(Term)) is supported by {a} ∪ supp e. To see that P is the whole of
Σα(Term) we need to check that it satisifes (5.54).

Proof of (∀a1 ∈ A) V a1 ∈ P. For any a1 ∈ A, if a # V a1 then a , a1 and hence
(a := e)(V a1) = F1 a1 = V a1; so V a1 ∈ P. �

Proof of (Na1)(∀e1 ∈ Σα(Term)) e1 ∈ P⇒ L a1 . e1 ∈ P. Since P is supported by
{a} ∪ supp e, by the ‘some/any’ theorem it suffices to prove

(∃a1 ∈ A) a1 # (a, e) ∧ (∀e1 ∈ Σα(Term)) e1 ∈ P⇒ L a1 . e1 ∈ P.

Use the Choose-a-Fresh-Name Principle to pick a1 ∈ A with a1 # (a, e). For any

72 Nominal Algebraic Data Types

e1 ∈ P, if a # L a1 . e1, then since a , a1 we must have a # e1 and therefore

(a := e)(L a1 . e1)
= {since (a := e) is F̂ and a1 # (a, e)}

F2(a1, e1, (a := e)e1)
= {by definition of F2}

L a1 . (a := e)e1

= {since e1 ∈ P and a # e1}

L a1 . e1.

So L a1 . e1 ∈ P. �

Proof of (∀e1, e2 ∈ Σα(Term)) e1 ∈ P ∧ e2 ∈ P⇒ A(e1 , e2) ∈ P. Suppose e1 ∈ P
and e2 ∈ P. If a # A(e1 , e2), then a # e1 ∧ a # e2 and hence (a := e)ei = ei for
i = 1, 2. Therefore (a := e)(A(e1 , e2)) = F3(e1, e2, (a := e)e1, (a := e)e2) = A((a :=
e)e1 , (a := e)e2) = A(e1 , e2). Thus A(e1 , e2) ∈ P. �

Exercises

5.1 Show that nominal algebraic functors preserve countable colimits of chains
in Nom.

5.2 Prove Lambek’s Lemma: if I : T D → D is an initial algebra for a functor
T : C→ C, then I is an isomorphism.

5.3 (i) If x ∈ (A�fs N) �fs N, ρ ∈ A�fs N and π ∈ PermA, show that π · ρ = ρ ◦ π

and (π · x)ρ = x(ρ ◦ π).
(ii) If ρ ∈ A�fs N and a ∈ A, define

ρ[a 7→ 1] , λb ∈ A � if b = a then 1 else ρ b.

Note that by the Finite Support Principle, ρ[a 7→ 1] ∈ A�fsN; and similarly
λρ ∈ (A �fs N) � x(ρ[a 7→ 1]) is in (A �fs N) �fs N. Given a ∈ A,
show that there exists x ∈ (A �fs N) �fs N such that a is in the support of
λρ ∈ (A �fs N) � x(ρ[a 7→ 1]). [Hint: consider the equivariant function
mapping each ρ ∈ A�fs N to the cardinality of {b ∈ A | ρ b = 1} is that set
is finite and to 0 otherwise.]

5.4 Prove the category-theoretic induction principle mentioned at the beginning
of section 5.6.

5.5 If T : Nomn → Nomn is the nominal algebraic functor associated with a
signature Σ as in Definition 5.9, then from (5.51) we get equivariant functions

^T : Pn
fs X → Pn

fs (T X)

Exercises 73

mapping each P ∈ Pn
fs X to ^TP = (^T1 P, . . . ,^Tn P), where

^Ti P ,
⋃

j=1..mi{inj j d | d ∈ ^Si, jP} ∈ Pfs (Ti X).

Show that these functions agree with the functorial action of T in the fol-
lowing sense: if Pi ⊆ Xi (i = 1..n) are equivariant subsets and we write
Mi : Pi → Xi for the inclusion functions, prove that T M : T P → T X is
again a monomorphism in Nomn and that the corresponding element of Pn

fs X
is ^TP.

5.6 Use the α-structural induction principle for λ-terms to show that capture-
avoiding substitution satisfies

a2 # (a1, e1)⇒ (a1 := e1)((a2 := e2)e) = (a2 := (a1 := e1)e2)((a1 := e1)e).

Bibliography

Barendregt, H. P. 1984. The Lambda Calculus: Its Syntax and Semantics. Revised edn.
North-Holland.

Gabbay, M. J. 2000. A Theory of Inductive Definitions with α-Equivalence: Semantics,
Implementation, Programming Language. Ph.D. thesis, University of Cambridge.

Gabbay, M. J., and Pitts, A. M. 2002. A New Approach to Abstract Syntax with Variable
Binding. Formal Aspects of Computing, 13, 341–363.

Goguen, J. A., Thatcher, J. W., Wagner, E. G., and Wright, J. B. 1977. Initial Algebra
Semantics and Continuous Algebras. JACM, 24, 68–95.

Gordon, A. D., and Melham, T. 1996. Five Axioms of Alpha-Conversion. Pages 173–191
of: Theorem Proving in Higher Order Logics, 9th International Conference. Lecture
Notes in Computer Science, vol. 1125. Springer-Verlag.

Gordon, M. J. C., and Melham, T. F. 1993. Introduction to HOL. A theorem proving envi-
ronment for higher order logic. Cambridge University Press.

Johnstone, P. T. 2002. Sketches of an Elephant, A Topos Theory Compendium, Volumes 1
and 2. Oxford Logic Guides, nos. 43–44. Oxford University Press.

MacLane, S. 1971. Categories for the Working Mathematician. Graduate Texts in Mathe-
matics 5. Springer-Verlag.

Menni, M. 2003. About N-Quantifiers. Applied Categorical Structures, 11, 421–445.
Norrish, M. 2004. Recursive Function Definition for Types with Binders. Pages 241–256

of: Theorem Proving in Higher Order Logics, 17th International Conference. Lecture
Notes in Computer Science, vol. 3223. Springer-Verlag.

Pitts, A. M. 2003. Nominal Logic, A First Order Theory of Names and Binding. Informa-
tion and Computation, 186, 165–193.

Pitts, A. M. 2006. Alpha-Structural Recursion and Induction. Journal of the ACM, 53,
459–506.

Sangiorgi, D., and Walker, D. 2001. The π-calculus: a Theory of Mobile Processes. Cam-
bridge University Press.

Schöpp, U. 2006. Names and Binding in Type Theory. Ph.D. thesis, University of Edin-
burgh.

Schürmann, C., Despeyroux, J., and Pfenning, F. 2001. Primitive Recursion for Higher-
Order Abstract Syntax. Theoretical Computer Science, 266, 1–57.

Tzevelekos, N. 2008. Nominal Game Semantics. Ph.D. thesis, University of Oxford. Avail-
able as Oxford University Computing Laboratory Technical Report RR-09-18.

Urban, C., Pitts, A. M., and Gabbay, M. J. 2004. Nominal Unification. Theoretical Com-
puter Science, 323, 473–497.

Notation index

Pf X, 20
(Na) ϕ(a), 35
(a1 a2), 15
(a1 a2 a3 · · · an), 15
1, 7
=α, 66
X − Y , 18
X/∼, 14
X �fs Y , 24
X −∗ Y , 38
X1 + · · · + Xn, 8
X1 ∗ X2, 38
X1 × · · · × Xn, 7
Xfs, 22
YX , 9
[G,Set], 6
[A]X, 43
[x]∼, 14
Λ/=α, 30
Σ(S), 63
Σ[X], 6
Σα(S), 67
〈a〉x, 43
≈α, 41
χS , 11
≡, 13

N, 35
λx ∈ X � e(x), 6
〈F1, . . . , Fn〉, 7
Nom, 19
Set, 6
⇀fs, 28
#, 33
Dom, 14
Perm A, 15
P X, 11
S A, 6
app, 10, 29
curry, 10
fn, 67
fresh a in ϕ(a), 38

freshX , 37
fv, 31
inji, 8
proji, 7
suppX , 19
supp, 19
var, 19
N . S, 63
op : S→ D, 63
a, 20
�, 11
S , S, 63
1, 63
a := e, 72
g · x, 6
x ∈ X 7→ e(x) ∈ Y , 6
@, 44

General index

G-set, 6
α-equivalence, 30, 66
α-equivalence

generalized, 41
λ-calculus

untyped, 30, 64
π-calculus, 64

action, 6
conjugation, 8

affine, 38
atomic name

free, 67
local fresh, 37

Barendregt, H, 30

category
well-pointed, 8

Cayley, 6
Choose-a-Fresh-Name Principle, 33
cofinite, 20
concretion, 44
constant, 62
cycle, 15

data-sorts, 63
discrete

G-set, 7
nominal set, 19

domain of definition, 14

Equivariance Principle, 13
equivariant

equivalence relation, 14
functions, 6
subsets, 11

extensionality principle, 45

Finite Support Principle, 27
finitely supported, 19
fresh for, 33
freshness

quantifier, 35
relation, 33

freshness theorem, 37
freshness condition for binders, 49
freshness condition for binders, 76
function

partial, 13
functor

Nom-enriched, 46

Gabbay, MJ, 48
global sections, 7
Gordon, MJC, 28
group, 5

homomorphism, 5
inverse, 5
multiplication, 5
symmetric, 6
unit, 5

HOL, 28

induction
α-structural, 79

for λ-terms, 80
initial T-algebra, 71

Johnson D L, 55

Kleene equivalence, 14

Lambek’s Lemma, 80

MacLane, S, 38
Melham, T, 28
Menni, M, 39
monomorphism, 11

name
abstraction, 43
atomic, 18, 63

name abstraction
extensionality, 45
pattern, 50

name swapping, 54
name-sorts, 63
natural number object, 9
nominal

General index 79

algebraic functors, 69
algebraic data type, 67

initial algebra theorem, 73
algebraic signature, 63

finite, 65
generalized, 80

function set, 24
powerset, 27
set, 19
set of atomic names, 19
set of name abstractions, 43

partial function, 13
finitely supported, 28

partial function
equivariant, 29

permutation, 6
finitary, 15

pullback, 25

quotient G-set, 15

raw terms, 30
raw term, 63
recursion
α-structural, 75

for λ-terms, 76
relation

single-valued, 13
total, 14

Schöpp, U, 38
separated product, 38
set subtraction, 18
signature

algebraic, 6, 62
nominal algebraic, 63

single-valued relation, 13
some/any theorem, 36
subgroup, 5
subobject, 11
substitution

capture-avoiding, 72
support, 18

strongly, 20
swapping, 15
swapping operation, 16
symmetric monoidal category, 38

closed, 38

term
algebraic, 6
raw, 63
untyped λ-calculus, 30

total relation, 14
transposition, 15
Tzevelekos, N, 20

