Modern Databases

Database Systems Michael Pound

This Lecture

- Row-Orientated Vs Column-Orientated Databases
- · Other Types of Database
 - OODBMSs and ORDBMSs
 - Distributed DBMSs
 - Example: BigTable
 - · Semi-structured Data
 - Multimedia Databases
- · Further reading
 - The Manga Guide To Databases, Chapter 6
 - Database Systems, Chapters 24, 27 and 29
 - BigTable: http://labs.google.com/papers/bigtable.html

Row-orientated DBMSs

- Until now, we have focused on RDBMS, which are row-orientated
 - Data is arranged in rows (tuples)
 - This is reflected on the disks in pages

1001001	Smith	Andrew	5 Arnold Close	2			
1001002	Brooks	James	7 Holly Avenue	2	Page 1		
1001003	Anderson	Max	15 Main Street	3			
1001004	Evans	Sarah	Flat 1a, High Street	2			
1001004	Evans Harrison	Sarah Sam	Flat 1a, High Street Newark Hall	2	Page 2		

Column-orientated DBMSs

- Large scale databases often store data in a column-orientated way
 - · Data is arranged by column
 - This is also reflected on the disks in pages

1001001	100	1002	10	0100	03	10	010	04	10	010	005	1	001006	Page 1
Smith	Bro	oks	s Anderso			Evans			Harrison				Jones	Page 17
Andrew	ew James Max			5	Sarah S			Sam			Ве	en	Page 34	
5 Arnold Close 7 Holly Avenue				15 Main St			Stre	treet Flat			a, High	Page 70		
2 2 3	2	1 1	1	2	3	2	2	3	3	2	2	1	1	Page 101

Rows vs Columns

- Database speed is usually limited by disk reads. You want to use the optimum storage strategy for the demands on the database
 - Row-orientated is extremely good when queries often require many columns in the same row
 - Row-orientated provides fast inserts of complete rows
 - Column-orientated is more suited to fast analysis over single columns, e.g. Aggregate functions
 - Column-orientated provides fast inserts when many rows are inserted at once

Weaknesses of RDBMSs

- Conversion to and from standard procedural languages often requires a lot of code
- Support for anything beyond standard types is poor. For example, images and video
- Complex objects and relationships aren't well handled. Often involving a great deal of normalisation, and eventually a lot of JOINs to recombine data

Object Oriented Databases

- An object oriented database (OODB) is a collection of persistent objects
 - Objects instances of a defined class
 - Persistent objects exist independently of any program
- An object oriented DBMS
 - Manages a collection of objects
 - Allows objects to be made persistent
 - Permits queries to be made of the objects
 - Does all the normal DBMS things as well

OODB Example

- Consider a store with a variety of products
 - Books
 - CDs
 - DVDs
- This lead to missing data among the various types
- · OODB solution
 - We make an abstract Product class
 - Book, CD, and DVD are each a concrete subclass of Product
 - The database is a persistent collection of Products

OODB Example

- · Product is abstract
 - You cannot make a Product directly
 - You can, however, make a Book, CD, or DVD, and these are Products

Object Oriented Databases

- Advantages
 - Good integration with Java, C++, etc
 - Can store complex information
 - Fast to recover whole objects
 - Has the advantages of the (familiar) object paradigm
- Disadvantages
 - There is not underlying data model that everyone agrees on (unlike say, the relational model)
 - Can be more complex and less efficient
 - OODB queries tend to be procedural, unlike SQL

Object-Relational Databases

- Extend a RDBMS with object concepts
 - Data values can be objects of arbitrary complexity
 - These objects have inheritance etc.
 - You can query the objects as well as the tables
- An object relational database
 - Retains most of the structure of the relational model
 - Needs extensions to query languages (SQL or relational algebra)
 - Most DBMSs already implement this as part of SQL3 onwards

ORDBMS Example

 In Oracle, PostgreSQL etc, you can define your own types (exact syntax varies):

CREATE TYPE Address AS OBJECT (
aNumber INT,
aRoad VARCHAR(64),
aPostcode VARCHAR (8));

CREATE TYPE Student AS OBJECT (
SID INT,
SName VARCHAR(64),
SAddress Address,

sYear MAP MEMBER FUNCTION age RETURN INT); CREATE TYPE HomeStudent
UNDER Student (
sHomeLEA INT);

CREATE TYPE ExchangeStudent
UNDER Student (
sVisaInfo VisaInfo);

Distributed Databases

- A distributed DB system consists of several sites
 - Sites are connected by a network
 - Each site can hold data and process it
 - It shouldn't matter where the data is - the system is a single entity
- Distributed database management system (DDBMS)
 - A DBMS (or set of them) to control the databases
 - Communication software to handle interaction between sites

Distributed Databases

Distributed databases often make use of a client/server architecture

Example: Google BigTable

- Google BigTable is a distributed database (more or less) that contains sparse, distributed, multidimensional and sorted maps of data
 - Sparse: Much of the data has no value
 - Distributed: Tables are stored over many locations, and duplicated
 - Multi-dimensional: Cells are accessed by more than just a row and column
- The aim of BigTable is massive scalability. It's used on Google Earth, Google Maps, Youtube etc.

Maps

- A map is a data structure that holds <key,value> pairs. Much like the associative arrays we saw in PHP
- · Values are accessed by using the required key

BigTable Maps

- In BigTable, maps are multi-dimensional, with string keys (row, column, time) referencing a single string
- Exact use of rows and columns, much like any database, depends on the data being stored
- Time is used to store multiple versions of data
- · Columns are further split into families

BigTable Example

- Google use an example of a table holding information on webpages
 - Rows are reversed URLs for the pages
 - The 'content' column family holds the HTML
 - · 'anchor' columns hold data on websites that link to this one
 - 'content' has a time dimension to hold older version of each page

BigTable Data Organisation

- The way BigTable is stored on disk, and the algorithms for querying and sorting the data are fairly complex. Some notable points are:
 - Data is sorted by rows, and groups of rows are split into tablets. Tablets are the unit of distribution and load balancing
 - A scheduler will keep note of current queries and rearrange if certain tablets or servers are under too much load
 - Timestamps can be used to only keep data for a certain amount of time etc.
 - · Locking is performed on column families

Semistructured data

- Semistructured Data: A new data model designed to cope with problems of information integration. That is, where data from multiple sources could theoretically be used together, but varies wildly in structure
- XML: A standard language for describing semistructured data schemas and representing data.

XML

- XML = Extensible Markup Language.
- While HTML uses tags for formatting (e.g., "italic"), XML uses tags for semantics (e.g., "this is an address").
- Key idea: create tag sets for a domain (e.g., bars), and translate all data into properly tagged XML documents.
- Well formed XML XML which is syntactically correct; tags and their nesting totally arbitrary.
- Valid XML XML which has DTD (document type definition); imposes some structure on the tags, but much more flexible than relational database schema.

XML and Semistructured Data

- Well-Formed XML with nested tags is exactly the same idea as trees of semistructured data.
- XML also enables non-tree structures (with references to IDs of nodes), as does the semistructured data model.

XPATH and XQUERY

- XPATH is a language for describing paths in XML documents.
 - Really think of the semistructured data graph and its paths.
 - Why do we need path description language: can't get at the data using just Relation. Attribute expressions.
- XQUERY is a full query language for XML documents with power similar to OQL (Object Query Language, query language for objectoriented databases).
 - XQUERY is now seeing use in some modern DBMSs where you can opt to use XML for a storage structure

Multimedia Databases

- Multimedia DBs can store complex information
 - Images
 - Music and audio
 - Video and animation
 - Full texts of books
 - Web pages
- They can be used in a wide range of application areas
 - Entertainment
 - Marketing
 - Medical imaging
 - · Digital publishing
 - Geographic Information Systems

Querying Multimedia DBs

- Metadata searches
 - · Information about the multimedia data (metadata) is stored
 - This can be kept in a standard relational database and queried normally
 - · Limited by the amount of metadata available
- · Content searches
 - · The multimedia data is searched directly
 - · Potential for much more flexible search
 - Depends on the type of data being used
 - Often difficult to determine what the 'correct' results are

Metadata Searches

- we might store
 - Title
 - Year
 - · Genre(s)
 - Actor(s)
 - Director(s)
 - · Producer(s)
- Example indexing films We can then search for things like
 - Films starring Kevin Spacey
 - Films directed by Peter Jackson
 - · Dramas produced in 2000
 - · We don't actually search the films

Metadata Searches

- Advantages
 - Metadata can be structured in a traditional DBMS
 - · Metadata is generally concise and so efficient to store
 - · Metadata enriches the content
- Disadvantages
 - · Metadata can't always be found automatically, and so requires data
 - It restricts the sorts of queries that can be made

Content Searches

- · An alternative to metadata is to search the content directly
 - Multimedia is less structured than metadata
 - · It is a richer source of information but harder to process
- Example of content based retrieval
 - Find images similar to a given sample
 - · Hum a tune and find out what it is
 - · Search for features, such as cuts or transitions in

Revision Lectures

- · There are two revision lectures that will take place in the first week back after the holiday
- · I will include information on what sort of things you can expect in the exam, and the general structure of the exam
- There is plenty of time to go over more challenging topics from the module, email me if you are unsure about a subject and I will add it to the revision lectures