
1

Normalisation II

Database Systems

Michael Pound

This Lecture

• Review of 1NF to 3NF

• More Normalisation

• Lossless decomposition

• BCNF

• Denormalisation

• Further Reading

• The Manga Guide to Databases, Chapter 3

• Database Systems, Chapters 14 and 15

Last Lecture

• Normalisation

• Data Redundancy

• Functional Dependencies

• Normal Forms

• First, Second and Third 
Normal Forms

• Further Reading

• The Manga Guide to 
Databases, Chapter 3

• Database Systems, Chapter 
14

Unnormalised

1NF

2NF

3NF

Remove non-atomic 
values

Remove partial functional 
dependencies

Remove transitive 
dependencies

Last Lecture

• Partial FDs

• Some non-key set of 
attributes B is 
dependent on a subset 
of a candidate key A

• {Module}  {Dept, 
Lecturer}

• Transitive FDs

• Some non-key set of 
attributes C is 
transitively dependent 
on a candidate key A

• {Module}  {Lecturer} 
 {Dept}

Module Dept Lecturer Text

Example

Unnormalised

orderID orderDate customerID cAddress stockNos stockQuant stockPrices

100152 12-11-10 C1035 5 Ar... 10,98,14 1,10,2 9.99,4.99...

100236 19-11-10 C1011 7 Be... 59,13,... 1,1,2,1,1,... 0.99,3.99...

101562 01-02-11 C2693 Flat 1a... 7,45,9,... 10,10,1,... 2.99,3.49...

102648 26-02-11 C1011 7 Be... 59,56,... 1,5,3,4,6,... 0.99,4,9...

stockPricesorderID cAddresscustomerID stockNosorderDate stockQuant

Currently the only candidate key is {orderID}

Example

1NF

orderID orderDate customerID cAddress stockNo stockQuant stockPrice

100152 12-11-10 C1035 5 Ar... 10 1 9.99

100152 12-11-10 C1035 5 Ar... 98 10 4.99

100152 12-11-10 C1035 5 Ar... 14 2 6.99

100236 19-11-10 C1011 7 Be... 59 1 0.99

100236 19-11-10 C1011 7 Be... 13 1 3.99

100236 19-11-10 C1011 7 Be... 4 2 3.49

The only candidate key is {orderID, stockNo}

stockPriceorderID cAddresscustomerID stockNoorderDate stockQuant



2

Example

1NF

orderID orderDate customerID cAddress stockNo stockQuant stockPrice

100152 12-11-10 C1035 5 Ar... 10 1 9.99

100152 12-11-10 C1035 5 Ar... 98 10 4.99

100152 12-11-10 C1035 5 Ar... 14 2 6.99

100236 19-11-10 C1011 7 Be... 59 1 0.99

100236 19-11-10 C1011 7 Be... 13 1 3.99

100236 19-11-10 C1011 7 Be... 4 2 3.49

stockPriceorderID cAddresscustomerID stockNoorderDate stockQuant

Example

• This database does not adhere to 2NF

• There are non-key attributes partially dependent 
on a candidate key

stockPriceorderID cAddresscustomerID stockNoorderDate stockQuant

Example

• To remove the FD A  B, where C is all other 
attributes

• Create two new relations A  B and A  C

stockPriceorderID cAddresscustomerID stockNoorderDate stockQuant

CBA

Example

stockPriceorderID cAddresscustomerID stockNoorderDate stockQuant

orderID cAddresscustomerIDorderDate stockPricestockNo stockQuantorderID

Example

• One of the relations is still not in 2NF

• {stockPrice} is partially dependent on

{orderID, stockNo}

stockPricestockNo stockQuantorderID

Example

• One of the relations is still not in 2NF

• As before, we need to create two new relations

A  B and A  C

stockPricestockNo stockQuantorderID

A BC C



3

Example

stockPricestockNo stockQuantorderID

stockNo stockQuantorderID stockPricestockNo

Example

• This database is now in 2NF, but it isn’t in 3NF

• A transitive functional dependency exists

stockNo stockQuantorderID stockPricestockNo

orderID cAddresscustomerIDorderDate

Example

• This relation is not in 3NF

• {cAddress} is transitively dependent on {orderID} 
via {customerID}

orderID cAddresscustomerIDorderDate

Example

• To remove the Transitive FD A  B  C, 
where D is all other attributes

• Create two new relations A  B  D and B  C

orderID cAddresscustomerIDorderDate

A CBD

Example

orderID cAddresscustomerIDorderDate

orderID customerIDorderDate cAddresscustomerID

3NF Database

orderID customerIDorderDate cAddresscustomerID

stockNo stockQuantorderID stockPricestockNo



4

Lossless Decomposition

• Decomposition of tables 
is lossless if we can 
recover the original 
relation through a join

• A natural join is the 
most convenient way to 
do this, although most 
joins will work

• Lossless decomposition 
ensures that we haven’t 
removed any data from 
our database

• All data can be retrieved 
again using joins if 
required

Lossless Decomposition

orderID customerIDorderDate cAddresscustomerID

stockNo stockQuantorderID stockPricestockNo

⋈orderID customerIDorderDate

orderID customerIDorderDate cAddress

⋈

stockNo stockQuantorderID stockPrice

Lossless Decomposition

orderID customerIDorderDate cAddress

⋈

stockNo stockQuantorderID stockPrice

orderID customerIDorderDate cAddress stockNo stockQuant stockPrice

Boyce-Codd Normal Form

• Let’s consider extending our Enrolment table 
from the University Database example
• Each student will be assigned a PhD tutor for each 

module they are on

• Tutors can have many students, but only help with 
one module

• A module can have many tutors assigned to it

studentID tutorIDmCode

Problems with 3NF

• INSERT Anomalies
• Can’t add a tutor who isn’t 

currently tutoring anyone

• UPDATE Anomalies
• Changing the module a 

tutor teaches is 
complicated and involves 
multiple rows

• DELETE Anomalies
• If we remove student 

110798, we no longer 
know that T003 is tutoring 
in G51IAI

Enrolment

mCode studentID tutorID

G51DBS 109684 T001

G51PRG 108348 T002

G51IAI 110798 T003

G51DBS 112943 T001

G51OOP 107749 T016

G51PRG 109684 T002

G51OOP 110798 T015

Boyce-Codd Normal Form

• A relation is in Boyce-
Codd normal form (BCNF) 
if for every FD A  B 
either
• B is contained in A (the FD 

is trivial), or

• A contains a candidate key 
of the relation 

• In other words: every 
determinant in a non-
trivial dependency is a 
(super) key.

• The same as 3NF except 
in 3NF we only worry 
about non-key Bs

• If there is only one 
candidate key then 3NF 
and BCNF are the same



5

Example

• The enrolment table is in 3NF but not BCNF
• {tutorID} is not a candidate key, however the FD 

{tutorID}  {mCode} exists

• {mCode, studentID}  {tutorID} is ok because 
{mCode, studentID} is a super-key (contains a 
candidate key)

studentID tutorIDmCode

Normalising to BCNF

• Suppose we have a relation 
R with scheme S and the FD 
A  B that violates BCNF

A  B = { }

• Let C = S - (A  B)

• In other words:
• A – attributes on the left 

hand side of the FD

• B – attributes on the right 
hand side of the FD

• C – all other attributes

• To normalise to BCNF we 
create two new relations

• A  C 

• A  B

Normalising to BCNF

• We need to remove FD A  B to convert the 
relation into BCNF

studentID tutorIDmCode

A

A – The determinant of the functional dependency

Normalising to BCNF

• We need to remove FD A  B to convert the 
relation into BCNF

studentID tutorIDmCode

B

B – The dependent attributes of the functional dependency

Normalising to BCNF

• We need to remove FD A  B to convert the 
relation into BCNF

studentID tutorIDmCode

C

C – All other attributes

Normalising to BCNF

• To convert to BCNF, create two new relations 
A  C and A  B

studentID tutorIDmCode

CB A



6

Normalising to BCNF

studentID tutorIDmCode

tutorIDmCode studentID tutorID

Note: We have lost the FD {mCode,studentID}  {tutorID}

Decomposition Properties

• Lossless: Data should 
not be lost or created 
when splitting relations 
up

• Dependency 
preservation: It is 
desirable that FDs are 
preserved when 
splitting relations up

• Normalisation to 3NF is 
always lossless and 
dependency preserving

• Normalisation to BCNF 
is lossless, but may not 
preserve all 
dependencies

Higher Normal Forms

• BCNF is as far as we can 
go with FDs

• Higher normal forms are 
based on other sorts of 
dependency

• Fourth normal form 
removes multi-valued 
dependencies

• Fifth normal form 
removes join 
dependencies

1NF

2NF

3NF

BCNF

4NF

5NF

Denormalisation

• Normalisation

• Removes data 
redundancy

• Solves INSERT, UPDATE, 
and DELETE anomalies

• This makes it easier to 
maintain the information 
in the database in a 
consistent state

• However

• It leads to more tables in 
the database

• Often these need to be 
joined back together, 
which is expensive to do

• So sometimes (not 
often) it is worth 
‘denormalising’

Denormalisation

• You might want to 
denormalise if
• Database speeds are 

unacceptable (not just a 
bit slow)

• There are going to be 
very few INSERTs, 
UPDATEs, or DELETEs

• There are going to be 
lots of SELECTs that 
involve the joining of 
tables

Not normalised since
{Postcode}  {City}

Address

Number Street City Postcode

Address1

Number Street Postcode

Address2

PostCode City

Denormalisation

• Sometimes creating 
redundant data makes 
INSERTs, UPDATEs and 
DELETEs more difficult, 
but avoids joins

• Realistically in our 
Enrolment table, we are 
going to search for 
student “Enrolments” 
often

tutorIDmCode

studentID tutorID

mCode studentID

+



7

Next Lecture

• Transactions
• ACID Properties

• COMMIT and ROLLBACK

• Recovery
• System and Media Failures

• Concurrency

• Further reading
• The Manga Guide to Databases, Chapter 5

• Database Systems, Chapter 22


