
1

Missing Information

Database Systems

Michael Pound

This Lecture

• Missing Information

• Nulls and the Relational Model

• Outer Joins

• Default Values

• Further reading

• The Manga Guide to Databases, Chapter 2

• Database Systems, Chapter 4

Coursework

• The coursework will be released at 12pm on 
Friday

• The coursework will involve designing, creating 
and using a database

• The coursework is worth 25% of this module
• The deadline is Midnight on Friday 25th March
• Labs on 11th, 18th and 25th will not have 

additional exercises, so there will be time for 
coursework

• The late penalty is 5% per working day. As always, 
don’t plagiarise (working together counts)

Coursework

• There are three parts to the coursework, and 
three files to submit:
• Designing the database: Draw E/R diagrams based on 

a problem specification
• Submission: cwpart1.doc

• Creating the database: Create and populate tables 
based on the E/R diagrams you’ve designed
• Submission: cwpart2.sql

• Using the database: Create a webpage based 
information in the database from part 2
• Submission: index.php

Missing Information

• Sometimes we don’t 
know what value an 
entry in a relation 
should have

• We know that there is a 
value, but don’t know 
what it is

• There is no value at all 
that makes any sense

• Two main methods 
have been proposed to 
deal with this

• NULLs can be used as 
markers to show that 
information is missing

• A default value can be 
used to represent the 
missing value

NULLs

• NULL is a placeholder for missing or unknown 
value of an attribute. It is not itself a value.

• Codd proposed to distinguish two kinds of 
NULLs:

• A-marks: data Applicable but not known (for 
example, someone’s age)

• I-marks: data is Inapplicable (telephone number 
for someone who does not have a telephone, or 
spouse’s name for someone who is not married)



2

Problems with NULLs

• Problems with extending relational algebra 
operations to NULLs: 
• Defining selection operation: if we check tuples for 

some property like Mark > 40 and for some tuple
Mark is NULL, do we include it?

• Comparing tuples in two relations: are two tuples
<John,NULL> and <John,NULL> the same or not?

• Additional problems for SQL: do we treat NULLs 
as duplicates? Do we include them in count, sum, 
average and if yes, how? How do arithmetic 
operations behave when an argument is NULL?

Theoretical Solutions

• Use three-valued logic instead of classical two-
valued logic to evaluate conditions. 

• When there are no NULLs around, conditions 
evaluate to true or false, but if a null is involved, a 
condition might evaluate to the third value 
(‘undefined’, or ‘unknown’). 

• This is the idea behind testing conditions in 
WHERE clause of SQL SELECT: only tuples where 
the condition evaluates to true are returned.

3-valued logic

• If the condition involves a boolean combination, we 
evaluate it as follows:

a b a OR b a AND b a == b

True True True True True

True False True False False

True Unknown True Unknown Unknown

False True True False False

False False False False True

False Unknown Unknown False Unknown

Unknown True True Unknown Unknown

Unknown False Unknown False Unknown

Unknown Unknown Unknown Unknown Unknown

SQL NULLs in Conditions

SELECT *

FROM Employee

Where Salary > 15,000;

• Salary > 15,000

evaluates to ‘unknown’ 
on the last tuple – not 
included

Employee

Name Salary

John 25,000

Mark 15,000

Anne 20,000

Chris NULL

Name Salary

John 25,000

Anne 20,000

SQL NULLs in Conditions

SELECT *

FROM Employee

Where Salary > 15,000

OR Name = ‘Chris’;

• Salary > 15,000 OR 

Name = ‘Chris’ is 
essentially Unknown OR 

TRUE on the last tuple

Employee

Name Salary

John 25,000

Mark 15,000

Anne 20,000

Chris NULL

Name Salary

John 25,000

Anne 20,000

Chris NULL

SQL NULLs in Arithmetic

SELECT

Name,

Salary * 0.05 AS Bonus

FROM Employee;

• Arithmetic operations 
applied to NULLs result 
in NULLS

Employee

Name Salary

John 25,000

Mark 15,000

Anne 20,000

Chris NULL

Name Bonus

John 1,250

Mark 750

Anne 1,000

Chris NULL



3

SQL NULLs in Aggregation

SELECT 

AVG(Salary) AS Average,

COUNT(Salary) AS Count,

SUM(Salary) AS Sum

FROM Employee;

• Average = 20,000

• Count = 3

• Sum = 60,000

• Using COUNT(*) would 
give 4

Employee

Name Salary

John 25,000

Mark 15,000

Anne 20,000

Chris NULL

SQL NULLs in GROUP BY

SELECT 

Salary,

COUNT(Name) AS Count

FROM Employee

GROUP BY Salary;

• NULLs are treated as 
equivalents in GROUP 
BY clauses

Employee

Name Salary

John 25,000

Mark 15,000

Anne 20,000

Jack NULL

Sam 20,000

Chris NULL

Salary Count

NULL 2

15,000 1

20,000 2

25,000 1

Outer Joins

• When we take the join 
of two relations we 
match up tuples which 
share values

• Some tuples have no 
match, and are ‘lost’

• These are called 
‘dangles’

• Outer joins include 
dangles in the result 
and use NULLs to fill in 
the blanks

• LEFT OUTER JOIN

• RIGHT OUTER JOIN

• FULL OUTER JOIN

• Outer Joins use ON 
much like INNER JOIN

Example: Inner Join

Student

ID Name

123 John

124 Mary

125 Mark

126 Jane

Enrolment

ID Code Mark

123 DBS 60

124 PRG 70

125 DBS 50

128 DBS 80

Student INNER JOIN Enrolment ON Student.ID = Enrolment.ID

ID Name ID Code Mark

123 John 123 DBS 60

124 Mary 124 PRG 70

125 Mark 125 DBS 50

Dangles

Outer Join Syntax

SELECT <cols> 

FROM <table1> <type> OUTER JOIN <table2>

ON <condition>

Where <type> is one of LEFT, RIGHT or FULL

Example:

SELECT *

FROM Student LEFT OUTER JOIN Enrolment

ON Student.ID = Enrolment.ID

Example: Left Outer Join

Student

ID Name

123 John

124 Mary

125 Mark

126 Jane

Enrolment

ID Code Mark

123 DBS 60

124 PRG 70

125 DBS 50

128 DBS 80

Student LEFT OUTER JOIN Enrolment ON ...

ID Name ID Code Mark

123 John 123 DBS 60

124 Mary 124 PRG 70

125 Mark 125 DBS 50

126 Jane NULL NULL NULL

Dangles



4

Example: Right Outer Join

Student

ID Name

123 John

124 Mary

125 Mark

126 Jane

Enrolment

ID Code Mark

123 DBS 60

124 PRG 70

125 DBS 50

128 DBS 80

Student RIGHT OUTER JOIN Enrolment ON ...

ID Name ID Code Mark

123 John 123 DBS 60

124 Mary 124 PRG 70

125 Mark 125 DBS 50

NULL NULL 128 DBS 80

Dangles

Example: Full Outer Join

Student

ID Name

123 John

124 Mary

125 Mark

126 Jane

Enrolment

ID Code Mark

123 DBS 60

124 PRG 70

125 DBS 50

128 DBS 80

Student FULL OUTER JOIN Enrolment ON ...

ID Name ID Code Mark

123 John 123 DBS 60

124 Mary 124 PRG 70

125 Mark 125 DBS 50

126 Jane NULL NULL NULL

NULL NULL 128 DBS 80

Dangles

Full Outer Join in MySQL

• Only Left and Right outer joins are supported in MySQL. If 
you really want a FULL outer join:

SELECT * 

FROM Student FULL OUTER JOIN Enrolment

ON Student.ID = Enrolment.ID;

• Can be achieved using:

SELECT * FROM Student LEFT OUTER JOIN 

Enrolment ON Student.ID = Enrolment.ID

UNION

SELECT * FROM Student RIGHT OUTER JOIN

Enrolment ON Student.ID = Enrolment.ID;

Example

• Sometimes an outer join is the most practical 
approach. We may encounter NULL values, 
but may still wish to see the existing 
information

• For students graduating in absentia, find a list 
of all student IDs, names, addresses, phone 
numbers and their final degree classifications.

Example
Student

ID Name aID pID Grad

123 John 12 22 C

124 Mary 23 90 A

125 Mark 19 NULL A

126 Jane 14 17 C

127 Sam NULL 101 A

Phone

pID pNumber pMobile

17 1111111 07856232411

22 2222222 07843223421

90 3333333 07155338654

101 4444444 07213559864

Address

aID aStreet aTown aPostcode

12 5 Arnold Close Nottingham NG12 1DD

14 17 Derby Road Nottingham NG7 4FG

19 1 Main Street Derby DE1 5FS

23 7 Holly Avenue Nottingham NG6 7AR

Degree

ID Classification

123 1

124 2:1

125 2:2

126 2:1

127 3

Example: INNER JOINs

• An Inner Join with 
Student and Address 
will ignore Student 127, 
who doesn’t have an 
address record

• An Inner Join with 
Student and Phone will 
ignore student 125, 
who doesn’t have a 
phone record

Student

ID Name aID pID Grad

123 John 12 22 C

124 Mary 23 90 A

125 Mark 19 NULL A

126 Jane 14 17 C

127 Sam NULL 101 A



5

Example

SELECT ID, Name, aStreet, aTown, aPostcode, pNumber,

Classification

FROM Student LEFT OUTER JOIN Phone

ON Student.pID = Phone.pID

LEFT OUTER JOIN Address

ON Student.aID = Address.aID

INNER JOIN Degree ON Student.ID = Degree.ID

WHERE Grad = ‘A’;

Student

ID Name aID pID Grad

Phone

pID pNumber pMobile

Address

aID aStreet aTown aPostcode

Degree

ID Classification

ID Name aStreet aTown aPostcode pNumber Classification

124 Mary 7 Holly Avenue Nottingham NG6 7AR 3333333 2:1

125 Mark 1 Main Street Derby DE1 5FS NULL 2:2

127 Sam NULL NULL NULL 4444444 3

Example

• The records for students 125 and 127 have 
been preserved despite missing information

Default Values

• Default values are an 
alternative to the use of 
NULLs

• If a value is not known a 
particular placeholder 
value - the default - is 
used

• These are actual values, 
so don’t need 3VL etc.

• Default values can have 
more meaning than 
NULLs
• ‘none’

• ‘unknown’

• ‘not supplied’

• ‘not applicable’

• Not all defaults 
represent missing 
information. It depends 
on the situation

Default Value Example

• Default values are
• “Unknown” for Name

• -1 for Weight and Quantity

• -1 is used for Wgt and Qty 
as it is not sensible 
otherwise so won’t 
appear by accident

• There are still problems:
UPDATE Parts

SET Quantity =

Quantity + 5

Parts

ID Name Weight Quantity

1 Nut 10 20

2 Bolt 15 -1

3 Nail 3 100

4 Pin -1 30

5 Unknown 20 20

6 Screw -1 -1

7 Brace 150 0

Problems With Default Values

• Since defaults are real 
values

• They can be updated like 
any other value

• You need to use a value 
that won’t appear in any 
other circumstances

• They might not be 
interpreted properly

• Also, within SQL 
defaults must be of the 
same type as the 
column

• You can’t have have a 
string such as ‘unknown’ 
in a column of integers

Splitting Tables

• NULLs and defaults 
both try to fill entries 
with missing data

• NULLs mark the data as 
missing

• Defaults give some 
indication as to what 
sort of missing 
information we are 
dealing with

• Often you can remove 
entries that have 
missing data

• You can split the table up 
so that columns which 
might have NULLs are in 
separate tables

• Entries that would be 
NULL are not present in 
these tables



6

Splitting Tables Example

Parts

ID Name Weight Quantity

1 Nut 10 20

2 Bolt 15 NULL

3 Nail 3 100

4 Pin NULL 30

5 NULL 20 20

6 Screw NULL NULL

7 Brace 150 0

Names

ID Name

1 Nut

2 Bolt

3 Nail

4 Pin

6 Screw

7 Brace

Weights

ID Weight

1 10

2 15

3 3

5 20

7 150

Quantities

ID Name

1 20

3 100

4 30

5 20

7 0

Problems with Splitting Tables

• Splitting tables has 
other problems

• Could introduce many 
more tables

• Information gets spread 
out over the database

• Queries become more 
complex and require 
many joins

• We can recover the 
original table, but

• Requires Outer Joins

• Reintroduces the NULL 
values, which means 
we’re back to the 
original problem

SQL Support

• SQL allows both NULLs and 
defaults:
• A table to hold data on 

employees

• All employees have a name

• All employees have a salary 
(default 10000)

• Some employees have phone 
numbers, if not we use 
NULLs

CREATE TABLE Employee

(

Name CHAR(50)

NOT NULL,

Salary INT

DEFAULT 10000

NOT NULL,

Phone CHAR(15)

NULL

);

SQL Support

• SQL allows you to insert 
NULLs

INSERT INTO Employee

VALUES (‘John’, 

12000,NULL);

UPDATE Employee 

SET Phone = NULL 

WHERE Name = ‘Mark’;

• You can also check for 
NULLs

SELECT Name FROM

Employee WHERE

Phone IS NULL;

SELECT Name FROM

Employee WHERE

Phone IS NOT NULL;

Which Method to Use?

• Most often dependent 
on the scenario

• Default values should 
not be used when they 
might be confused with 
‘real’ values

• Splitting tables shouldn’t 
be used too much or 
you’ll have lots of tables

• NULLs can (and often 
are) used where the 
other approaches seem 
inappropriate

• You don’t have to always 
use the same method -
you can mix and match 
as needed

Example

• For an online store we 
have a variety of 
products - books, CDs, 
and DVDs

• All items have a title, 
price, and id (their 
catalogue number)

• Any item might have an 
extra shipping cost, but 
some don’t

• There is also some data 
specific to each type

• Books must have an 
author and might have a 
publisher

• CDs must have an artist

• DVDs might have a 
producer or director



7

Example

• We could put all the data in one table

• Every row will have missing information

• We are storing three types of thing in one table

• Many additional issues that will be covered next 
lectures

Items

ID Title Price Shipping Author Publisher Artist Producer Director

Example

• It is probably best to 
split the three types 
into separate tables

• We’ll have a main Items 
table

• Also have Books, CDs, 
and DVDs tables with 
FKs to the Items table

Items

ID Title Price Shipping

DVDs

ID Producer Director

CDs

ID Artist

Books

ID Author Publisher

Example

• Each of these tables 
might still have some 
missing information

• Shipping cost in items 
could have a default 
value of 0

• This should not disrupt 
computations 

• If no value is given, 
shipping is free

• Other columns could 
allow NULLs

• Publisher, director, and 
producer are all optional

• It is unlikely we’ll ever 
use them in computation

Next Lecture

• Normalisation

• Data Redundancy

• Functional Dependencies

• Normal Forms

• First, Second and Third Normal Forms

• Further reading

• The Manga Guide to Databases, Chapter 3

• Database Systems, Chapter 14


