SQL Data Definition

Database Systems
Michael Pound

This Lecture

e SQL
* The SQL language
* SQL, the relational model, and E/R diagrams
* CREATE TABLE
« Columns
* Primary Keys
* Foreign Keys
e Further Reading
* Database Systems, Connolly & Begg, Chapter 7.3
* The Manga Guide to Databases, Chapter 4

Last Lecture

saL

* Entity Relationship
Diagrams
* Entities
* Attributes
* Relationships
* Example

* Students take many
Modules

* Modules will be taken by

many Students

* Originally ‘Sequel’ -
Structured English
query Language, part of
an IBM project in the
70’s

* Sequel was already
taken, so it became SQL
- Structured Query
Language

* ANSI Standards and a
number of revisions
¢ SQL-89
. SQL-92 (SQL2)
. SQL-99 (SQL3)
* SQL:2008 (SQL 2008)
* Most modern DBMS
use a variety of SQL

* Few (if any) are true to
the standard

e SQLis alanguage based
on the relational model
¢ Actual implementation is
provided by a DBMS
¢ SQLis everywhere
* Most companies use it fo
data storage
* All of us use it dozens of
times per day

* You will be expected to
know it as a software
developer

sQL

« SQL provides
* A Data Definition Language
(DDL)
* A Data Manipulation
Language (DML)
* A Data Control Language

r (DCL)

Database Management Systems

* ADBMS s a software
system responsible for
allowing users access to
data

* A DBMS will usually

* Allow the user to access
data using SQL

Allow connections from

other programming

languages

Provide additional

functionality like

concurrency

* There are many DBMSs,
some popular ones
include:

* Oracle
* DB2

Microsoft SQL Server

Ingres

PostgreSQL

MysQL

Microsoft Access (with SQL

Server as storage engine)

MySQL

* During this module we will use MySQL as our
DBMS
* Freeto use
* Source code available under General Public License
* Extremely popular and widely used
* Easy to set up on the school servers
* In most cases is as functional as commercial DBMSs
* The school also has Access, Oracle and
PostgreSQL installed.

SQL Case

* SQL statements will be written in BOLD COURIER FONT

* SQL keywords are not case-sensitive, but we’ll write SQL
keywords in upper case for emphasis

* Table names, column names etc. are case sensitive
* For example:

SELECT * FROM Students
WHERE Name = “James”;

Important: MySQL in Windows is not case sensitive. Do not
be complacent during the coursework.

SQL Strings

* Strings in SQL are surrounded by single quotes:
* 'I AM A STRING'

 Single quotes within a string are doubled or
escaped using \
* 'I''M A STRING'
* 'I\'M A STRING'

e ''isan empty string

* In MySQL, double quotes also work (this isn’t the
ANSI standard)

Non-Procedural Programming

* SQL is a declarative * Example: Given a
(non-procedural) database with tables
language * Student with attributes

* Procedural - tell the ID, Name, Address
computer what to do * Module with attributes
using specific successive Code, Title
instructions * Enrolment with

* Non-procedural — attributes ID, Code

describe the required
result (not the way to
compute it)

* Get a list of students
who take the module
‘Database Systems’

Procedural Programming

Set M to be the first Module Record /* Find module code for */
Code = ' /* 'Database Systems' */
While (M is not null) and (Code = '')
If (M.Title = 'Database Systems') Then
Code = M.Code
Set M to be the next Module Record

Set NAMES to be empty /* A list of student names */
Set S to be the first Student Record

While S is not null /* For each student... */
Set E to be the first Enrolment Record

While E is not null /* For each enrolment... */

If (£.10 = 5.10) And /* 1f this student is */

(E.Code = Code) Then /* enrolled in DB Systems */

NAMES = NAMES + S.NAME /* add them to the list */

Set E to be the next Enrolment Record
Set S to be the next Student Record
Return NAMES

Non-Procedural (SQL)

SELECT Name FROM Student, Enrolment
WHERE
(Student.ID = Enrolment.ID)
AND
(Enrolment.Code =
(SELECT Code FROM Module WHERE
Title = ‘Database Systems’));

NoSQL

* SQLis by no means perfect

* Edgar Codd hated it — It’s actually a pretty poor
implementation of the relational model

* Implementations vary wildly. For example, while

Relations, Entities and Tables

* The terminology changes from the Relational Model
through to SQL, but usually means the same thing

Oracle and MySQL both use SQL, there are commands Relations E/R Diagrams saL
that won’t work on both systems. Relation Entity Table
* It’s extremely easy to trigger vast joins or delete large Tuple Instance Row
numbers of rows by mistake Attribute Attribute Column or Field
* NoSQLis a term used to describe database Foreign Key M:1 Relationship | Foreign Key
systems that attempt to avoid SQL and the Primary Key Attribute Primary Key
relational model
Implementing E/R Diagrams CREATE TABLE
* Given an E/R design CREATE TABLE <table-name> (.+ ygy supply
* The entities become SQL <col-name 1> <col-def 1>, « A name for the table
. tables <col-name 2> <col-def 2>, ¢ Aname and

Attributes of an entity
become columns in the
corresponding table

We can approximate the
domains of the attributes
by assigning types to each
column

Relationships may be
represented by foreign

definition for each

<col-name n> <col-def n>, column
i * Alist of constraints

<constraint-1>,

(e.g. Keys)

<constraint-k>

)i

keys
Column Definitions Types
<col-name> <type> e Each column has a * There are many types in MySQL, but most are
[NULL | NOT NULL] name and a type variations of the standard types
* Numeric Types
* Most of the rest of
[DEFAULT default value] the colurmn « TINYINT, SMALLINT, INT, MEDIUMINT, BIGINT
[NOT NULL | NULL] RO * FLOAT, REAL, DOUBLE, DECIMAL
definition is .
[AUTO INCREMENT]) * Dates and Times
= optional

[UNIQUE [KEY] | ,
* There’s more you

[PRIMARY] KEY] can add, like
storage and index
([optional, | or) instructions

« DATE, TIME, YEAR
¢ Strings

* CHAR, VARCHAR
* Others

* ENUM, BLOB

Types

Column Definitions

* We will use a small subset of the possible * Columns can be * Columns can be given a
types: specified as NULL or default value
NOT NULL * You just use the
Type Description Example *+ NOT NULL columns keyword DEFAULT
TINYINT 8 bit integer -128t0 127 ..
INT 32 bit integer 2147483648 to 2147483647 cannot have missing followed by the Value'
CHAR (m) String of fixed length m “Hello World values eg:
VARCHAR (m) | String of maximum length m | “Hello World” e NULL is the default if
REAL Adouble precision number 3.14159 you do not specify col-name INT DEFAULT 0,
ENUM A set of specific strings (‘Cat’, ‘Dog’, ‘Mouse’) either
DATE A Day, Month and Year ‘1981-12-16’ or ‘81-12-16’
Example AUTO_INCREMENT

CREATE TABLE Student (
sID INT NOT NULL,
sName VARCHAR(50) NOT NULL,
sAddress VARCHAR (255),
sYear INT DEFAULT 1

If you specify a column as AUTO_INCREMENT, a value
(usually max(col) + 1) is automatically inserted when data
is added. This is useful for Primary Keys
For example:

col-name INT AUTO_INCREMENT,
* When it comes to inserting values, you should use NULL,
0 or nothing to ensure you don’t override the automatic
value

Note: The table auto_increment value isn’t recalculated
during deletes. You might want to reset it using:
ALTER TABLE <name> AUTO_INCREMENT=1;

Example

CREATE TABLE Student (
sID INT NOT NULL
AUTO_INCREMENT,
sName VARCHAR(50) NOT NULL,
sAddress VARCHAR(255),
sYear INT DEFAULT 1

)i

CREATE TABLE Module (
HAR NOT L
mCode CHAR(6) NOT NULL, @ Module @
mCredits TINYINT NOT NULL
DEFAULT 10,
mTitle VARCHAR(100) NOT
NULL

Constraints
CONSTRAINT * Each constraint is given
<name> a name. If you don’t
<type> specify a name, one will
<details>

be generated

* Constraints which refer
to single columns can
be included in their
definition

* MySQL Constraints
* PRIMARY KEY
* UNIQUE
+ FOREIGN KEY
+ INDEX

Primary Keys

* A primary key for each
table is defined through
a constraint

* PRIMARY KEY also
automatically adds
UNIQUE and NOT
NULL to the relevant
column definition

* The details for the
Primary Key constraint
are the set of relevant
columns

CONSTRAINT <name>
PRIMARY KEY
(coll, col2, .)

Unique Constraints

* As well as a single
primary key, any set of
columns can be
specified as UNIQUE

* This has the effect of
making candidate keys
in the table

* The details for a unique
constraint are a list of
columns which make up
the candidate key

CONSTRAINT <name>
UNIQUE
(coll, col2, .)

Example

CREATE TABLE Student (
SID INT AUTO_INCREMENT
PRIMARY KEY,
sName VARCHAR(50) NOT NULL,
sAddress VARCHAR(255),
sYear INT DEFAULT 1

)i

CREATE TABLE Module (
mCode CHAR(6) NOT NULL,
mCredits TINYINT NOT NULL

DEFAULT 10,

mTitle VARCHAR(100) NOT
NULL,

CONSTRAINT mod_pk
PRIMARY KEY (mCode)

Relationships

* Relationships are
represented in SQL
using Foreign Keys

« 1:1are usually not used,

or can be treated as a
special case of M:1

foreign key from the M-
side to the 1

M:M are split into two
M:1 relationships

M:1 are represented as a

Relationships

* The Enrolment table
* Will have columns for
the student ID and
module code attributes

Will have a foreign key to
Student for the ‘has’
relationship

Will have a foreign key to
Module for the ‘in’
relationship

<>
Student

Foreign Keys

* Foreign Keys are also
defined as constraints
* You need to provide
* The columns which
make up the foreign key
* The referenced table
* The columns which are
referenced by the
foreign key
* You can optionally
provide reference
options

CONSTRAINT <name>
FOREIGN KEY

(coll, col2, ...)
REFERENCES

table-name

(coll, col2, ...)

ON UPDATE ref_opt
ON DELETE ref_opt

ref_opt: RESTRICT |
CASCADE | SET NULL

Example

CREATE TABLE Enrolment (
SID INT NOT NULL,
mCode CHAR(6) NOT NULL,
CONSTRAINT en_pk
PRIMARY KEY (sID, mCode)
CONSTRAINT en_fk1
FOREIGN KEY (sID)
REFERENCES Student (sID)
ON UPDATE CASCADE
CONSTRAINT en_fk2
FOREIGN KEY (mCode)
REFERENCES Module (mCode)
ON UPDATE CASCADE

Storage Engines

* In MySQL you can * Some available storage

specify the engine used engines are:
to store files onto disk * MyISAM - The default,
* The type of storage very fast. Ignores all

foreign key constraints

InnoDB - Offers
transactions and foreign

engine will have a large
effect on the operation
of the database Keys

* The engine should be Memory — Stored in
specified when a table RAM (extremely fast)

is created Blackhole — Deletes
everything you put in it!

InnoDB

* We will use InnoDB for all tables during this
module, for example:

CREATE TABLE Student (
sID INT AUTO_INCREMENT PRIMARY KEY,
sName VARCHAR (50) NOT NULL,
sAddress VARCHAR(255),
sYear INT DEFAULT 1

) ENGINE = InnoDB;

Note: All tables in a relationship must be InnoDB for FK
constraints to work

This Lecture in Exams

Give the SQL statement(s) required to create a table called Books with the
following columns

. bID, an integer that will be the Primary Key
. bTitle, a string of maximum length 64
. bPrice, a double precision value

. gCode, an integer that will be a foreign key to a gCode column in
another table Genres

Next Lecture

* More SQL
* DROP TABLE
¢ ALTER TABLE
* INSERT, UPDATE, and DELETE
* The Information Schema
* For more information
* Database Systems, Connolly and Begg, Chapter 6.3
* The Manga Guide to Databases, Chapter 4

