
1

Transactions and Recovery

Database Systems

Michael Pound

This Lecture

• Transactions
• ACID Properties

• COMMIT and ROLLBACK

• Recovery
• System and Media Failures

• Concurrency

• Further reading
• The Manga Guide to Databases, Chapter 5

• Database Systems, Chapter 22

Transactions

• A transaction is an action, or a series of 
actions, carried out by a single user or an 
application program, which reads or updates 
the contents of a database.

• All database access by users is thought of in 
terms of transactions

Transactions

• A transaction is a 
‘logical unit of work’ on 
a database

• Each transaction does 
something on the 
database

• No part of it alone 
achieves anything useful 
or of interest

• Transactions are the 
unit of recovery, 
consistency and 
integrity

• ACID properties

• Atomicity

• Consistency

• Isolation

• Durability

Atomicity

• Transactions are atomic
• Conceptually do not have component parts

• In reality a transaction may include numerous 
read, write and other operations

• Transactions can’t be executed partially
• Either performed entirely, or not at all

• It should not be detectable that they interleave 
with another transaction

• Enforced by the recovery manager

Consistency

• Transactions take the database from one 
consistent state to another

• Consistency isn’t guaranteed part-way 
through a transaction

• Because of atomicity, this won’t be a problem

• Enforced by the DBMS, and application 
programmers also have some responsibility



2

Isolation

• All transactions execute independently of one 
another

• The effects of a transaction are invisible to 
other transactions until it has been completed

• Enforced by the scheduler

Durability

• Once a transaction has completed, it’s 
changes are made permanent

• If the database system crashes, completed 
transactions must remain complete

• Enforced by the recovery manager

Transaction Example

• Transfer £50 from bank 
account A to account B

Read(A)

A = A - 50

Write(A)

Read(B)

B = B + 50

Write(B)

• Atomicity – Shouldn’t 
take money from A 
without giving it to B

• Consistency – Money 
isn’t lost or gained overall

• Isolation – Other queries 
shouldn’t see A or B 
change until completion

• Durability – The money 
does not return to A, 
even after a system crash

Transaction

Transaction Subsystem

• The transaction 
subsystem enforces the 
ACID properties

• Schedules the 
operations of all 
transactions

• Uses COMMIT and 
ROLLBACK to ensure 
atomicity

• Locks and/or timestamps 
are used to ensure 
consistency and isolation 
(next lectures)

• A log is kept to ensure 
durability

Transaction Subsystem

Transaction 
Manager

Scheduler

Recovery 
Manager

Buffer 
Manager

File I/O

Applications

Database Systems, Connolly & Begg, p574

COMMIT and ROLLBACK

• COMMIT is used to 
signal the successful 
end of a transaction

• Any changes that have 
been made to the 
database should be 
made permanent

• These changes are now 
available to other 
transactions

• ROLLBACK is used to 
signal the unsuccessful 
end of a transaction

• Any changes that have 
been made to the 
database should be 
undone

• It is now as if the 
transaction never 
happened, it can now be 
reattempted if necessary



3

Recovery

• Transactions must be 
durable, but some 
failures will be 
unavoidable
• System crashes

• Power failures

• Disk crashes

• User mistakes

• Sabotage

• etc

• Prevention is better 
than a cure
• Reliable OS

• Security

• UPS and surge 
protectors

• RAID arrays

• Can’t protect against 
everything, system 
recovery will be 
necessary

The Transaction Log

• The transaction log 
records details of all 
transactions

• Any changes the 
transaction makes to the 
database

• How to undo these 
changes

• When transactions 
complete and how

• The log is stored on 
disk, not in memory

• If the system crashes, 
the log is preserved

• Write ahead log rule

• The entry in the log must 
be made before 
COMMIT processing can 
complete

System Failures

• A system failure effects 
all running transactions

• Software crash

• Power failure

• The physical media 
(disks) are not damaged

• At various times a 
DBMS takes a 
checkpoint

• All transactions are 
written to disk

• A record is made (on 
disk) of all transactions 
that are currently 
running

Transaction Timeline

T1

T2

T3

T4

T5

Checkpoint Failure

System Recovery

• Any transaction that 
was running at the time 
of failure needs to be 
undone and possibly 
restarted

• Any transactions that 
committed since the 
last checkpoint need to 
be redone

• Transactions of type T1

need no recovery

• Transactions of type T3

or T5 need to be 
undone

• Transactions of type T2

or T4 need to be redone

Transaction Recovery

• Create two lists of transactions: UNDO and REDO

• UNDO – all transactions running at the last checkpoint

• REDO – empty

• For every entry in the log since the last 
checkpoint, until the failure:

1. If a BEGIN TRANSACTION entry is found for T, Add T 
to UNDO

2. If a COMMIT entry is found for T, Move T From 
UNDO to REDO



4

Transaction Recovery

T1

T2

T3

T4

T5

Checkpoint Failure

UNDO: T2, T3

REDO: 
Last Checkpoint

Active transactions: T2, T3

Transaction Recovery

T1

T2

T3

T4

T5

Checkpoint Failure

UNDO: T2, T3, T4

REDO: 
T4 Begins

Add T4 to UNDO

Transaction Recovery

T1

T2

T3

T4

T5

Checkpoint Failure

UNDO: T2, T3, T4, T5

REDO: 
T5 begins

Add T5 to UNDO

Transaction Recovery

T1

T2

T3

T4

T5

Checkpoint Failure

UNDO: T3, T4, T5

REDO: T2

T2 Commits

Move T2 to REDO

Transaction Recovery

T1

T2

T3

T4

T5

Checkpoint Failure

UNDO: T3, T5

REDO: T2, T4

T4 Commits

Move T4 to REDO

Forwards and Backwards

• Backwards recovery -
ROLLBACK
• We need to undo some 

transactions

• Working backwards 
through the log we undo 
every operation by any 
transaction on the 
UNDO list

• This returns the 
database to a consistent 
state

• Forwards recovery -
ROLLFORWARD
• Some transactions need 

to be redone

• Working forwards 
through the log we redo 
any operation by a 
transaction on the REDO 
list

• This brings the database 
up to date



5

Media Failures

• System failures are not 
too severe

• Only information since 
the last checkpoint is 
affected

• This can be recovered 
from the transaction log

• Media failures (e.g. Disk 
failure) are more 
serious

• The stored data is 
damaged

• The transaction log itself 
may be damaged

Backups

• Backups are necessary 
to recover from media 
failure

• The transaction log and 
entire database is 
written to secondary 
storage

• Very time consuming, 
often requires downtime

• Backup frequency

• Frequent enough that 
little information is lost

• Not so frequent as to 
cause problems

• Every night is a common 
compromise

Recovery from Media Failure

1. Restore the database 
from the last backup

2. Use the transaction log 
to redo any changes 
made since the last 
backup

• If the transaction log is 
damaged you can’t do 
step 2

• Store the log on a 
separate physical device 
to the database

• This reduces the risk of 
losing both together

Transactions in MySQL

• Most DBMSs support 
transactions

• In MySql only the InnoDB
engine supports 
transactions

• There are other engines 
that aren’t installed like 
Falcon

• On the school servers, 
autocommit is set so that 
every command is 
instantly commited

• This is very slow and 
inefficient

• Doesn’t make it easy to 
undo changes

• You can turn autocommit
off with

SET autocommit = 0 | 1;

Managing Transactions

• In MySQL, a transaction is executed in the 
following way:

BEGIN | START TRANSACTION;

INSERT INTO table VALUES (...);

SELECT col1, col2 FROM table;

UPDATE table SET col1 = col2 + 3;

DROP TABLE table;

COMMIT | ROLLBACK;

(| optional)

Managing Transactions

• In PHP, you can send off these commands with 
mysql_query:

mysql_query(‘BEGIN’);

mysql_query(‘...’);

if (some test)

{

mysql_query(‘COMMIT’);

}

else

{

mysql_query(‘ROLLBACK’);

}



6

Managing Transactions

• In general, this approach is far superior to 
autocommit. Remember, however:
• If your transaction locks a table, all other 

transactions will have to wait. So COMMIT as soon 
as possible

• MyISAM and most engines ignore commands like 
ROLLBACK. So use InnoDB if you need transaction 
support

• Subqueries are good when using autocommit to 
avoid outdated information

Concurrency

• Large databases are 
used by many people
• Many transactions are to 

be run on the database

• It is helpful to run these 
simultaneously

• Still need to preserve 
isolation

• If we don’t allow for 
concurrency then 
transactions are run 
sequentially
• Have a queue of 

transactions

• Easy to preserve 
atomicity and isolation

• Long transactions (e.g. 
backups) will delay 
others

Concurrency Problems

• In order to run two or 
more concurrent 
transactions, their 
operations must be 
interleaved

• Each transaction gets a 
share of the computing 
time

• This can lead to several 
problems

• Lost updates

• Uncommitted updates

• Incorrect updates

• All arise when isolation 
is broken

Lost Update

T1

Read(X)
X = X - 5

Write(X)

COMMIT

T2

Read(X)
X = X + 5

Write(X)

COMMIT

• T1 and T2 both read X, 
both modify it, then 
both write it out

• The net effect of both 
transactions should be 
no change to X

• Only T2’s change is seen 
however

Uncommitted Update

T1

Read(X)
X = X - 5
Write(X)

ROLLBACK

T2

Read(X)
X = X + 5
Write(X)

COMMIT

• T2 sees the change to X 
made by T1, but T1 is 
then rolled back

• The change made by T1 
is rolled back

• It should be as if that 
change never happened

Inconsistent Analysis

T1

Read(X)
X = X - 5
Write(X)

Read(Y)
Y = Y + 5
Write(Y)

T2

Read(X)
Read(Y)
Sum = X + Y

• T1 doesn’t change the 
sum of X and Y, but T2 
records a change

• T1 consists of two parts -
take 5 from X then add 5 
to Y

• T2 sees the effect of the 
first change, but not the 
second



7

This Lecture in Exams

Define a transaction in the context of database management

Explain how a DBMS uses a transaction log to recover from a 
system failure using ROLLBACK and ROLLFORWARD

Explain the difference between a system failure and a media 
failure

Next Lecture

• Concurrency
• Locks and Resources

• Deadlock

• Serialisability
• Schedules of transactions

• Serial and serialisable schedules

• Further reading
• The Manga Guide to Databases, Chapter 5

• Database Systems, Chapter 22


