Concurrency Il

Database Systems
Michael Pound

This Lecture

* Deadlocks
* Deadlock detection
* Deadlock recovery
* Deadlock prevention
* Timestamping
* Further reading

* The Manga Guide to Databases, Chapter 5
* Database Systems, Chapter 22

Last Lecture

* Serialisability
* Schedules of
transactions

¢ Two-phase locking
* Growing Phase
* Transactions obtain locks
* Serial and serialisable Shrinking Phase
schedules « Transactions release locks
* Two-phase locking
guarantees conflict
* Locks serialisability
* Shared (Read)
* Exclusive (Write)

* Conflict serialisable
schedules

« Allows Concurrency
* Avoids loss of Isolation

Deadlocks

* Adeadlockis an
impasse that may result
when two or more
transactions are waiting
for locks to be released
which are held by each
other.

* Forexample: T1 hasa
lock on X and is waiting
foralockonY,and T2
has alock onY and is
waiting for a lock on X.

* We can detect
deadlocks that will
happen in a schedule
using a wait-for graph
(WFG).

2PL Deadlock Example

Tl T2
write-lock(X) I oz i(x)
Write(X) Read() L— write-lock(Y)
Write(Y)

write-lock(Y) = WAIT te— write-lock(X)

WAIT WAIT
WAIT WAIT
WAIT WAIT
WAIT WAIT
Read(Y) Read(X)

Write(Y) Write(X)

Precedence/Wait-For Graphs

* Precedence graph

* Each transactionis a
vertex

* Edge from T1 to T2 if

* T1reads X before T2
writes X

* T1 writes X before T2
reads X

* T1 writes X before T2
writes X

* Wait-for Graph

* Each transactionis a
vertex

* Edge from T2 to T1 if

* T1 read-locks X then
T2 tries to write-lock
it

* T1 write-locks X then
T2 tries to read-lock it

* T1 write-locks X then
T2 tries to write-lock
it

Example

@

Example

@

Schedule Schedule
T1 Read(X) T1 Read(X)
T2 Read(Y) @ @ T2 Read(Y) @ @
T1 Write(X) Wait for graph T1 Write(X) Wait for graph
T2 Read(X) T2 Read(X)
T3 Read(2) T3 Read(2)
T3 Write(2) @ T3 Write(2)
T1 Read(Y) T1 Read(Y)
T3 Read(X) @ @ T3 Read(X) @ @
T1 Write(Y) T1 Write(Y)

Precedence graph Precedence graph

Example Example

Schedule @ Schedule @
T1 Read(X) T1 Read(X)
T2 Read(Y) @ @ T2 Read(Y) @ @
T1 Write(X) Wait for graph T1 Write(X) Wait for graph
T2 Read(X) T2 Read(X)
T3 Read(2) T3 Read(2)
T3 Write(2) /@\ T3 Write(z) /@\
T1 Read(Y) T1 Read(Y)
T3 Read(X) @ @ T3 Read(X) @
T1 Write(Y) T1 Write(Y)

Precedence graph Precedence graph

Example Example

Schedule Locks @ Schedule Locks a
T1Read(X) |write-lock(X) T1Read(X) |write-lock(X)
T2 Read(Y) |read-lock(Y) @ @ T2 Read(Y) |read-lock(Y) e @
T1 Write(X) Wait for graph T1 Write(X) R Wait for graph
T2 Read(X) T2 Read(X) |tries read-lock(X)
T3 Read(2) T3 Read(2)
T3 Write(2) a T3 Write(2) a
T1 Read(Y) ’ T1 Read(Y) ’
T3 Read(X) a a T3 Read(X) @ a
T1 Write(Y) T1 Write(Y)

Precedence graph Precedence graph

Example

®

Example

Schedule Locks Schedule Locks
T1Read(X) |write-lock(X) T1 Read(X) |write-lock(X)
T2 Read(Y) |read-lock(Y) @ T2 Read(Y) |read-lock(Y) a @
T1 write(X) . Wait for graph T1 Write(X) . Wait for graph
T2 Read(X) |tries read-lock(X) T2 Read(X) |tries read-lock(X)
T3 Read(Z) | write-lock(Z) T3 Read(Z) |write-lock(Z)
T3 Write(2) T3 Write(2)
T1Read(Y) |read-lock(Y) T1 Read(Y) |read-lock(Y)
T3 Read(X) @ T3 Read(X) |tries read-lock(X) @
T1 Write(Y) T1 Write(Y)
Precedence graph Precedence graph

Example Example
Schedule Locks e Schedule Locks e
T1Read(X) |write-lock(X) T1Read(X) |write-lock(X)
T2 Read(Y) |read-lock(Y) g T2 Read(Y) |read-lock(Y) a @
T1 Write(X) . Wait for graph T1 Write(X) . Wait for graph
T2 Read(X) |tries read-lock(X) T2 Read(X) |tries read-lock(X)
T3 Read(Z) |write-lock(Z) T3 Read(Z) |write-lock(Z)
T3 Write(2) /@\ T3 Write(2) /@\
T1Read(Y) |read-lock(Y) T1Read(Y) |read-lock(Y)
T3 Read(X) |tries read-lock(X) @ T3 Read(X) |tries read-lock(X) @
T1 Write(Y) | tries write-lock(Y) T1 Write(Y) |tries write-lock(Y)

Precedence graph

A cycle in the wait-for graph means we will encounter deadlock

Precedence graph

Deadlock Recovery

* Deadlocks can arise with 2PL

* Deadlockis less of a problem than an inconsistent DB
* We can detect and recover from deadlock
* Most DBMSs will detect deadlocks with a wait-for
graph
* Chose a single transaction as a ‘victim’ to rollback and
restart
* Which transaction has been running the longest?
* Which transactions have made the most updates?
* Which transactions have the most updates still to make?

Deadlock Prevention

* Conservative 2PL

* All locks must be acquired before the transaction

starts

* Hard to predict what locks are needed
* For high lock contention this works well
* Transactions are never blocked once they start

* For low lock contention this is not as effective

* Locks are held longer than necessary

* Transactions might hold on to locks for a long time, but

not use them much

Timestamping

* Transactionscan berun ¢ An alternative is
concurrently using a timestamping
variety of techniques * Requires less overhead

in terms of tracking locks

or detecting deadlock

Determines the order of

transactions before they

are executed

* We looked at using
locks to preserve
isolation

Most useful for a small
number of transactions

Timestamping

* Each transaction has a * Each resource has two
timestamp, TS, and if T1 timestamps
starts before T2 then * R(X), the largest
TS(T1) < TS(T2) timestamp of any

« Can use the system clock transaction that has read
or an incrementing

counter to generate * W(X), the largest

timestamps timestamp of any
transaction that has
written X

Timestamp Protocol

e If T tries to read X e Ttries to write X
« IfTS(T) < W(X) Tis rolled « 1fTS(T) < W(X) or TS(T) <
back and restarted with R(X) then T is rolled back

a later timestamp and restarted with a

« If TS(T) > W(X) then the later timestamp
read succeeds and we * Otherwise the write
set R(X) to be max(R(X), succeeds and we set
TS(T)) W(X) to TS(T)

Timestamping Example

* GivenT1 and T2 we will

assume
* The transactions make
alternate operations T1 T2
* Timestamps are Read(X) Read(X)
allocated from a counter Read(Y) Read(Y)
startingat 1 y=Y+X Z=Y-X
Write(Y) Write(Z)

T1 goes first

Timestamp Example

X Y z
T T R
Read(X) Read(X) w
Read(Y) Read(Y)
Y=Y+X Z=Y-X

Write(Y) Write(Z) T T2

Timestamp Example

X Y z
T1 _T RIS
— Read(X) Read(X) w
Read(Y) Read(Y)
Y=Y+X Z=Y-X
Write(Y) Write(Z) T T2

Timestamp Example

X Y
T1 T2 R|2
— Read(X) — Read(X) w
Read(Y) Read(Y)
Y=Y+X Z=Y-X
Write(Y) Write(Z) T1 T2

.

Timestamp Example

X Y
T1 T2 R12|¢
Read(X) — Read(X) w
— Read(Y) Read(Y)
Y=Y+X Z=Y-X
Write(Y) Write(Z) T T2

.

Timestamp Example

X Y
T1 T2 R12]2
Read(X) Read(X) w
— Read(Y) — Read(Y)
Y=Y+X Z=Y-X
Write(Y) Write(Z) 1 T2

.

Timestamp Example

X Y
T1 T2 R12]2
Read(X) Read(X) w
Read(Y) — Read(Y)
— Y=Y+X Z=Y-X
Write(Y) Write(Z) T T2

.

Timestamp Example

X Y
T1 T2 R12|2
Read(X) Read(X) w
Read(Y) Read(Y)
— Y=Y+X —Z=Y-X
Write(Y) Write(Z) T T2

Timestamp Example

X Y
T1 T2 i
Read(X) Read(X) w
Read(Y) Read(Y)
Y=Y+X —Z=Y-X
— Write(Y) Write(Z) T T2

Timestamp Example

Timestamp Example

X Y X Y
T T2 R12|2 _n T2 R12]2
Read(X) Read(X) w Read(X) Read(X) w
Read(Y) Read(Y) Read(Y) Read(Y)
Y=Y+X —Z=Y-X Y=Y+X Z=Y-X
Write(Y) Write(Z) T1 T2 Write(Y) — Write(Z) T T2
Timestamp Example Timestamp Example
X Y X Y
T1 T2 A T1 T2 R3S
— Read(X) Read(X) w Read(X) Read(X) w
Read(Y) Read(Y) — Read(Y) Read(Y)
Y=Y+X Z=Y-X Y=Y+X Z=Y-X
Write(Y) Write(Z) 1 T2 Write(Y) Write(Z) T T2
Timestamp Example Timestamp Example
X Y X Y
T1 T2 D T1 T2 I
Read(X) Read(X) w Read(X) Read(X) w 3
Read(Y) Read(Y) Read(Y) Read(Y)
— Y=Y+X Z=Y-X Y=Y+X Z=Y-X
Write(Y) Write(Z) T T2 — Write(Y) Write(Z) T T2

Timestamp Example

X Y z
T1 T2 RIs|S
Read(X) Read(X) w 312
Read(Y) Read(Y)

Y=Y+X Z=Y-X
Write(Y) Write(Z) T1 T2

Timestamping
* The protocol meansthat ¢ Problems
transactions with higher - Long transactions might
times take precedence keep getting restarted by
when conflict arises new transactions -
+ No deadlock starvation
* When no conflict arises * Rolls back old
lower timestamps proceed transactions, which may
first have done a lot of work

* Timestamping guarantees
a scheduleis conflict
serialisable

This Lecture in Exams

Explain, using an example, how deadlock may occur between
two transactions utilising two-phase locking protocol

Describe how a DBMS might attempt to prevent deadlock from
occurring, and how a DMBS might recover from deadlock that
has already occured

Describe how timestamping can be used as an alternative to
two-phase locking, to provide concurrent access to database
resources

