PHP and MySQL

Database Systems
Michael Pound

This Lecture

* PHP

* Variables

e Arrays

* |F...ELSE statements

* Loops

» Connecting to MySQL
* Further reading

* W3Schools online tutorials at
http://www.w3schools.com/php/

The Limitations of SQL

* SQL is not a general purpose language

* Itis designed to create, modify and query
databases

* Itis non-procedural, so doesn’t contain normal
programming constructs

* Cannot handle platform-specific challenges such
as formatting output

Extending SQL

* Some DBMSs add programming structures
such as variables and loops to SQL.
* Very specific to a DBMS
 Essentially a new language that includes SQL
* Not hugely flexible
* Connect to SQL from another language
e Access SQL to run the relevant queries
 All other work can be done using procedural code

ODBC

* Connections to databases from programs are
often handled using Open DB Connectivity

 Provides a standard interface for communication
with a DBMS

* Can run queries, updates etc.

* Results of queries can be used inside the program
code

PHP

* PHPis a free, server-side scripting language

* Often embedded into web pages to produce
dynamic content

* Can connect to most modern DBMSs, and those
implementing ODBC.

* Contains specialised functions for connecting to
MysQL

How does PHP work?

Web Server
Dynamic
Data PHP web page
MysaL Interpreter Web
Database Browser

PHP File I |

Page request

Running PHP in the School

* Here are the steps required to get PHP to run on the School
computers.

All files must be text files with a .php extension. E.g. index.php

All files must be in, or in a sub-directory of, H:/public_html/

You must have execute rights on these files. To do this you can use

chmod 600 file.php fromthe command line

You can then run the files in an internet browser by going to

http://avon.cs.nott.ac.uk/~username/file.ph

For more info, visit
http://support.cs.nott.ac.uk/help/docs/webpages/Iphp/

* Note: You cannot run these php scripts outside the university
for security reasons

PHP Basics

¢ PHP is procedural code that can be embedded into
html documents inside php tags. Like this:

<html>
<body>

<?php

// This is a comment

// Some php code goes in here
?>

</body>
</html>

PHP Basics

* You can have any number of php blocks,
separated by html. All php blocks will be
connected when the file is run

* Code you write in an earlier block can be seen
by code you write in later blocks. This will be
important later

* Anything outside a php block is HTML text

Outputting Text

* Inside a PHP block, you can output text using the echo
command. Like SQL and C, commands end with a
semicolon:

<html>
<body>

<?php
echo “This will be output as text!”;
?>

</body>
</html>

Outputting HTML

* Remember, you're working in an HTML document, so anything you
output will be read by the browser as HTML:

<html>

<?php
echo “<head>";
echo “<title>Title of the Page</title>";
echo “</head>";

?>

<body>
</body>
</html>

Variables

* All programming languages use variables as a
means to store values using names. For example,
to create a number, called “num1” that has a
value of 5:

Snuml = 5;

* PHP is a weakly typed language, which means
you don’t need to specify that num1 is of type
“integer”, because it works it out.

Variables

* Variables in PHP act much like in C, but
remember to always use $

<?php
Svarl = 5;
Svarl = $varl + 10;
?>
Then later:
<?php
echo $varl;
?>

Strings

* Strings are lists of characters
* Similar to varchar(n) in SQL

Arrays

* Sometimes it is more helpful to store variables in lists
rather than as individual names. For example:

* Can be declared using ‘single’ or “double” quotes <?php

* Can be appended together using *’ Svarl = 2;
<?php Svar2 = 4;

— W ” Svar3 = 8;

Svarl = “Hello”; Svard = 16;

Svar2 = “everybody”; Svar5 = 32;

echo $varl wo Svar2; echo $varl . », 7 . Svar2 . %, ”
oS Svar3 . %, ” . Svard . %, " . S$varh;

?>
Arrays Arrays

* For even a few variables, this will become messy. An
alternative is to store them in a list structure, called an
Array

* Arrays act like normal variables, but hold much more
data

* Arrays are lists, and individual elements are accessed
by the [] operator

<?php
Svarl = array(2,4,8,16,32);
echo $varl[3];

?>

* Arrays are usually accessed by a number that
represents the position of the variable we want

* Arrays can also be created and accessed by a keyword:
<?php
Scourses = array (“DBS”=>"Database
Systems”, “PRG”=>“Programming”) ;
echo S$courses[“DBS”];
?>

* Arrays are important because MySQL will give us an
array of data when we write a query.

Array Examples

Svarl = array($var2 = array(
w n_sn ”
2,4,8,16,32) ; DBS”=>"Database Systems”,
“PRG”=>“Programming”,

MCS”=> “Maths”);
-
1 | 4

“DBS” [—>| “Database Systems”

IF...ELSE

* Sometimes we might want to choose what
code to run depending on our variables:

if (condition)
{
// Code to run if condition is true;

2 =1 8
“PRG” || “Programming” }
3 — 16
“MCS” [“Maths”
4 —1 32
IF...ELSE Loops
* Conditions can be $varl = true; * Sometimes we need to run similar code multiple
boolean variables, or $var2 = 15; times
other expressions. if ($varl)
- A * We can use a loop to run the same code
¢ Conditions will include { ted|
a single IF, any number // Code repeatedly

of ELSE IFs, and then }
an optional ELSE else if (Svar2 < 5)

* Four types of loops (We can get away with only
while loops for this course)

* Conditional operators ¢ « WHILE
are similar to those in
MySQL. // Code DO...WHILE
} * FOR
* Eg.< > == 15 <>, etc. « FOREACH
While Loops Do...While Loops

* While loops are structured like this:

while (condition)
{
// Code a

* Code a will be run repeatedly until that condition
is false

* Do..While loops are structured like this:

do
{
// Code a
} while (condition);

* Code a will be run once, then repeatedly until
that condition is false

For Loops
* Do...While loops are structured like this:

for (initialisation; condition;
increment)

* Code a will be run once, then repeatedly until
that condition is false

Foreach Loops

* Foreach loops are not in C, but they are in Java,
C++ C#, Objective C, Haskell etc.
* Sometimes the foreach will still use the FOR keyword
* Only used for iterating arrays

foreach ($array as S$value)
{

// Do something with

// each $value

Foreach Loops

* Foreach loops can also obtain keys for associative
arrays

foreach ($array
as Skey => Svalue)

// Do something with
// each $key, $value pair
}

* Foreach loops exist mainly for convenience

Functions

* If you wish to reuse code, you can putitina
function to access it later.
* There are numerous PHP functions you will
find useful, e.g.
e count ($array) ;
* mysql close (Sconnection) ;
* print_r(Sarray);
* mysqgl real escape string($s, $c)

Functions

* Functions are defined like this:

function <name> (<parameters>)
{

// Do something

// return;

// or return <value>;

Functions

* An example of a function. Notice that you need not
specify parameter or return types:

function factorial ($val)
{
return $val
* factorial (Sval - 1);

}

* Important: During the coursework, write all functions
in your main index.php file

$ GETand $_POST

* GET and POST are PHP global associative array
variables that hold information passed to the PHP
script

* S _GET

* Holds information passed to the page via the URL

* E.g. http://www.something.com/index.php?v=12
e S_POST

* Holds information passed to the page via POST

* Post variables are usually sent upon HTML form
submissions

$ GET

* HTML Get variables are passed in the URL,
after a ? and separated by &

* For example:
http://www...com/index.php?age=19&name=Tim

* Inside our PHP script, we can access the values
using $_GET[‘varname’]
echo $ GET[‘name’] . ™ is ™

siGEiT [‘age’] . ™ years old”;

$_POST

* HTML Post variables are passed separately, usually during a
form submission

* Forexample:
<form action=“index.php" method=“post">
Name: <input type="text" name="fname" />
Age: <input type="text" name="age" />
<input type="submit" />
</form>

* When the form is submitted, the page index.php will contain
values in $_POST for ‘fname’ and ‘age’

GET or POST

* While they essentially do the same thing, GET
and POST are quite different:

Because GET parameters are passed in the URL, you
can bookmark a script along with parameters

GET variables are easy to hack, and raise security
issues

POST variables are generally unseen, so more secure
POST variables can be any size, GET variables should
be short, e.g. 2000 chars max

Avoid GET when the values will be used to change the
server information, e.g. Update a database

Connecting to MySQL

* PHP includes various functions for
communicating with a MySQL server
mysgl_connect (‘server’, ‘username’, ‘password’);
* Connects to the database and returns a connection
resource
* Host will usually be ‘mysql.cs.nott.ac.uk’ or ‘localhost’ if
you’re running at home
mysql_select_db(‘username’, connection resource);
* Will change the server to required database
* Will return a boolean stating whether this action was
successful

Connecting to MySQL

* In both the previous commands, if anything
goes wrong, we should stop processing the
PHP file

* You can terminate a PHP script using the die
keyword:

die (“A problem has occurred!”);

Connecting to MySQL

<?php
Sconn = mysql_connect (‘mysgl.cs.nott.ac.uk’,
‘username’, ‘password’);
if (!Sconn)
{
die (“Error connecting to MySQL:
mysgl_error();

}
Sdb_select_success = mysgl_select_db(‘username’,
$conn) ;
if (!db_select_success)
{
die (“Error selecting database:

}

. mysql_error());

?>

Includes

* Keeping our password in plain text inside our
PHP document isn’t very secure

* In PHP you can include code from other files
for reuse later

* In this case, we can separate out our
connection code for security. It also makes our
code more concise.

Includes

* There are 4 commands that can include files:
include (file.php)

* Includes all code from file.php at this location in the
current php script

include once(file.php)
* As above, but only once. If you include_once a second
time, nothing will happen
require (file.php) /
require once (file.php)
* As above, but if any errors occur in the included file,
the php scripting will stop immediately

Includes
mainfile.php dbconnect.php
<html> Sconn =
<head> m?ql&r:r;szj al ,r?rna—,;,k',
<title>Title</title> oAt
</head> v"’(‘%nrr\

<?php mysql_error ();

require_once (‘dbconnect.php’) ;
// Some code that uses our

// database connection goes
// here

if (tdb_select_success)
(
die (“Error selecting database: “
2> mysql_error ());
}

</body
</html>

Using a MySQL Connection

* All SQL commands are sent to the server using
the following functions:
mysgl query (“SQL Statement”,
Sconn) ;

* Sends the SQL statement to the database at the given
connection

mysql query (“SQL Statement”);

* Sends the SQL statement to the database you most
recently connected to usingmysql connect () ;

Example Query

* You can use any SQL command via the
mysgl query () function. For example:

Squery = “CREATE TABLE Artist(
artID INT NOT NULL AUTO_ INCREMENT,
artName VARCHAR (255) NOT NULL,
CONSTRAINT pk_art PRIMARY KEY (artID))”;

Ssuccess = mysqgl_gquery (Squery) ;
// success will be true if the table was
// created

SELECT in PHP

¢ For SELECT, SHOW and DESCRIBE commands,

mysgl query () will return a set of results:

Squery = “SELECT * FROM Artist”;
$result = mysql query($query);

* Sresult will now hold all our returned rows

Using SELECT Results

* To use the values in Sresult, we can use the
following command:

$row = mysql fetch array($result);

* Srow will be an array containing all the data from
one row of our result set

* Each time we use the above statement the next
row will be returned

* When no rows are left, Srow will be false

Using SELECT Results

* Becausemysqgl fetch array () will return
false when no rows remain, we can use a while
loop to make things easier:

while (Srow = mysql fetch array($result))
{
// Use the data in S$row
}
// We reach this point when we have used

// every row

Using SELECT Results

* Once we have each row individually, we can
use the data like any regular array:

while (Srow = mysqgl fetch array($result))
{
echo “Artist ID: “ . Srow[‘artID’];
echo “Artist Name: “ . S$row[‘artName’];

Associative or Numeric

Srow = mysql_fetch_array(Srow = mysql_fetch_array(
Sresult, MYSQL NUM); Sresult, MYSQL_ASSOC);
0 L agn “pr agn
1 — “Smith” “sName” || “Smith”
2 — “5Arnold Close” “sAddress” —> “5 Arnold Close”
3 1 2 “sYear” 3| 2

Srow = mysql_fetch array(Srow = mysql_fetch array(
$result); $result, MYSQL BOTH) ;
0 L g
TS oy
1 — “Smith”
“sName” | “Smith”
2 — “5Arnold Close”

HTML Tables

* Sometimes it might be useful to output our results into an
HTML Table. A table takes the following form:

<table>
<tr>
<td>Row 1 Col 1</td>
<td>Row 1 Col 2</td>
</tr>
<tr>
<td>Row 2 Col 1</td>
<td>Row 2 Col 2</td>
</tr>
</table>

HTML Tables

<table>
<tr>

<td>Row 1 Col 1</td>

Row 1 Col 1 Row 1 Col 2
<td>Row 1 Col 2</td>

</tr>
<tr> Row 2 Col 1 Row 2 Col 2

<td>Row 2 Col 1</td>
<td>Row 2 Col 2</td>
</tr>
</table>

Creating a table in PHP

* Creating a table in php is simply a case of using ECHO to output the
necessary tags.

echo “<table>";
while ($row =
mysql_ fetch array($result))
{
echo “<tr>";
echo “<td>” . S$row[‘artID’] . “</td>";
echo “<td>” . S$row[‘artName’] . “</td>";
echo “</tr>";
}
Echo “</table>";

Setting up PHP at home

* To set up PHP and MySQL at home, you need:
* A web server e.g. Apache
* MySQL server
+ PHP 5.3

* XAMPP contains all of the above and some
other useful things. All are installed at the
same time, and set up for you.

http://www.apachefriends.org/en/xampp.html

