Normalisation Il

Database Systems
Michael Pound

This Lecture

Review of 1NF to 3NF

More Normalisation

* Lossless decomposition

* BCNF

Denormalisation

Further Reading

* The Manga Guide to Databases, Chapter 3
* Database Systems, Chapters 14 and 15

Last Lecture

* Normalisation

* Data Redundancy
* Functional Dependencies
* Normal Forms

* First, Second and Third
Normal Forms

Unnormalised

Remove non-atomic
values

Remove partial functional
dependencies

* Further Reading
* The Manga Guide to
Databases, Chapter 3
* Database Systems, Chapter
14

Remove transitive
dependencies

Last Lecture

Partial FDs * Transitive FDs

* Some non-key set of
attributes B is
dependent on a subset
of a candidate key A

* {Module} — {Dept,

* Some non-key set of
attributes Cis
transitively dependent
on a candidate key A

¢ {Module} — {Lecturer}

Lecturer} — {Dept}
Module || Dept | Lecturer| Text
—— t 7

Example

Unnormalised

orderID | orderDate | customerlD | cAddress | stockNos | stockQuant | stockPrices
100152 | 12-11-10 C1035 5Ar.. 10,98,14 | 1,10,2 9.99,4.99...
100236 | 19-11-10 C1011 7Be... 59,13,.. (1,1,2,1,1,.. [0.99,3.99...
101562 | 01-02-11 | 2693 Flatla... | 7,45,9,. | 10,10,1,... |2.99,3.49...
102648 |26-02-11 | 1011 7Be.. |59,56,.. |1,534,6,. |09949..

orderlD ||orderDate | customerID | cAddress | stockNos | stockQuant | stockPrices

Currently the only candidate key is {orderID}

Example

INF

orderID | orderDate | customerlD | cAddress | stockNo | stockQuant | stockPrice
100152 | 12-11-10 C1035 5Ar.. 10 1 9.99
100152 | 12-11-10 C1035 S5Ar.. 98 10 4.99
100152 | 12-11-10 C1035 5Ar.. 14 2 6.99
100236 | 19-11-10 C1011 7 Be... 59 1 0.99
100236 | 19-11-10 C1011 7 Be... 13 1 3.99
orderID ||orderDate | customerID | cAddress|| stockNo ||stockQuant | stockPrice

The only candidate key is {orderID, stockNo}

Example Example
INF * This database does not adhere to 2NF
orderlD | orderDate | customerlD | cAddress | stockNo | stockQuant | stockPrice h k b . ” d d
. -
100152 | 121020 | c1035 SAr. 0 T 2.99 There are.non ey attributes partially dependent
100152 |12-11-10 | C1035 SAr. 98 10 4.99 on a candidate key
100152 | 12-11-10 | C1035 SAr.. 14 2 6.99
100236 | 19-11-10 | C1011 7 Be... 59 1 0.99
100236 | 19-11-10 | C1011 7 Be. 13 1 3.99
orderID ||orderDate | customerID | cAddress|| stockNo ||stockQuant | stockPrice
I i) T i) f i)
orderlD ||orderDate | customerID | cAddress|| stockNo [[stockQuant | stockPrice
1 T T T f T
Example Example
* To remove the FD A — B, where Ciis all other
attributes !
i orderID ||orderDate | customerlD | cAddress|| stockNo [fstockQuant | stockPrice
* Create two new relations AUBand AU C T T T B ; T
orderlD ||orderDate | customerlD | cAddress|| stockNo ||stockQuant | stockPrice
1 T T T f T ; ;
\/k ~N \ ~N = orderlD ||orderDate | customeriD | cAddress orderlD | stockNo |fstockQuant | stockPrice
A B c 1 T T i) ; j
Example Example

* One of the relations is still not in 2NF
« {stockPrice} is partially dependent on
{orderID, stockNo}

orderID | stockNo [|stockQuant | stockPrice
f T

¢ One of the relations is still not in 2NF
¢ As before, we need to create two new relations
AuUBandAuUC

orderID | stockNo [|stockQuant | stockPrice

i T
c A C B

Example

orderID | stockNo [|stockQuant | stockPrice

Example

* This database is now in 2NF, but it isn’t in 3NF
« A transitive functional dependency exists

f i)
——
/ \ orderID || orderDate | customerlID | cAddress
f i) T i)
orderID | stockNo ||stockQuant stockNo || stockPrice
—— 1 orderID | stockNo |[[stockQuant stockNo || stockPrice
—— 7
Example Example

* This relation is not in 3NF

¢ {cAddress} is transitively dependent on {orderID}
via {customerID}

* To remove the Transitive FDA — B — C,
where D is all other attributes
* Create two new relations AU BuUDandBuU C

1 —
orderID || orderDate | customerID | cAddress orderID || orderDate | customerID | cAddress
i T T T i T T ¥
A D B C
Example 3NF Database
—
orderID || orderDate | customerID | cAddress
t T T] orderID | stockNo ||stockQuant stockNo || stockPrice
—— 7
/ \ S
s orderID || orderDate | customerID customerlID ||cAddress
orderID || orderDate | customerID customerID |[cAddress : T T

f T i)

Lossless Decomposition

* Decomposition of tables * Lossless decomposition
is lossless if we can ensures that we haven’t
recover the original removed any data from

relation through a join our database

* A natural join is the ¢ All data can be retrieved
most convenient way to again using joins if
do this, although most required

joins will work

Lossless Decomposition

” orderlD ”orderDatel customerlD |[x1 | customerlD ”cAddressl

~\ -

orderDate

orderlD customer|D | cAddress

: f i) T T

|| orderlD | stockNo ” stockQuant | [|| stockNo ||stockPrice |
L L

N

” orderID | stockNo ” stockQuant | stockPrice |

Lossless Decomposition

orderID [lorderDate | customerID | cAddress
: f 1 T T
X
orderID | stockNo || stockQuant | stockPrice
; = 7
orderlD ||orderDate | customerlD | cAddress|| stockNo || stockQuant | stockPrice
T T) .)

Boyce-Codd Normal Form

* Let’s consider extending our Enrolment table
from the University Database example

* Each student will be assigned a PhD tutor for each
module they are on

* Tutors can have many students, but only help with
one module

* A module can have many tutors assigned to it

——

studentID| tutorID |

| mCode

£ f

Problems with 3NF

* INSERT Anomalies
Enrolment + Can’tadd a tutor who isn’t
mCode | studentID | tutorlD currently tutoring anyone
G51DBS [109684 | T001 * UPDATE Anomalies
G51PRG | 108348 | T002 * Changing the module a

tutor teaches is
GSLAI | 110798 | T003 complicated and involves

G51DBS | 112943 [T001 multiple rows
G5100P | 107749 | TO16 ¢ DELETE Anomalies
G51PRG | 109684 | T002 * If we remove student

G5100P [110798 | T015 110798, we no longer
know that T003 is tutoring
in G51IAl

Boyce-Codd Normal Form

* Arelation is in Boyce-
Codd normal form (BCNF)
if forevery FDA — B

* The same as 3NF except
in 3NF we only worry
about non-key Bs

either
. BiscontainedinA(theFD * If thereis only one
is trivial), or candidate key then 3NF

* A contains a candidate key
of the relation
* Inother words: every
determinantin a non-
trivial dependencyis a
(super) key.

and BCNF are the same

Example

* The enrolment table is in 3NF but not BCNF
« {tutorID}is not a candidate key, however the FD
{tutorID} — {mCode} exists
¢ {mCode, studentID} — {tutorID} is ok because

{mCode, studentID} is a super-key (contains a
candidate key)

——

mCode || studentID || tutorlD

Normalising to BCNF

e Suppose we have arelation ¢ To normalise to BCNF we

R with scheme S and the FD create two new relations
A — B that violates BCNF « AUC
ANnB={} « AUB

+ LetC=S-(AUB)
* In other words:

* A-attributes on the left
hand side of the FD

* B-attributes on the right
hand side of the FD

* C-all other attributes

Normalising to BCNF

* We need to remove FD A — B to convert the
relation into BCNF

—

mCode || studentID || tutorlD

w./

A

A —The determinant of the functional dependency

Normalising to BCNF

* We need to remove FD A — B to convert the
relation into BCNF

——

mCode studentID || tutorlD

R/_/

B

B — The dependent attributes of the functional dependency

Normalising to BCNF

* We need to remove FD A — B to convert the
relation into BCNF

—

mCode || studentID || tutorlD

H/_/

C

C— All other attributes

Normalising to BCNF

¢ To convert to BCNF, create two new relations
AuCandAUB

——

mCode studentID || tutorlD

B C A

Normalising to BCNF
=

mCode || studentID || tutorlD

7y

—

mCode tutorID
O —

N

studentID | tutorlD

Note: We have lost the FD {mCode,studentID} — {tutorID}

Decomposition Properties

* Lossless: Data should
not be lost or created
when splitting relations
up

* Dependency
preservation: It is
desirable that FDs are
preserved when
splitting relations up

* Normalisation to 3NF is

always lossless and
dependency preserving

* Normalisation to BCNF

is lossless, but may not
preserve all
dependencies

Higher Normal Forms

* BCNF is as far as we can
go with FDs

Denormalisation

* Normalisation
* Removes data

* However
* Itleads to more tables in

* Higher normal forms are 12::; redundancy the database
based on other sorts of ¢ Solves INSERT, UPDATE, * Often these need to be
dependency 3NF and DELETE anomalies joined back together,

* Fourth normal form BCNF * This makes it easier to which is expensive to do
removes multi-valued 4NF maintain the information * So sometimes (not
dependencies SNF in the database in a often) it is worth

« Fifth normal form consistent state ‘denormalising’
removes join
dependencies

Denormalisation Denormalisation
* You might want to * Sometimes creating
denormalise if Address redundant data makes mCode || tutorID

« Database speeds are
unacceptable (not just a
bit slow)

There are going to be
very few INSERTs,
UPDATEs, or DELETEs
There are going to be
lots of SELECTs that
involve the joining of
tables

|Number |Street |City |Postcode

Not normalised since
{Postcode} — {City}

Address1

| Number | Street | Postcode

Address2

INSERTs, UPDATEs and
DELETEs more difficult,
but avoids joins

* Realistically in our
Enrolment table, we are
going to search for
student “Enrolments”
often

| O —

studentID | tutorlD

mCode | studentID

Next Lecture

Transactions

* ACID Properties

¢« COMMIT and ROLLBACK

Recovery

* System and Media Failures

Concurrency

Further reading

* The Manga Guide to Databases, Chapter 5
« Database Systems, Chapter 22

