
1

Efficiency and Storage

Database Systems

Michael Pound

This Lecture

• Physical Database Design

• RAID Arrays

• Parity

• Database File Structures

• Indexes

• Further reading

• The Manga Guide to Databases, Chapter 5

• Database Systems, Chapters 7, 18

Physical Design

• Design so far

• E/R modelling helps find 
the requirements of a 
database

• Normalisation helps to 
refine a design by 
removing data 
redundancy

• Next we need to think 
about how the files will 
actually be arranged 
and stored

Project Description

E/R Diagram

Table Design

Hardware Structure
File Structure

Physical Database 
Design

Physical Design

• Hardware

• Correct storage 
hardware should be 
selected to avoid loss of 
data

• Speed can also be 
affected by careful 
consideration of 
hardware

• RAID Arrays

• File Structure

• Often specifying the 
structure of files on disks 
has a huge impact on 
performance

• Implementation of these 
structures is also specific 
to a DBMS

• Indexes can be chosen to 
further improve speed

RAID Arrays

• RAID - redundant array 
of independent 
(inexpensive) disks

• Storing information 
across more than one 
physical disk

• Speed - can access more 
than one disk

• Robustness – disk failure 
doesn’t always mean 
data is lost

• RAID Arrays are 
controller by software 
or hardware

• At the OS level the RAID 
array will appear to be a 
single storage device

• The array may actually 
contain dozens of disks

• Different levels (RAID 0, 
RAID 1,…)

RAID Level 0

• Files are split across 
several disks (Striping)
• Each file is split into parts, 

one part stored on each 
disk in the same position

• Sizes of each part is 
determined by the array 
controller

• Vastly improves speed, but 
no redundancy

• If any disk fails, all data is 
unrecoverable

Disk 1

Data

Data1

Data4

Disk 2

Data2

Data5

Disk 3

Data3

Data6



2

RAID Level 1

• Files are duplicated over 
all disks (Mirroring)

• Each file is copied onto 
every disk

• Provides improved read 
performance but no 
write performance

• Large amounts of 
redundancy, if all but a 
single disk fail the data 
can still be recovered

Disk 1

Data

Data1

Data2

Disk 2

Data1

Data2

Disk 3

Data1

Data2

Parity Checking

• Above RAID 1 involves 
calculating parity bits

• Parity reduces the 
number of disks you 
need for redundancy

• Parity is often 
calculated using XOR ⊕

• For two bits, A and B, 
XOR is true if either A is 
true or B is true, but not 
both

A B ⊕

0 0 0

0 1 1

1 0 1

1 1 0

Parity Checking

• The parity of n blocks of data is calculated as 
D1 ⊕ D2 ⊕ ... ⊕ Dn

• For example:

D1 0 0 1 1 0 1 1 0

D2 1 0 1 1 0 0 1 0

D3 1 1 0 0 0 0 0 0

DP 0 1 0 0 0 1 0 0

XOR is 0 if there is an even number of ‘1’ bits and 1 if there 
is an odd number

Recovery With Parity

• If any single disk breaks, including the parity 
disk, XOR can be used to re-calculate that 
value. For example:

D1 0 0 1 1 0 1 1 0

D3 1 1 0 0 0 0 0 0

DP 0 1 0 0 0 1 0 0

D2 1 0 1 1 0 0 1 0

RAID Level 3

• Data is striped over 
disks, and a parity disk 
for redundancy

• Data is split into bytes, 
bytes are written to 
separate disks

• The final disk stores 
parity information

• Extremely fast, and will 
allow for 1 disk failure

Disk 1

Data

Data1

Data4

Disk 2

Data 2

Data5

Disk 3

Data3

Data6

Disk 4

Parity(1-3)

Parity(4-6)

RAID Level 5

• Data is striped over 
disks with a distributed 
parity

• Data is split into blocks, 
parity blocks are 
distributed throughout 
all disks

• Extended version of 
RAID 3, and will even 
allow continued use 
after 1 disk failure Disk 1

Data

Disk 2 Disk 3

Data1

Data4

Data2

Data5

Data3

Data6

Data7

Data12

Data9

Data10

Data8

Data11

Disk 4

P(1-3)

P(4-6)

P(7-9)

P(11-12)



3

Other RAID Issues

• Other RAID levels 
consider

• Allowing more than a 
single disk failure with 
the minimum of 
redundancy

• Nested RAID levels. For 
example RAID 10 is a 
mirrored array of striped 
arrays

• Considerations with 
RAID systems

• Cost of disks

• Do you need speed or 
redundancy?

• How reliable are the 
individual disks?

• ‘Hot swapping’

File Structure

• The structure of files on 
a disk is separate to the 
RAID configuration

• File structure is 
managed by the DBMS

• Often the designer of a 
database can have 
control over aspects of 
this structure

• In general file structure 
is concerned with:

• How files are stored on a 
disk

• In what order files are 
stored

• The speed at which a file 
can be retrieved

• The speed at which files 
can be inserted or 
deleted

Pages and Rows

• Row data is generally 
not written to disk 
individually. Instead, 
rows are grouped into 
pages

• Pages are often used as 
the atomic unit of I/O, 
any read or write to the 
disks will be a page, 
even if only a single row 
is affected

• A page will include a 
header and the row 
data:

• There are usually many 
rows in a page, but not 
always

Page Header

Row 1
Row 2
Row 3
Row 4
Row 5

Pages and Rows

• A table will often span 
multiple pages

• INSERTs will be added at 
the last position in the 
newest page

• Additional pages can be 
added if the previous 
one is full

• For a student table:

Page 1

11011465 Jack ... 1

11011658 Robert ... 2

11044348 Sarah ... 3

11051499 Max ... 1

Page 2

11012234 James ... 2

11034868 Mike ... 2

11048345 Anne ... 1

Unordered Files

• Unordered files are often 
called Heaps

• New records are inserted 
into the last page of the 
file

• If the page is full, a new 
page is added at the end 
of the file

• This structure makes 
insertion very efficient

• There is no ordering on 
values however, so 
searching must be 
conducted linearly

• To delete a record, the 
page is retrieved, a row is 
marked as deleted, and 
the page is written back

• This space is difficult to 
reclaim, so performance 
will deteriorate over time

Ordered Files

• Data sorted by one or 
more fields is called a 
sequential file

• Inserting and deleting 
from an ordered file is 
difficult

• If there is sufficient 
space on the correct 
page, a record can be 
inserted and that page 
re-written

• Full pages can 
propagate along and 
require many rewrites

• One solution is to 
temporarily add records 
to an overflow file, 
these are merged at a 
later time

• Overflows improve 
inserts, but make 
searches more difficult



4

Binary Search

• A huge benefit of an 
ordered data structure 
is the concept of the 
binary search

• A binary search is only 
possible when 
searching for specific 
values in a field, where 
the data is also ordered 
by that field

• Consider the Student 
table, ordered by sID:

SELECT *

FROM Student

WHERE sID = 11062365;

• A linear search through 
the database could 
involve thousands of 
reads

Binary Search

Searching for: 11062365

• We begin the search by 
retrieving the page half 
way through the file

• The ID values in the 
page are smaller than 
the one we're looking 
for so we next look 
further down the file

Data Rows Page

11010001 ... 1

11011123 ... 2

11023134 ... 3

11025421 ... 4

11031341 ... 5

11034342 ... 6

11045332 ... 7

11058543 ... 8

11062365 ... 9

11072234 ... 10

11074122 ... 11

11077898 ... 12

11082232 ... 13

11083239 ... 14

Binary Search

Searching for: 11062365

• We next retrieve the 
page half way through 
the remaining half that 
contains our value

• The values are larger 
than the ID we are 
looking for, so we must 
travel backwards in the 
file

Data Rows Page

11010001 ... 1

11011123 ... 2

11023134 ... 3

11025421 ... 4

11031341 ... 5

11034342 ... 6

11045332 ... 7

11058543 ... 8

11062365 ... 9

11072234 ... 10

11074122 ... 11

11077898 ... 12

11082232 ... 13

11083239 ... 14

Binary Search

Searching for: 11062365

• We retrieve the page 
half way between the 
two previous pages

• The value we are 
looking for is on this 
page. We read the 
remaining row data

• Binary searches 
complete in Log2n time, 
which is often better 
than a linear search

Data Rows Page

11010001 ... 1

11011123 ... 2

11023134 ... 3

11025421 ... 4

11031341 ... 5

11034342 ... 6

11045332 ... 7

11058543 ... 8

11062365 ... 9

11072234 ... 10

11074122 ... 11

11077898 ... 12

11082232 ... 13

11083239 ... 14

Indexes

• Strictly speaking, the 
relational model states 
that the ordering of 
tuples does not matter

• In reality this is 
inefficient, searching 
and ordering are much 
easier using sequential 
files

• We can obtain further 
improvements with 
indexes

• An Index is a data 
structure that resides 
alongside a table, 
providing faster access 
to the rows

• An Index is associated 
with one of more fields, 
improving searches 
involving those fields

• The underlying data 
may or may not be 
ordered

Indexes

• Indexes are not unlike 
those you find in books

• The aim is to simplify the 
search for key words or 
values

• Often much faster than 
looking through the 
book linearly

• The index will be 
ordered to improve 
search efficiency

• There are a number of 
types indexes

• Primary indexes refer to 
a sequential file ordered 
by a key (unique)

• Clustered indexes refer 
to a sequential file 
ordered by some fields 
that may not be unique

• Secondary indexes exists 
separately to the data 
ordering



5

Spares and Dense Indexes

• Indexes can be broadly split into two categories, sparse and 
dense indexes
• Dense indexes contain a value matching every row

• Take up more memory but don’t require the data to be sorted

Data Rows Page

11010001 Jack …
1

11011123 Sarah …

11023134 Robert …
2

11025421 James …

11031341 Mike …
3

11034342 Anne …

11045526 Tony …
4

11046245 Nick …

Index

Anne 3

Jack 1

James 2

Mike 3

Nick 4

Robert 2

Sarah 1

Tony 4

Spares and Dense Indexes

• Indexes can be broadly split into two categories, sparse and 
dense indexes
• Sparse indexes only match a subset of the rows

• Efficient searches using a spare index need to be on a sequential file

Data Rows Page

11010001 Jack …
1

11011123 Sarah …

11023134 Robert …
2

11025421 James …

11031341 Mike …
3

11034342 Anne …

11045526 Tony …
4

11046245 Nick …

Index

11011123 1

11025421 2

11034342 3

11046245 4

Benefits of Indexing

• Sparse indexes significantly reduce the 
number of page reads required to retrieve the 
specific page a search requires

• Indexes are often stored in memory to further 
improve search speed

• However, every index must be maintained, 
and this adds complexity to INSERT, UPDATE 
and DELETE queries

Multi-level Indexes

• It’s possible, and often beneficial, to add higher levels of 
sparse index above existing ones

• Higher levels contain fewer index rows, and point you towards 
less sparse indexes lower down

• The final level points you towards the table data

Data Rows Page

11010001 Jack …
1

11011123 Sarah …

11023134 Robert …
2

11025421 James …

11031341 Mike …
3

11034342 Anne …

11045526 Tony …
4

11046245 Nick …

Index Level 2

11011123 1

11025421 2

11034342 3

11046245 4

Index Level 1

11025421 1

11046245 2

ISAM

• ISAM stands for Indexed Sequential Access Method
• Essentially a static, sparse, often multi level primary index

• The lowest level index points to anchor rows that 
represent each page. The index always references pages, 
rather than specific rows

• Pages are linked together either by being consecutively 
stored on disk, or each page holds a pointer to the next 
one. This means values can be read sequentially extremely 
fast

• Because the index is static, it must be reorganised 
occasionally to prevent a deterioration in speed

• ISAM is less suitable for databases with very frequent 
inserts or deletes. Overflow areas are used if necessary

ISAM

• A 2-level ISAM Index for the Student table

11010001 Jack …

11011123 Sarah …

11023134 Robert …

11025421 James …

11045526 Tony …

11046245 Nick …

11010001 •

⁞

11023134 •

⁞

11031341 •

11045526 •

⁞

⁞

11010001 •

⁞

11030001 •
11031341 Mike …

11034342 Anne …

⁞



6

B+-Trees

• B-Trees are balanced tree structures, and are now the most 
common method for indexing in databases. They are used as a 
dense index

• A balanced tree is a hierarchy of nodes each of which links to child 
nodes below it, much like ISAM

• The top of the tree is the root, nodes with no children are called 
leaf nodes. Leaf nodes are interconnected for sequential access

• An example node would look like this:

• • •Key Value 1 Key Value 2

Child Node Child Node Child Node or Next Leaf

Example B+-Tree

• An example B+-Tree Index for the Student table

• 11010001 11011123• • • 11023134 • • 11031341 11034342• • • 11045526

• 11011123 • • 11034342 • •

• 11023134 •

Benefits of B+-Trees

• B-Trees vastly reduce the number of reads 
necessary to access a specific database row

• For example, if the order (the number of allowed 
children) is 256, then a single row in a database of 
16million rows could be accessed with 4 disc 
reads

• Inserts and Deletes usually require the tree nodes 
to be slightly rearranged to balance the tree. This 
is an efficient procedure, but we will not cover it 
in this module

Clustered Indexes

• In many modern DBMSs, rather than the leaf 
nodes of a B+-tree pointing to the locations of the 
data rows, the leaf nodes themselves are adapted 
to hold the row data
• This reduces a read operation where the row has to 

be looked up

• This adapted B+-tree is often called a clustered index
and is the default storage structure in InnoDB and 
other DBMSs

• By default, a table in InnoDB will be a clustered index 
on the primary key

Choosing Indexes

• You can only have one 
primary or clustered 
index

• The most frequently 
looked-up value is often 
the best choice

• Some DBMSs assume 
the primary key is the 
primary index, as it is 
usually used to refer to 
rowss

• Don’t create too many 
indexes
• They can speed up queries, 

but they slow down 
inserts, updates and 
deletes

• Whenever the data is 
changed, the index may 
need to change

• Create secondary indexes 
if another field might 
often be used for 
ordering or searching

Creating Indexes

• In SQL we use CREATE 
INDEX:

CREATE INDEX

<index name>

ON <table>

(<columns>)

• Example:

CREATE INDEX sIndex ON

Student(sName);

CREATE INDEX smIndex ON

Student (sName, sMark);



7

Next Lecture

• Database Security
• Privileges

• GRANT and REVOKE

• SQL Injection Attacks
• How to write an injection attack

• How to secure your system against them

• For more information
• The Manga Guide to Databases, Chapter 5

• Database Systems, Chapter 7


