
1

Concurrency

Database Systems

Michael Pound

This Lecture

• Concurrency control

• Serialisability
• Schedules of transactions

• Serial and serialisable schedules

• Locks

• 2 Phase Locking Protocol

• Further reading
• The Manga Guide to Databases, Chapter 5

• Database Systems, Chapter 22

Transactions so Far

• Transactions are the 
‘logical unit of work’ in 
a database

• ACID properties

• Also the unit of recovery

• Transactions will involve 
some read and/or 
writes on a database

• COMMIT

• Signals the successful 
end of a transaction

• Changes are made 
permanent and visible to 
other transactions

• ROLLBACK

• Signals the unsuccessful 
end of a transaction

• Changes are undone 

Transactions so Far

• Atomicity
• Transactions 

conceptually have no 
component parts

• The run completely, or 
not at all

• Consistency
• Transactions take the 

database from one 
consistent state to 
another

• Isolation
• Incomplete transactions 

are invisible to others 
until they have 
committed

• Durability
• Committed transactions 

must be made 
permanent

Concurrency

• Large databases are 
used by many people

• Many transactions are to 
be run on the database

• It is helpful to run these 
simultaneously

• Still need to preserve 
isolation

• If we don’t allow for 
concurrency then 
transactions are run 
sequentially
• Have a queue of 

transactions

• Easy to preserve 
atomicity and isolation

• Long transactions (e.g. 
backups) will delay 
others

Concurrency Problems

• In order to run two or 
more concurrent 
transactions, their 
operations must be 
interleaved

• Each transaction gets a 
share of the computing 
time

• This can lead to several 
problems

• Lost updates

• Uncommitted updates

• Incorrect updates

• All arise when isolation 
is broken



2

Lost Update

T1

Read(X)
X = X - 5

Write(X)

COMMIT

T2

Read(X)
X = X + 5

Write(X)

COMMIT

• T1 and T2 both read X, 
both modify it, then 
both write it out

• The net effect of both 
transactions should be 
no change to X

• Only T2’s change is seen 
however

Uncommitted Update

T1

Read(X)
X = X - 5
Write(X)

ROLLBACK

T2

Read(X)
X = X + 5
Write(X)

COMMIT

• T2 sees the change to X 
made by T1, but T1 is 
then rolled back

• The change made by T1 
is rolled back

• It should be as if that 
change never happened

Inconsistent Analysis

T1

Read(X)
X = X - 5
Write(X)

Read(Y)
Y = Y + 5
Write(Y)

T2

Read(X)
Read(Y)
Sum = X + Y

• T1 doesn’t change the 
sum of X and Y, but T2 
records a change

• T1 consists of two parts -
take 5 from X then add 5 
to Y

• T2 sees the effect of the 
first change, but not the 
second

Concurrency Control

• Concurrency control is the process of 
managing simultaneous operations on the 
database without having them interfere with 
each other

• Possibly reading and writing the same data

• Long transactions must not hold up others

• ACID properties must be maintained

Schedules

• A schedule is a sequence of the operations in a 
set of concurrent transactions that preserves 
the order of operations in each of the 
individual transactions

• A serial schedule is a schedule where the 
operations of each transaction are executed 
consecutively without any interleaved 
operations from other transactions (each must 
commit before the next can begin)

Example Schedule

• Three transactions: • Example schedule

T1
Read(X)
Read(Y)
Write(X)

T2
Read(Y)
Read(Z)
Write(Y)

T3
Read(Z)
Write(Z)

T1 Read(X)
T2 Read(Y)
T2 Read(Z)
T3 Read(Z)
T1 Read(Y)
T1 Write(X)
T3 Write(Z)
T2 Write(Y)



3

Example Schedule

• Three transactions: • Example serial schedule

T1
Read(X)
Read(Y)
Write(X)

T2
Read(Y)
Read(Z)
Write(Y)

T3
Read(Z)
Write(Z)

T1 Read(X)
T1 Read(Y)
T1 Write(X)
T2 Read(Y)
T2 Read(Z)
T2 Write(Y)
T3 Read(Z)
T3 Write(Z)

Serial Schedules

• A serial schedule is guaranteed to avoid 
interference between transactions, and 
preserve database consistency

• However, this approach does not allow for 
concurrent access, i.e. Interleaving operations 
from multiple transactions

Serialisability

• Two schedules are equivalent if they always have 
the same effect

• A schedule is serialisable if it is equivalent to 
some serial schedule

• For example:

• If two transactions only read from some data items, 
the order in which they do this is not important

• If T1 reads and then updates X, and T2 reads then 
updates Y, then again this can occur in any order

Serial and Serialisable

• Interleaved (nonserial) 
Schedule

T1 Read(X)
T2 Read(X)
T2 Read(Y)
T1 Read(Z)
T1 Read(Y)
T2 Read(Z)

This schedule is serialisable – has the 
same effect as a serial schedule

• Serial Schedule

T2 Read(X)
T2 Read(Y)
T2 Read(Z)

T1 Read(X)
T1 Read(Z)
T1 Read(Y)

Conflict Serialisability

• Two transactions have a 
confict:

• NO If they refer to 
different resources

• NO If they only read

• YES If at least one is a 
write and they use the 
same resource

• A schedule is conflict 
serialisable if the 
transactions in the 
schedule have a 
conflict, but the 
schedule is still 
serialisable

Conflict Serialisable Schedule

• Interleaved Schedule

T1 Read(X)
T1 Write(X)
T2 Read(X)
T2 Write(X)
T1 Read(Y)
T1 Write(Y)
T2 Read(Y)
T2 Write(Y)

This schedule is serialisable, even though T1 
and T2 read and write the same resources X 
and Y: They have a conflict

• Serial Schedule

T1 Read(X)
T1 Write(X)
T1 Read(Y)
T1 Write(Y)

T2 Read(X)
T2 Write(X)
T2 Read(Y)
T2 Write(Y)



4

Conflict Serialisability

• Conflict serialisable
schedules are the main 
focus of concurrency 
control

• They allow for 
interleaving and at the 
same time they are 
guaranteed to behave 
as a serial schedule

• Important questions

• How do we determine 
whether or not a 
schedule is conflict 
serialisable?

• How do we construct 
conflict serialisable
schedules

Graphs

• In mathematics, a graph is a structure (V,E) of 
Vertices and Edges. In the case of a directed 
graph, these edges include directions

• For example:

A

B

C

D

Precedence Graphs

• To determine if a 
schedule is conflict 
serialisable we use a 
precedence graph
• Transactions are vertices 

of the graph

• There is an edge from T1 
to T2 if T1 must happen 
before T2 in any 
equivalent serialisable
schedule

• Edge T1 → T2 if in the 
schedule we have:
• T1 Read(R) followed by 

T2 Write(R)

• T1 Write(R) followed by 
T2 Read(R)

• T1 Write(R) followed by 
T2 Write(R)

• The schedule is 
serialisable if there are 
no cycles

Precedent Graph Example

T1

Read(X)
Write(X)

T2

Read(X)
Write(X)

• No cycles: conflict 
serialisable schedule

• T1 reads X before T2 writes X

• T1 writes X before T2 reads X

• T1 writes X before T2 writes X

T1 T2

Precedent Graph Example

T1

Read(X)
X = X - 5

Write(X)

COMMIT

T2

Read(X)
X = X + 5

Write(X)

COMMIT

• The lost update 
problem has this 
precedence graph:

• T1 reads X before T2 writes X

• T1 writes X before T2 writes X

• T2 reads X before T1 writes X

T1 T2

Locking

• Locking is a procedure used to control 
concurrent access to data (to ensure 
serialisability of concurrent transactions)

• In order to use a ‘resource’ a transaction must 
first acquire a lock on that resource
• A resource could be a single item of data, some or 

all of table, or even a whole database

• This may deny access to other transactions to 
prevent incorrect results



5

Lock Types

• There are two types of lock

• Shared lock (often called a read lock)

• Exclusive lock (often called a write lock)

• Read locks allow several transactions to read 
data simultaneously, but none can write to 
that data

• Write locks allow a single transaction exclusive 
access to read and write a resource

Locking

• Before reading from a resource a transaction 
must acquire a read-lock

• Before writing to a resource a transaction 
must acquire a write-lock

• A lock might be released during execution 
when no longer needed, or upon COMMIT or 
ROLLBACK

Locking

• A transaction may not acquire a lock on any 
resource that is currently write-locked by 
another transaction

• A transaction may not acquire a write lock on 
any resource that is currently locked by 
another transaction

• If the requested lock is not available, the 
transaction waits

• The DBMS is responsible for issuing locks

Locking Example

• Locking won’t successfully allow us to serialise 
all schedules. For example:

T1

Read(X)
X = X - 500
Write(X)

Read(Y)
Y = Y + 500
Write(Y)

T2

Read(X)
Read(Y)
X = X * 1.1
Y = Y * 1.1
Write(X)
Write(Y)

write-lock(X)

unlock(X)

write-lock(Y)

unlock(Y)

write-lock(X)
write-lock(Y)

unlock(X)
unlock(Y)

Two-Phase Locking

• A transaction follows 
two-phase locking 
protocol (2PL) if all 
locking operations 
precede all unlocking 
operations

• Other operations can 
happen at any time 
throughout the 
transaction

• Two phases:

• Growing phase where 
locks are acquired

• Shrinking phase where 
locks are released

Two-Phase Locking Example

• T1 follows 2PL protocol
• All locks in T1 are 

acquired before any are 
released

• This happens even if the 
resource is no longer 
used

• T2 does not
• Releases a lock on X, 

which is no longer 
needed, before acquiring 
on Y

T1

write-lock(X)
Read(X)
X = X + 100
Write(X)
write-lock(Y)
unlock(X) 
Read(Y)
Y = Y – 100
Write(Y)
unlock(Y)

COMMIT

T2

write-lock(X)
Read(X)
X = X + 100
Write(X)
unlock(X)
write-lock(Y)
Read(Y)
Y = Y – 100
Write(Y)
unlock(Y)

COMMIT



6

Serialisability Theorem

Any schedule of two-phase locking

transactions is conflict serialisable

2PL Prevents Lost Update

T1

Read(X)
X = X – 5

Write(X)
COMMIT

T2

WAIT
WAIT
WAIT
Read(X)
X = X + 5
Write(X)

COMMIT

write-lock(X)

unlock(X)

write-lock(X)

unlock(X)

2PL Prevents Uncommitted Update

T1

Read(X)
X = X – 5
Write(X)
ROLLBACK

T2

WAIT
WAIT
WAIT
Read(X)
X = X + 5
Write(X)

COMMIT

write-lock(X)

unlock(X)

write-lock(X)

unlock(X)

The value of X is restored during rollback, before the write-lock is released

2PL Prevents Inconsistent Analysis

T1

Read(X)
X = X – 5
Write(X)

Read(Y)
Y = Y + 5
Write(Y)

COMMIT

T2

WAIT
WAIT
WAIT
WAIT
WAIT
WAIT
Read(X)
Read(Y)
Sum = X + Y
...

write-lock(X)

write-lock(Y)

read-lock(X)

unlock(X)
unlock(Y)

Concurrency in SQL

• Concurrency in MySQL
(and most other 
DBMSs) is handled 
automatically

• UPDATE, INSERT, 
DELETE etc will obtain 
write locks

• SELECT will obtain a 
read lock – or may read 
an old cached value

• In MySQL, Locking 
protocol depends on 
the engine
• MyISAM: Table Level 

Locking

• Memory: Table Level 
Locking

• InnoDB: Row Level 
Locking

Concurrency in MySQL

• Sometimes you might want to lock a resource 
specifically for updating:

SELECT ID FROM Artist WHERE Name = 
‘Muse’;

... Some processing

INSERT INTO CD VALUES (NULL, 2, ‘The 
Resistance’, 9.99, ‘Rock’);

• In the short time between these queries, the ID for 
muse may have been written to



7

Locking in a SELECT

• For times when a Subquery isn’t appropriate:

SELECT *

FROM table

WHERE ...

FOR UPDATE;

• FOR UPDATE write-locks all rows that we read until the 
end of the transaction.

• It has the added benefit of reading the very latest values of 
these rows (not using cached values)

• You can use LOCK IN SHARE MODE to obtain a read 
lock instead

This Lecture in Exams

Define the term Schedule, Serial Schedule and Serialisable in the 
context of database concurrency

Explain the Lost Update problem, and provide an example 
schedule demonstrating this

Explain how two-phased locking protocol can avoid the lost 
update problem

Next Lecture

• Deadlocks

• Deadlock detection

• Deadlock prevention

• Timestamping

• Further reading

• The Manga Guide to Databases, Chapter 5

• Database Systems, Chapter 22


