
1

Concurrency II

Database Systems

Michael Pound

This Lecture

• Deadlocks

• Deadlock detection

• Deadlock recovery

• Deadlock prevention

• Timestamping

• Further reading

• The Manga Guide to Databases, Chapter 5

• Database Systems, Chapter 22

Last Lecture

• Serialisability

• Schedules of 
transactions

• Serial and serialisable
schedules

• Conflict serialisable
schedules

• Locks

• Shared (Read)

• Exclusive (Write)

• Two-phase locking

• Growing Phase
• Transactions obtain locks

• Shrinking Phase
• Transactions release locks

• Two-phase locking 
guarantees conflict 
serialisability

• Allows Concurrency

• Avoids loss of Isolation

Deadlocks

• A deadlock is an 
impasse that may result 
when two or more 
transactions are waiting 
for locks to be released 
which are held by each 
other.
• For example: T1 has a 

lock on X and is waiting 
for a lock on Y, and T2 
has a lock on Y and is 
waiting for a lock on X.

• We can detect 
deadlocks that will 
happen in a schedule 
using a wait-for graph
(WFG).

2PL Deadlock Example

T1
Read(X)
Write(X)

WAIT
WAIT
WAIT
WAIT
WAIT
...
Read(Y)
Write(Y)

T2

Read(Y)
Write(Y)

WAIT
WAIT
WAIT
WAIT
...
Read(X)
Write(X)

write-lock(X)

write-lock(Y)

write-lock(Y)
write-lock(X)

Precedence/Wait-For Graphs

• Precedence graph
• Each transaction is a 

vertex

• Edge from T1 to T2 if
• T1 reads X before T2 

writes X

• T1 writes X before T2 
reads X

• T1 writes X before T2 
writes X

• Wait-for Graph
• Each transaction is a 

vertex

• Edge from T2 to T1 if
• T1 read-locks X then 

T2 tries to write-lock 
it

• T1 write-locks X then 
T2 tries to read-lock it

• T1 write-locks X then 
T2 tries to write-lock 
it



2

Example

T1

T2 T3

Wait for graph

T1

T2 T3

Precedence graph

Schedule

T1 Read(X)
T2 Read(Y)
T1 Write(X)
T2 Read(X)
T3 Read(Z)
T3 Write(Z)
T1 Read(Y)
T3 Read(X)
T1 Write(Y)

Example

T1

T2 T3

Wait for graph

T1

T2 T3

Precedence graph

Schedule

T1 Read(X)
T2 Read(Y)
T1 Write(X)
T2 Read(X)
T3 Read(Z)
T3 Write(Z)
T1 Read(Y)
T3 Read(X)
T1 Write(Y)

Example

T1

T2 T3

Wait for graph

T1

T2 T3

Precedence graph

Schedule

T1 Read(X)
T2 Read(Y)
T1 Write(X)
T2 Read(X)
T3 Read(Z)
T3 Write(Z)
T1 Read(Y)
T3 Read(X)
T1 Write(Y)

Example

T1

T2 T3

Wait for graph

T1

T2 T3

Precedence graph

Schedule

T1 Read(X)
T2 Read(Y)
T1 Write(X)
T2 Read(X)
T3 Read(Z)
T3 Write(Z)
T1 Read(Y)
T3 Read(X)
T1 Write(Y)

Example

T1

T2 T3

Wait for graph

T1

T2 T3

Precedence graph

Schedule Locks

T1 Read(X)
T2 Read(Y)
T1 Write(X)
T2 Read(X)
T3 Read(Z)
T3 Write(Z)
T1 Read(Y)
T3 Read(X)
T1 Write(Y)

write-lock(X)
read-lock(Y)

Example

T1

T2 T3

Wait for graph

T1

T2 T3

Precedence graph

Schedule Locks

T1 Read(X)
T2 Read(Y)
T1 Write(X)
T2 Read(X)
T3 Read(Z)
T3 Write(Z)
T1 Read(Y)
T3 Read(X)
T1 Write(Y)

write-lock(X)
read-lock(Y)

tries read-lock(X)



3

Example

T1

T2 T3

Wait for graph

T1

T2 T3

Precedence graph

Schedule Locks

T1 Read(X)
T2 Read(Y)
T1 Write(X)
T2 Read(X)
T3 Read(Z)
T3 Write(Z)
T1 Read(Y)
T3 Read(X)
T1 Write(Y)

write-lock(X)
read-lock(Y)

tries read-lock(X)
write-lock(Z)

read-lock(Y)

Example

T1

T2 T3

Wait for graph

T1

T2 T3

Precedence graph

Schedule Locks

T1 Read(X)
T2 Read(Y)
T1 Write(X)
T2 Read(X)
T3 Read(Z)
T3 Write(Z)
T1 Read(Y)
T3 Read(X)
T1 Write(Y)

write-lock(X)
read-lock(Y)

tries read-lock(X)
write-lock(Z)

read-lock(Y)
tries read-lock(X)

Example

T1

T2 T3

Wait for graph

T1

T2 T3

Precedence graph

Schedule Locks

T1 Read(X)
T2 Read(Y)
T1 Write(X)
T2 Read(X)
T3 Read(Z)
T3 Write(Z)
T1 Read(Y)
T3 Read(X)
T1 Write(Y)

write-lock(X)
read-lock(Y)

tries read-lock(X)
write-lock(Z)

read-lock(Y)
tries read-lock(X)
tries write-lock(Y)

Example

T1

T2 T3

Wait for graph

T1

T2 T3

Precedence graph

Schedule Locks

T1 Read(X)
T2 Read(Y)
T1 Write(X)
T2 Read(X)
T3 Read(Z)
T3 Write(Z)
T1 Read(Y)
T3 Read(X)
T1 Write(Y)

write-lock(X)
read-lock(Y)

tries read-lock(X)
write-lock(Z)

read-lock(Y)
tries read-lock(X)
tries write-lock(Y)

A cycle in the wait-for graph means we will encounter deadlock

Deadlock Recovery

• Deadlocks can arise with 2PL
• Deadlock is less of a problem than an inconsistent DB

• We can detect and recover from deadlock

• Most DBMSs will detect deadlocks with a wait-for 
graph
• Chose a single transaction as a ‘victim’ to rollback and 

restart
• Which transaction has been running the longest?

• Which transactions have made the most updates?

• Which transactions have the most updates still to make?

Deadlock Prevention

• Conservative 2PL
• All locks must be acquired before the transaction 

starts

• Hard to predict what locks are needed

• For high lock contention this works well
• Transactions are never blocked once they start

• For low lock contention this is not as effective
• Locks are held longer than necessary

• Transactions might hold on to locks for a long time, but 
not use them much



4

Timestamping

• Transactions can be run 
concurrently using a 
variety of techniques

• We looked at using 
locks to preserve 
isolation

• An alternative is 
timestamping

• Requires less overhead 
in terms of tracking locks 
or detecting deadlock

• Determines the order of 
transactions before they 
are executed

• Most useful for a small 
number of transactions

Timestamping

• Each transaction has a 
timestamp, TS, and if T1 
starts before T2 then 
TS(T1) < TS(T2)

• Can use the system clock 
or an incrementing 
counter to generate 
timestamps

• Each resource has two 
timestamps

• R(X), the largest 
timestamp of any 
transaction that has read 
X

• W(X), the largest 
timestamp of any 
transaction that has 
written X

Timestamp Protocol

• If T tries to read X

• If TS(T) < W(X) T is rolled 
back and restarted with 
a later timestamp

• If TS(T)  W(X) then the 
read succeeds and we 
set R(X) to be max(R(X), 
TS(T))

• T tries to write X

• If TS(T) < W(X) or TS(T) < 
R(X) then T is rolled back 
and restarted with a 
later timestamp

• Otherwise the write 
succeeds and we set 
W(X) to TS(T)

Timestamping Example

• Given T1 and T2 we will 
assume

• The transactions make 
alternate operations

• Timestamps are 
allocated from a counter 
starting at 1

• T1 goes first

T1 T2

Read(X) Read(X)

Read(Y) Read(Y)

Y = Y + X Z = Y - X

Write(Y) Write(Z)

Timestamp Example

T1 T2

Read(X) Read(X)

Read(Y) Read(Y)

Y = Y + X Z = Y - X

Write(Y) Write(Z)

YX

R

W

Z

T2T1

TS 1 2

Timestamp Example

T1 T2

Read(X) Read(X)

Read(Y) Read(Y)

Y = Y + X Z = Y - X

Write(Y) Write(Z)

1

YX

R

W

Z

1

T2T1

TS 2



5

Timestamp Example

T1 T2

Read(X) Read(X)

Read(Y) Read(Y)

Y = Y + X Z = Y - X

Write(Y) Write(Z)

2

YX

R

W

Z

1 2

T2T1

TS

Timestamp Example

T1 T2

Read(X) Read(X)

Read(Y) Read(Y)

Y = Y + X Z = Y - X

Write(Y) Write(Z)

2 1

YX

R

W

Z

1 2

T2T1

TS

Timestamp Example

T1 T2

Read(X) Read(X)

Read(Y) Read(Y)

Y = Y + X Z = Y - X

Write(Y) Write(Z)

2 2

YX

R

W

Z

1 2

T2T1

TS

Timestamp Example

T1 T2

Read(X) Read(X)

Read(Y) Read(Y)

Y = Y + X Z = Y - X

Write(Y) Write(Z)

2 2

YX

R

W

Z

1 2

T2T1

TS

Timestamp Example

T1 T2

Read(X) Read(X)

Read(Y) Read(Y)

Y = Y + X Z = Y - X

Write(Y) Write(Z)

2 2

YX

R

W

Z

1 2

T2T1

TS

Timestamp Example

T1 T2

Read(X) Read(X)

Read(Y) Read(Y)

Y = Y + X Z = Y - X

Write(Y) Write(Z)

2 2

YX

R

W

Z

1 2

T2T1

TS



6

Timestamp Example

T1 T2

Read(X) Read(X)

Read(Y) Read(Y)

Y = Y + X Z = Y - X

Write(Y) Write(Z)

2 2

YX

R

W

Z

3 2

T2T1

TS

Timestamp Example

T1 T2

Read(X) Read(X)

Read(Y) Read(Y)

Y = Y + X Z = Y - X

Write(Y) Write(Z)

2 2

2

YX

R

W

Z

3 2

T2T1

TS

Timestamp Example

T1 T2

Read(X) Read(X)

Read(Y) Read(Y)

Y = Y + X Z = Y - X

Write(Y) Write(Z)

3 2

2

YX

R

W

Z

3 2

T2T1

TS

Timestamp Example

T1 T2

Read(X) Read(X)

Read(Y) Read(Y)

Y = Y + X Z = Y - X

Write(Y) Write(Z)

3 3

2

YX

R

W

Z

3 2

T2T1

TS

Timestamp Example

T1 T2

Read(X) Read(X)

Read(Y) Read(Y)

Y = Y + X Z = Y - X

Write(Y) Write(Z)

3 3

2

YX

R

W

Z

3 2

T2T1

TS

Timestamp Example

T1 T2

Read(X) Read(X)

Read(Y) Read(Y)

Y = Y + X Z = Y - X

Write(Y) Write(Z)

3 3

23

YX

R

W

Z

3 2

T2T1

TS



7

Timestamp Example

T1 T2

Read(X) Read(X)

Read(Y) Read(Y)

Y = Y + X Z = Y - X

Write(Y) Write(Z)

3 3

23

YX

R

W

Z

3 2

T2T1

TS

Timestamping

• The protocol means that 
transactions with higher 
times take precedence 
when conflict arises

• No deadlock

• When no conflict arises 
lower timestamps proceed 
first

• Timestamping guarantees 
a schedule is conflict 
serialisable

• Problems

• Long transactions might 
keep getting restarted by 
new transactions -
starvation

• Rolls back old 
transactions, which may 
have done a lot of work

This Lecture in Exams

Explain, using an example, how deadlock may occur between 
two transactions utilising two-phase locking protocol

Describe how a DBMS might attempt to prevent deadlock from 
occurring, and how a DMBS might recover from deadlock that 
has already occured

Describe how timestamping can be used as an alternative to 
two-phase locking, to provide concurrent access to database 
resources


