Normalisation II

Database Systems
Michael Pound

This Lecture

- · Review of 1NF to 3NF
- · More Normalisation
 - · Lossless decomposition
 - BCNF
- Denormalisation
- · Further Reading
 - The Manga Guide to Databases, Chapter 3
 - Database Systems, Chapters 14 and 15

Last Lecture Normalisation Unnormalised Data Redundancy • Functional Dependencies Remove non-atomic Normal Forms 1NF · First, Second and Third Remove partial functional Normal Forms dependencies Further Reading 2NF · The Manga Guide to Remove transitive Databases, Chapter 3 dependencies 3NF • Database Systems, Chapter

Example • One of the relations is still not in 2NF • {stockPrice} is partially dependent on {orderID, stockNo} orderID stockNo stockQuant stockPrice

Example • This relation is not in 3NF • {cAddress} is transitively dependent on {orderID} via {customerID} orderID orderDate customerID cAddress

Lossless Decomposition

- is lossless if we can recover the original relation through a join
- · A natural join is the most convenient way to do this, although most joins will work
- Decomposition of tables Lossless decomposition ensures that we haven't removed any data from our database
 - · All data can be retrieved again using joins if required

Lossless Decomposition orderID orderDate customerID cAddress orderID stockNo stockQuant stockPrice orderID orderDate customerID cAddress stockNo stockQuant stockPrice

Boyce-Codd Normal Form

- · Let's consider extending our Enrolment table from the University Database example
 - Each student will be assigned a PhD tutor for each module they are on
 - Tutors can have many students, but only help with one module
 - · A module can have many tutors assigned to it

Problems with 3NF

Enrolment

Linoinicit			
mCode		studentID	tutorID
G51D	BS	109684	T001
G51P	RG	108348	T002
G511/	λI	110798	T003
G51D	BS	112943	T001
G510	OP	107749	T016
G51P	RG	109684	T002
G510	OP	110798	T015

- INSERT Anomalies
 - Can't add a tutor who isn't currently tutoring anyone
- UPDATE Anomalies
 - Changing the module a tutor teaches is complicated and involves multiple rows
- · DELETE Anomalies
 - If we remove student 110798, we no longer know that T003 is tutoring in G51IAI

Boyce-Codd Normal Form

- A relation is in Boyce-Codd normal form (BCNF) if for every FD A \rightarrow B either
 - · B is contained in A (the FD is trivial), or
 - A contains a candidate key of the relation
- In other words: every determinant in a nontrivial dependency is a (super) key.
- The same as 3NF except in 3NF we only worry about non-key Bs
- · If there is only one candidate key then 3NF and BCNF are the same

Example

- · The enrolment table is in 3NF but not BCNF
 - {tutorID} is not a candidate key, however the FD {tutorID} → {mCode} exists
 - {mCode, studentID} → {tutorID} is ok because {mCode, studentID} is a super-key (contains a candidate key)

Normalising to BCNF

- Suppose we have a relation R with scheme S and the FD A → B that violates BCNF
 - $\mathsf{A} \cap \mathsf{B} = \{\,\}$
- Let $C = S (A \cup B)$
- In other words:
 - A attributes on the left hand side of the FD
 - B attributes on the right hand side of the FD
 - C all other attributes

- To normalise to BCNF we create two new relations
 - A \cup C
 - A∪B

Normalising to BCNF

 We need to remove FD A → B to convert the relation into BCNF

A – The determinant of the functional dependency

Normalising to BCNF

 We need to remove FD A → B to convert the relation into BCNF

B – The dependent attributes of the functional dependency

Normalising to BCNF

 We need to remove FD A → B to convert the relation into BCNF

C - All other attributes

Normalising to BCNF

• To convert to BCNF, create two new relations $A \cup C$ and $A \cup B$

Decomposition Properties

- · Lossless: Data should not be lost or created when splitting relations
- Dependency preservation: It is desirable that FDs are preserved when splitting relations up
- · Normalisation to 3NF is always lossless and dependency preserving
- · Normalisation to BCNF is lossless, but may not preserve all dependencies

Higher Normal Forms

- · BCNF is as far as we can go with FDs
 - Higher normal forms are based on other sorts of dependency
 - Fourth normal form removes multi-valued dependencies
 - Fifth normal form removes join dependencies

Denormalisation

- Normalisation
 - · Removes data redundancy
 - · Solves INSERT, UPDATE. and DELETE anomalies
 - This makes it easier to maintain the information in the database in a consistent state
- However
 - · It leads to more tables in the database
 - · Often these need to be joined back together, which is expensive to do
 - So sometimes (not often) it is worth 'denormalising'

Denormalisation

- · You might want to denormalise if
 - · Database speeds are unacceptable (not just a bit slow)
 - There are going to be very few INSERTs, UPDATEs, or DELETES
 - There are going to be lots of SELECTs that involve the joining of tables

Address Number Street City Postcode Not normalised since {Postcode} → {City} Address1

Number Street Postcode Address2 PostCode City

Denormalisation

- · Sometimes creating redundant data makes INSERTs, UPDATEs and DELETEs more difficult, but avoids joins
- Realistically in our Enrolment table, we are going to search for student "Enrolments" often

Next Lecture

- Transactions
 - ACID Properties
 - COMMIT and ROLLBACK
- Recovery
 - System and Media Failures
- Concurrency
- Further reading
 - The Manga Guide to Databases, Chapter 5
 - Database Systems, Chapter 22