
1

PHP and MySQL

Database Systems

Michael Pound

This Lecture

• PHP
• Variables

• Arrays

• IF...ELSE statements

• Loops

• Connecting to MySQL

• Further reading
• W3Schools online tutorials at

http://www.w3schools.com/php/

The Limitations of SQL

• SQL is not a general purpose language

• It is designed to create, modify and query
databases

• It is non-procedural, so doesn’t contain normal
programming constructs

• Cannot handle platform-specific challenges such
as formatting output

Extending SQL

• Some DBMSs add programming structures
such as variables and loops to SQL.

• Very specific to a DBMS

• Essentially a new language that includes SQL

• Not hugely flexible

• Connect to SQL from another language

• Access SQL to run the relevant queries

• All other work can be done using procedural code

ODBC

• Connections to databases from programs are
often handled using Open DB Connectivity

• Provides a standard interface for communication
with a DBMS

• Can run queries, updates etc.

• Results of queries can be used inside the program
code

PHP

• PHP is a free, server-side scripting language

• Often embedded into web pages to produce
dynamic content

• Can connect to most modern DBMSs, and those
implementing ODBC.

• Contains specialised functions for connecting to
MySQL

2

How does PHP work?

Web Server

PHP
Interpreter

PHP File

MySQL
Database

Web
Browser

Dynamic
web page

Page request

Data

Running PHP in the School

• Here are the steps required to get PHP to run on the School
computers.
• All files must be text files with a .php extension. E.g. index.php

• All files must be in, or in a sub-directory of, H:/public_html/

• You must have execute rights on these files. To do this you can use
chmod 600 file.php from the command line

• You can then run the files in an internet browser by going to
http://avon.cs.nott.ac.uk/~username/file.php

• For more info, visit
http://support.cs.nott.ac.uk/help/docs/webpages/lphp/

• Note: You cannot run these php scripts outside the university
for security reasons

PHP Basics

• PHP is procedural code that can be embedded into
html documents inside php tags. Like this:

<html>

<body>

<?php

// This is a comment

// Some php code goes in here

?>

</body>

</html>

PHP Basics

• You can have any number of php blocks,
separated by html. All php blocks will be
connected when the file is run

• Code you write in an earlier block can be seen
by code you write in later blocks. This will be
important later

• Anything outside a php block is HTML text

Outputting Text

• Inside a PHP block, you can output text using the echo
command. Like SQL and C, commands end with a
semicolon:

<html>

<body>

<?php

echo “This will be output as text!”;

?>

</body>

</html>

Outputting HTML

• Remember, you’re working in an HTML document, so anything you
output will be read by the browser as HTML:

<html>

<?php

echo “<head>”;

echo “<title>Title of the Page</title>”;

echo “</head>”;

?>

<body>

</body>

</html>

3

Variables

• All programming languages use variables as a
means to store values using names. For example,
to create a number, called “num1” that has a
value of 5:

$num1 = 5;

• PHP is a weakly typed language, which means
you don’t need to specify that num1 is of type
“integer”, because it works it out.

Variables

• Variables in PHP act much like in C, but
remember to always use $

<?php

$var1 = 5;

$var1 = $var1 + 10;

?>

Then later:

<?php

echo $var1;

?>

Strings

• Strings are lists of characters
• Similar to varchar(n) in SQL

• Can be declared using ‘single’ or “double” quotes

• Can be appended together using ‘.’

<?php

$var1 = “Hello”;

$var2 = “everybody”;

echo $var1 . “ ” . $var2;

?>

Arrays

• Sometimes it is more helpful to store variables in lists
rather than as individual names. For example:

<?php

$var1 = 2;

$var2 = 4;

$var3 = 8;

$var4 = 16;

$var5 = 32;

echo $var1 . “, ” . $var2 . “, ” .

$var3 . “, ” . $var4 . “, ” . $var5;

?>

Arrays

• For even a few variables, this will become messy. An
alternative is to store them in a list structure, called an
Array

• Arrays act like normal variables, but hold much more
data

• Arrays are lists, and individual elements are accessed
by the [] operator

<?php

$var1 = array(2,4,8,16,32);

echo $var1[3];

?>

Arrays

• Arrays are usually accessed by a number that
represents the position of the variable we want

• Arrays can also be created and accessed by a keyword:

<?php

$courses = array(“DBS”=>”Database

Systems”, “PRG”=>“Programming”);

echo $courses[“DBS”];

?>

• Arrays are important because MySQL will give us an
array of data when we write a query.

4

Array Examples

$var1 = array(

2,4,8,16,32);

$var2 = array(

“DBS”=>”Database Systems”,

“PRG”=>“Programming”,

“MCS”=> “Maths”);
$var1

0 2

1 4

2 8

3 16

4 32

$var2

“DBS” “Database Systems”

“PRG” “Programming”

“MCS” “Maths”

IF...ELSE

• Sometimes we might want to choose what
code to run depending on our variables:

if (condition)

{

// Code to run if condition is true;

}

IF...ELSE

• Conditions can be
boolean variables, or
other expressions.

• Conditions will include
a single IF, any number
of ELSE IFs, and then
an optional ELSE

• Conditional operators
are similar to those in
MySQL.

• E.g. <, >, ==, !=, <>, etc.

$var1 = true;

$var2 = 15;

if ($var1)

{

// Code

}

else if ($var2 < 5)

{

// Code

}

Loops

• Sometimes we need to run similar code multiple
times

• We can use a loop to run the same code
repeatedly

• Four types of loops (We can get away with only
while loops for this course)
• WHILE

• DO...WHILE

• FOR

• FOREACH

While Loops

• While loops are structured like this:

while (condition)

{

// Code a

}

• Code a will be run repeatedly until that condition
is false

Do...While Loops

• Do...While loops are structured like this:

do

{

// Code a

} while (condition);

• Code a will be run once, then repeatedly until
that condition is false

5

For Loops

• Do...While loops are structured like this:

for (initialisation; condition;

increment)

{

}

• Code a will be run once, then repeatedly until
that condition is false

Foreach Loops

• Foreach loops are not in C, but they are in Java,
C++ C#, Objective C, Haskell etc.
• Sometimes the foreach will still use the FOR keyword
• Only used for iterating arrays

foreach ($array as $value)

{

// Do something with

// each $value

}

Foreach Loops

• Foreach loops can also obtain keys for associative
arrays

foreach ($array

as $key => $value)

{

// Do something with

// each $key, $value pair

}

• Foreach loops exist mainly for convenience

Functions

• If you wish to reuse code, you can put it in a
function to access it later.

• There are numerous PHP functions you will
find useful, e.g.
• count($array);

• mysql_close($connection);

• print_r($array);

• mysql_real_escape_string($s, $c)

Functions

• Functions are defined like this:

function <name> (<parameters>)

{

// Do something

// return;

// or return <value>;

}

Functions

• An example of a function. Notice that you need not
specify parameter or return types:

function factorial($val)

{

return $val

* factorial ($val – 1);

}

• Important: During the coursework, write all functions
in your main index.php file

6

$_GET and $_POST

• GET and POST are PHP global associative array
variables that hold information passed to the PHP
script

• $_GET
• Holds information passed to the page via the URL

• E.g. http://www.something.com/index.php?v=12

• $_POST
• Holds information passed to the page via POST

• Post variables are usually sent upon HTML form
submissions

$_GET

• HTML Get variables are passed in the URL,
after a ? and separated by &

• For example:

http://www...com/index.php?age=19&name=Tim

• Inside our PHP script, we can access the values
using $_GET[‘varname’]

echo $_GET[„name‟] . “ is “ .

$_GET[„age‟] . “ years old”;

$_POST

• HTML Post variables are passed separately, usually during a
form submission

• For example:

<form action=“index.php" method=“post">

Name: <input type="text" name="fname" />

Age: <input type="text" name="age" />

<input type="submit" />

</form>

• When the form is submitted, the page index.php will contain
values in $_POST for ‘fname’ and ‘age’

GET or POST

• While they essentially do the same thing, GET
and POST are quite different:
• Because GET parameters are passed in the URL, you

can bookmark a script along with parameters

• GET variables are easy to hack, and raise security
issues

• POST variables are generally unseen, so more secure

• POST variables can be any size, GET variables should
be short, e.g. 2000 chars max

• Avoid GET when the values will be used to change the
server information, e.g. Update a database

Connecting to MySQL

• PHP includes various functions for
communicating with a MySQL server
mysql_connect(„server‟, „username‟, „password‟);

• Connects to the database and returns a connection
resource

• Host will usually be ‘mysql.cs.nott.ac.uk’ or ‘localhost’ if
you’re running at home

mysql_select_db(„username‟, connection resource);

• Will change the server to required database

• Will return a boolean stating whether this action was
successful

Connecting to MySQL

• In both the previous commands, if anything
goes wrong, we should stop processing the
PHP file

• You can terminate a PHP script using the die
keyword:

die (“A problem has occurred!”);

7

Connecting to MySQL

<?php

$conn = mysql_connect(„mysql.cs.nott.ac.uk‟,

„username‟, „password‟);

if(!$conn)

{

die (“Error connecting to MySQL: “ .

mysql_error();

}

$db_select_success = mysql_select_db(„username‟,

$conn);

if(!db_select_success)

{

die (“Error selecting database: “ . mysql_error());

}

?>

Includes

• Keeping our password in plain text inside our
PHP document isn’t very secure

• In PHP you can include code from other files
for reuse later

• In this case, we can separate out our
connection code for security. It also makes our
code more concise.

Includes

• There are 4 commands that can include files:
include(file.php)

• Includes all code from file.php at this location in the
current php script

include_once(file.php)

• As above, but only once. If you include_once a second
time, nothing will happen

require(file.php) /
require_once(file.php)

• As above, but if any errors occur in the included file,
the php scripting will stop immediately

Includes

mainfile.php dbconnect.php
<html>

<head>

<title>Title</title>

</head>

<?php

require_once(„dbconnect.php‟);

// Some code that uses our

// database connection goes

// here

?>

</body

</html>

$conn =

mysql_connect(„mysql.cs.nott.ac.uk‟,

„username‟, „password‟);

if(!$conn)

{

die (“Error connecting to MySQL: “ .

mysql_error();

}

$db_select_success =

mysql_select_db(„username‟, $conn);

if(!db_select_success)

{

die (“Error selecting database: “ .

mysql_error());

}

Using a MySQL Connection

• All SQL commands are sent to the server using
the following functions:

mysql_query(“SQL Statement”,

$conn);

• Sends the SQL statement to the database at the given
connection

mysql_query(“SQL Statement”);

• Sends the SQL statement to the database you most
recently connected to using mysql_connect();

Example Query

• You can use any SQL command via the
mysql_query() function. For example:

$query = “CREATE TABLE Artist(

artID INT NOT NULL AUTO_INCREMENT,

artName VARCHAR(255) NOT NULL,

CONSTRAINT pk_art PRIMARY KEY (artID))”;

$success = mysql_query($query);

// success will be true if the table was

// created

8

SELECT in PHP

• For SELECT, SHOW and DESCRIBE commands,
mysql_query() will return a set of results:

$query = “SELECT * FROM Artist”;

$result = mysql_query($query);

• $result will now hold all our returned rows

Using SELECT Results

• To use the values in $result, we can use the
following command:

$row = mysql_fetch_array($result);

• $row will be an array containing all the data from
one row of our result set

• Each time we use the above statement the next
row will be returned

• When no rows are left, $row will be false

Using SELECT Results

• Because mysql_fetch_array() will return
false when no rows remain, we can use a while
loop to make things easier:

while ($row = mysql_fetch_array($result))

{

// Use the data in $row

}

// We reach this point when we have used

// every row

Using SELECT Results

• Once we have each row individually, we can
use the data like any regular array:

while ($row = mysql_fetch_array($result))

{

echo “Artist ID: “ . $row[„artID‟];

echo “Artist Name: “ . $row[„artName‟];

}

Associative or Numeric

$row = mysql_fetch_array(

$result, MYSQL_NUM);

$row = mysql_fetch_array(

$result, MYSQL_ASSOC);

$row

0 “1”

1 “Smith”

2 “5 Arnold Close”

3 2

$row

“sID” “1”

“sName” “Smith”

“sAddress” “5 Arnold Close”

“sYear” 2

Both

$row = mysql_fetch_array(

$result);

$row = mysql_fetch_array(

$result, MYSQL_BOTH);

$row

0 “1”

1 “Smith”

2 “5 Arnold Close”

“sName” “Smith”

“sAddress” “5 Arnold Close”

“sID” “1”

9

HTML Tables

• Sometimes it might be useful to output our results into an
HTML Table. A table takes the following form:

<table>

<tr>

<td>Row 1 Col 1</td>

<td>Row 1 Col 2</td>

</tr>

<tr>

<td>Row 2 Col 1</td>

<td>Row 2 Col 2</td>

</tr>

</table>

HTML Tables

<table>

<tr>

<td>Row 1 Col 1</td>

<td>Row 1 Col 2</td>

</tr>

<tr>

<td>Row 2 Col 1</td>

<td>Row 2 Col 2</td>

</tr>

</table>

Row 1 Col 1 Row 1 Col 2

Row 2 Col 1 Row 2 Col 2

Creating a table in PHP

• Creating a table in php is simply a case of using ECHO to output the
necessary tags.

echo “<table>”;

while ($row =

mysql_fetch_array($result))

{

echo “<tr>”;

echo “<td>” . $row[„artID‟] . “</td>”;

echo “<td>” . $row[„artName‟] . “</td>”;

echo “</tr>”;

}

Echo “</table>”;

Setting up PHP at home

• To set up PHP and MySQL at home, you need:
• A web server e.g. Apache

• MySQL server

• PHP 5.3

• XAMPP contains all of the above and some
other useful things. All are installed at the
same time, and set up for you.

http://www.apachefriends.org/en/xampp.html

