
1

Database Security

Database Systems

Michael Pound

This Lecture

• General Database Security

• Privileges
• Granting

• Revoking

• Views

• SQL Insertion Attacks

• Further Reading
• The Manga Guide to Databases, Chapter 5

• Database Systems, Chapter 20

Database Security

• Database security is
about controlling access
to information

• Some information
should be available
freely

• Other information
should only be available
to certain people or
groups

• Many aspects to
consider for security

• Physical security

• OS/Network security

• Encryption and
passwords

• DBMS security

• This lecture we will
focus mainly on DBMS
security

DBMS Security Support

• DBMSs can provide
some security

• Each user has an
account, username
and password

• These are used to
identify a user and
control their access
to information

• The DBMS verifies
password and checks
a user’s permissions
when they try to

• Retrieve data

• Modify data

• Modify the database
structure

Permissions and Privilege

• SQL uses privileges to
control access to tables
and other database
objects. E.g.
• SELECT privilege

• INSERT privilege

• UPDATE privilege

• CREATE privilege

• In MySQL there are
actually 30 distinct
privileges

• The owner (creator) of a
database has all
privileges on all objects
in the database, and
can grant these to
others

• The owner (creator) of
an object has all
privileges on that object
and can pass them on
to others

Privileges in SQL

GRANT <privileges>

ON <object>

TO <users>

[WITH GRANT OPTION]

<privileges> is a list of
SELECT (<columns>),

INSERT (<columns>),

DELETE,

UPDATE (<columns>),

or simply ALL

• <users> is a list of
user

• <object> is the
name of a table or view

• WITH GRANT

OPTIONmeans that
the users can pass their
privileges on to others

2

Privileges Examples

GRANT ALL ON

Employee

TO Manager

WITH GRANT OPTION;

• The user ‘Manager’ can
do anything to the
Employee table, and can
allow other users to do
the same (by using
GRANT statements)

GRANT SELECT,

UPDATE(Salary)

ON Employee

TO Finance;

• The user ‘Finance’ can
view the entire Employee
table, and can change
Salary values, but cannot
change other values or
pass on their privilege

Removing Privileges

• If you want to remove a
privilege you have
granted you use

REVOKE

<privileges>

ON <object>

FROM <users>;

• For example:

REVOKE

UPDATE(Salary)

ON Employee

FROM Finance

REVOKE ALL

PRIVILEGES, GRANT

OPTION FROM

Manager

Removing Privileges

• Example

• ‘Admin’ grants ALL
privileges to ‘Manager’,
and SELECT to ‘Finance’
with grant option

• ‘Manager’ grants ALL to
Personnel

• ‘Finance’ grants SELECT
to Personnel

Admin

Finance Manager

Personnel

SELECT

SELECT

ALL

ALL

Removing Privileges

• Manager’ revokes ALL
from ‘Personnel’

• ‘Personnel’ still has
SELECT privileges from
‘Finance’

Admin

Finance Manager

Personnel

SELECT

SELECT

ALL

Removing Privileges

• Manager’ revokes ALL
from ‘Personnel’

• ‘Personnel’ still has
SELECT privileges from
‘Finance’

• ‘Admin’ revokes SELECT
from ‘Finance’

• Personnel also loses
SELECT

Admin

Finance Manager

Personnel

ALL

Views

• Privileges work at the
level of tables

• You can restrict access
by column

• You cannot restrict
access by row

• Views, along with
privileges, allow for
customised access

• Views provide ‘virtual’
tables

• A view is the result of a
SELECT statement which
is treated like a table

• You can SELECT from
(and sometimes UPDATE
etc) views just like tables

3

Creating Views

CREATE VIEW <name>

AS

<select statement>;

• <name> is the name of
the new view

• <select statement> is a
query that returns the
rows and columns of
the view

• Example
• We want each university

tutor to be able to see
marks of only those
students they actually
teach

• We will assume our
database is structured
with Student, Enrolment,
Tutors and Module
tables similar to those
seen in previous lectures

View Example

Student

sID sFirst sLast sYear

Module

mCode mTitle mCredits

Enrolment

sID mCode eMark eYearTaken

Tutors

lID sID

Lecturers

lID lName lDept

View Example

CREATE VIEW TuteeMarks

AS

SELECT sID, sFirst, sLast, mCode, eMark

FROM Student INNER JOIN Enrolment USING(sID)

INNER JOIN Module USING (mCode)

WHERE sID IN (SELECT sID FROM Tutors

WHERE lID = CURRENT_USER);

GRANT SELECT ON TuteeMarks TO 'user'@'%';

Note: You should grant for all Tutors in MySQL, in Oracle you can
grant to PUBLIC. In Oracle CURRENT_USER is called USER

Database Integrity

• Database Security

• Database security makes
sure that the user is
authorised to access
information

• Beyond security, checks
should be made that
user mistakes are
detected and prevented

• Database Integrity

• Ensures that authorised
users only input
consistent data into the
database

• Usually consists of a
series of constraints and
assertions on data

Database Integrity

• Integrity constraints come in a number of
forms:
• CREATE DOMAIN can be used to create custom

types with specific values

• CREATE ASSERTION can be used to check
manipulation of tables against some test, that
must always be true

• CHECK constraints (more widely suppoted) are
used to check row-level constraints

• Oracle supports CHECK constraints. MySQL
can emulate them with triggers

Connections to a DBMS

• A major concern with database security
should be when your application connects to
the DBMS

• The user doesn’t connect to the DBMS, the
application does

• This often happens with elevated privileges

• If the application isn’t well secured, it could
provide a conduit for malicious code

4

SQL Injection Attacks

An SQL Injection attack is an exploit where a
user is able to insert malicious code into an SQL

query, resulting in an entirely new query

SQL Injection Attacks

• It is common for user input to be read, and form
part of an SQL query. For example, in PHP:

$query = "SELECT * FROM Products

WHERE pName LIKE '%" . $searchterm . "%'";

• If a user is able to pass the application malicious
information, this information may be combined
with regular SQL queries

• The resulting query may have a very different
effect

SQL Injection Attacks

• An application or website is vulnerable to an
injection attack if the programmer hasn’t
added code to check for special characters in
the input:

• ' represents the beginning or end of a string

• ; represents the end of a command

• /*...*/ represent comments

• -- represents a comment for the rest of a line

SQL Injection Attacks

• Imagine a user login webpage that requests a
user ID and password. These are passed from
a form to PHP via $_POST

• $_POST[‘id’] = ‘Michael’

• $_POST[‘pass’] = ‘password’

• The ID is later used for a query:
SELECT uPass FROM Users

WHERE uID = 'Michael';

SQL Injection Attacks

• In PHP the code for any user might look
something like this:

$query = "SELECT uPass FROM Users WHERE

uID = '" . $_POST['id'] . "'";

$result = mysql_query($query);

$row = mysql_fetch_row($result);

$pass = row['uPass'];

• The password would then be compared with the
other field the user entered

SQL Injection Attacks

• If the user enters Name, the command
becomes:

SELECT uPass FROM Users

WHERE uID = 'Name';

• But what about if the user entered

';DROP TABLE Users;--

as their name?

5

SQL Injection Attacks

• The website programmer intended to execute
a single SQL query:

SELECT uPass FROM Users WHERE uID = ' Name '

SELECT uPass FROM Users WHERE uID = 'Name'

String Concatenation

SQL Injection Attacks

• With the malicious code inserted, the
meaning of the SQL changes into two queries
and a comment:

SELECT uPass FROM Users WHERE uID = ' ';DROP TABLE Users;-- '

SELECT uPass FROM Users WHERE uID = ''; DROP TABLE Users; -- '

String Concatenation

SQL Injection Attacks

• Sometimes the goal isn’t sabotage, but
information

• Consider an online banking system:

SELECT No, SortCode FROM Accounts WHERE No = ' 11244102 '

SELECT No, SortCode FROM Accounts WHERE No = '11244102'

String Concatenation

SQL Injection Attacks

• This attack is aimed at listing all accounts at a
bank. The SQL becomes a single, altered
query:

SELECT No, SortCode FROM Accounts WHERE No = ' 1' OR 'a' = 'a '

SELECT No, SortCode FROM Accounts WHERE No = '1' OR 'a' = 'a'

This is particularly effective with weakly typed languages like PHP

String Concatenation

How To Write An SQL Injection Attack

• Data Protection Act 1998, Section 55(1):
A person must not knowingly or recklessly, without the
consent of the data controller obtain or disclose
personal data or the information contained in
personal data.

• Do not do this on a website you do not own

• "I was just seeing if it would work" is not a
valid defence

Defending Against Injection Attacks

• Defending against SQL injection attacks is not
difficult, but a lot of people still don't

• There are numerous ways you can improve
security. You should be doing most of these at
any time where a user inputs variables that
will be used in an SQL statement

• In essence, don't trust that all users will do
what you expect them to do

6

1. Restrict DBMS Access Privileges

• Assuming an SQL injection attack is successful,
a user will have access to tables based on the
privileges of the account that the application
used to connect to the DBMS

• GRANT an application or website the
minimum possible access to the database

• Do not allow DROP, DELETE etc unless
absolutely necessary

• Use Views to hide as much as possible

2. Encrypt Sensitive Data

• Storing sensitive data inside your database
can always lead to problems with security

• If in doubt, encrypt sensitive information so
that if any breaches occur, damage is minimal

• Another reason to encrypt data is the
majority of commercial security breaches are
inside jobs by trusted employees

• Never store unencrypted passwords. Many
shops still do this

3. Validate Input

• Arguably the most important consideration
when creating a database or application that
handles user input

• Filter any escape characters and check the
length of the input against expected sizes

• Checking input length should be standard
practice. This applies to programming in
general, as it also avoids buffer overflow
attacks

3. Validate Input

• Always escape special characters. All languages
that execute SQL strings will allow this, in PHP:

$username = mysql_real_escape_string($input);

$query = "SELECT * FROM Users

WHERE uID = '" . $username . "'";

$result = mysql_query($query);

• mysql_real_escape_string() will escape any
special characters, like ', with \

• You should do this with any input variables

4. Check Input Types

• In weakly typed languages, check that the
user is providing you with a type you'd
expect

• For example, if you expect the ID to be an int,
make sure it is. In PHP:

if (!is_int($_POST['userid']))

{

// ID is not an integer

}

5. Stored Procedures

• Some DBMSs allow you to store procedures
for use over and over again

• Procedures you might store are SELECTs,
INSERTSs etc, or other procedural code

• This adds another level of abstraction
between the user and the tables

• If necessary, a stored procedure can access
tables that are restricted to the rest of the
application

7

6. Generic Error Messages

• While it might seem helpful to output
informative error messages, this actually
supplies users with far too much information

• For example, if your SQL query fails, do not
show the user mysql_error(), instead output:

A system error has occured. We apologise for
the inconvenience.

• You can log the error privately for
administrative purposes

7. Parameterised Input

• Parameterised input essentially means that
user input is passed to the database as
parameters, not as part of the SQL string

• This makes injection attacks extremely difficult

• Not all DBMSs / Languages support this

• In PHP, you need to use PHP Data Objects
(PDO)

• Reference:
http://php.net/manual/en/book.pdo.php

PDO

• Rather than building up a string for your SQL and
executing it, given a PDO mysql connection
$conn:

$stmt = $conn->prepare('SELECT * FROM Users

WHERE uName = :name');

$stmt->bindValue(':name', $_POST['username']);

$stmt->execute();

• The statement is pre-compiled during prepare.
While a malicious parameter may still be passed
to the query, it is simply used rather than
executed.

http://php.net/manual/en/book.pdo.php

