
1

SQL Data Definition

Database Systems

Michael Pound

This Lecture

• SQL

• The SQL language

• SQL, the relational model, and E/R diagrams

• CREATE TABLE
• Columns

• Primary Keys

• Foreign Keys

• Further Reading

• Database Systems, Connolly & Begg, Chapter 7.3

• The Manga Guide to Databases, Chapter 4

Last Lecture

• Entity Relationship
Diagrams

• Entities

• Attributes

• Relationships

• Example

• Students take many
Modules

• Modules will be taken by
many Students

Enrolment

Student

Module

In

Has

Name

ID

Address

Year

Code

Title

Credits

ID Code

SQL

• Originally ‘Sequel’ -
Structured English
query Language, part of
an IBM project in the
70’s

• Sequel was already
taken, so it became SQL
- Structured Query
Language

• ANSI Standards and a
number of revisions
• SQL-89

• SQL-92 (SQL2)

• SQL-99 (SQL3)

• ...

• SQL:2008 (SQL 2008)

• Most modern DBMS
use a variety of SQL
• Few (if any) are true to

the standard

SQL

• SQL is a language based
on the relational model
• Actual implementation is

provided by a DBMS

• SQL is everywhere
• Most companies use it for

data storage

• All of us use it dozens of
times per day

• You will be expected to
know it as a software
developer

• SQL provides
• A Data Definition Language

(DDL)

• A Data Manipulation
Language (DML)

• A Data Control Language
(DCL)

Database Management Systems

• A DBMS is a software
system responsible for
allowing users access to
data

• A DBMS will usually
• Allow the user to access

data using SQL

• Allow connections from
other programming
languages

• Provide additional
functionality like
concurrency

• There are many DBMSs,
some popular ones
include:
• Oracle

• DB2

• Microsoft SQL Server

• Ingres

• PostgreSQL

• MySQL

• Microsoft Access (with SQL
Server as storage engine)

2

MySQL

• During this module we will use MySQL as our
DBMS

• Free to use

• Source code available under General Public License

• Extremely popular and widely used

• Easy to set up on the school servers

• In most cases is as functional as commercial DBMSs

• The school also has Access, Oracle and
PostgreSQL installed.

SQL Case

• SQL statements will be written in BOLD COURIER FONT

• SQL keywords are not case-sensitive, but we’ll write SQL
keywords in upper case for emphasis

• Table names, column names etc. are case sensitive

• For example:

SELECT * FROM Students

WHERE Name = “James”;

Important: MySQL in Windows is not case sensitive. Do not
be complacent during the coursework.

SQL Strings

• Strings in SQL are surrounded by single quotes:
• 'I AM A STRING'

• Single quotes within a string are doubled or
escaped using \
• 'I''M A STRING'

• 'I\'M A STRING'

• '' is an empty string

• In MySQL, double quotes also work (this isn’t the
ANSI standard)

Non-Procedural Programming

• SQL is a declarative
(non-procedural)
language
• Procedural – tell the

computer what to do
using specific successive
instructions

• Non-procedural –
describe the required
result (not the way to
compute it)

• Example: Given a
database with tables
• Student with attributes

ID, Name, Address

• Module with attributes
Code, Title

• Enrolment with
attributes ID, Code

• Get a list of students
who take the module
‘Database Systems’

Procedural Programming

Set M to be the first Module Record /* Find module code for */

Code = '' /* 'Database Systems' */

While (M is not null) and (Code = '')

If (M.Title = 'Database Systems') Then

Code = M.Code

Set M to be the next Module Record

Set NAMES to be empty /* A list of student names */

Set S to be the first Student Record

While S is not null /* For each student... */

Set E to be the first Enrolment Record

While E is not null /* For each enrolment... */

If (E.ID = S.ID) And /* If this student is */

(E.Code = Code) Then /* enrolled in DB Systems */

NAMES = NAMES + S.NAME /* add them to the list */

Set E to be the next Enrolment Record

Set S to be the next Student Record

Return NAMES

Non-Procedural (SQL)

SELECT Name FROM Student, Enrolment

WHERE

(Student.ID = Enrolment.ID)

AND

(Enrolment.Code =

(SELECT Code FROM Module WHERE

Title = „Database Systems‟));

3

NoSQL

• SQL is by no means perfect
• Edgar Codd hated it – It’s actually a pretty poor

implementation of the relational model

• Implementations vary wildly. For example, while
Oracle and MySQL both use SQL, there are commands
that won’t work on both systems.

• It’s extremely easy to trigger vast joins or delete large
numbers of rows by mistake

• NoSQL is a term used to describe database
systems that attempt to avoid SQL and the
relational model

Relations, Entities and Tables

• The terminology changes from the Relational Model
through to SQL, but usually means the same thing

Relations E/R Diagrams SQL

Relation Entity Table

Tuple Instance Row

Attribute Attribute Column or Field

Foreign Key M:1 Relationship Foreign Key

Primary Key Attribute Primary Key

Implementing E/R Diagrams

• Given an E/R design
• The entities become SQL

tables

• Attributes of an entity
become columns in the
corresponding table

• We can approximate the
domains of the attributes
by assigning types to each
column

• Relationships may be
represented by foreign
keys

Enrolment

Student

Module

In

Has

Name

ID

Address

Year

Code

Title

Credits

ID Code

CREATE TABLE

CREATE TABLE <table-name> (

<col-name 1> <col-def 1>,

<col-name 2> <col-def 2>,

:

<col-name n> <col-def n>,

<constraint-1>,

:

<constraint-k>

);

• You supply

• A name for the table

• A name and
definition for each
column

• A list of constraints
(e.g. Keys)

Column Definitions

<col-name> <type>

[NULL | NOT NULL]

[DEFAULT default_value]

[NOT NULL | NULL]

[AUTO_INCREMENT]

[UNIQUE [KEY] |

[PRIMARY] KEY]

([] optional, | or)

• Each column has a
name and a type

• Most of the rest of
the column
definition is
optional

• There’s more you
can add, like
storage and index
instructions

Types

• There are many types in MySQL, but most are
variations of the standard types

• Numeric Types
• TINYINT, SMALLINT, INT, MEDIUMINT, BIGINT
• FLOAT, REAL, DOUBLE, DECIMAL

• Dates and Times
• DATE, TIME, YEAR

• Strings
• CHAR, VARCHAR

• Others
• ENUM, BLOB

4

Types

• We will use a small subset of the possible
types:

Type Description Example

TINYINT 8 bit integer -128 to 127

INT 32 bit integer 2147483648 to 2147483647

CHAR (m) String of fixed length m “Hello World ”

VARCHAR (m) String of maximum length m “Hello World”

REAL A double precision number 3.14159

ENUM A set of specific strings (‘Cat’, ‘Dog’, ‘Mouse’)

DATE A Day, Month and Year ‘1981-12-16’ or ‘81-12-16’

Column Definitions

• Columns can be
specified as NULL or
NOT NULL

• NOT NULL columns

cannot have missing
values

• NULL is the default if

you do not specify
either

• Columns can be given a
default value

• You just use the
keyword DEFAULT
followed by the value,
eg:

col-name INT DEFAULT 0,

Example

CREATE TABLE Student (

sID INT NOT NULL,

sName VARCHAR(50) NOT NULL,

sAddress VARCHAR(255),

sYear INT DEFAULT 1

);

Student

Name

ID

Address

Year

AUTO_INCREMENT

• If you specify a column as AUTO_INCREMENT, a value
(usually max(col) + 1) is automatically inserted when data
is added. This is useful for Primary Keys

• For example:
col-name INT AUTO_INCREMENT,

• When it comes to inserting values, you should use NULL,
0 or nothing to ensure you don’t override the automatic
value

Note: The table auto_increment value isn’t recalculated
during deletes. You might want to reset it using:

ALTER TABLE <name> AUTO_INCREMENT=1;

Example

CREATE TABLE Student (

sID INT NOT NULL

AUTO_INCREMENT,

sName VARCHAR(50) NOT NULL,

sAddress VARCHAR(255),

sYear INT DEFAULT 1

);

CREATE TABLE Module (

mCode CHAR(6) NOT NULL,

mCredits TINYINT NOT NULL

DEFAULT 10,

mTitle VARCHAR(100) NOT

NULL

);

Student

Name

ID

Address

Year

ModuleCode

Title

Credits

Constraints

CONSTRAINT

<name>

<type>

<details>

• MySQL Constraints
• PRIMARY KEY

• UNIQUE

• FOREIGN KEY

• INDEX

• Each constraint is given
a name. If you don’t
specify a name, one will
be generated

• Constraints which refer
to single columns can
be included in their
definition

5

Primary Keys

• A primary key for each
table is defined through
a constraint

• PRIMARY KEY also

automatically adds
UNIQUE and NOT
NULL to the relevant
column definition

• The details for the
Primary Key constraint
are the set of relevant
columns

CONSTRAINT <name>

PRIMARY KEY

(col1, col2, …)

Unique Constraints

• As well as a single
primary key, any set of
columns can be
specified as UNIQUE

• This has the effect of
making candidate keys
in the table

• The details for a unique
constraint are a list of
columns which make up
the candidate key

CONSTRAINT <name>

UNIQUE

(col1, col2, …)

Example

CREATE TABLE Student (

sID INT AUTO_INCREMENT

PRIMARY KEY,

sName VARCHAR(50) NOT NULL,

sAddress VARCHAR(255),

sYear INT DEFAULT 1

);

CREATE TABLE Module (

mCode CHAR(6) NOT NULL,

mCredits TINYINT NOT NULL

DEFAULT 10,

mTitle VARCHAR(100) NOT

NULL,

CONSTRAINT mod_pk

PRIMARY KEY (mCode)

);

Student

Name

ID

Address

Year

ModuleCode

Title

Credits

Relationships

• Relationships are
represented in SQL
using Foreign Keys

• 1:1 are usually not used,
or can be treated as a
special case of M:1

• M:1 are represented as a
foreign key from the M-
side to the 1

• M:M are split into two
M:1 relationships

Enrolment

Student

Module

In

Has

Name

ID

Address

Year

Code

Title

Credits

ID Code

Relationships

• The Enrolment table

• Will have columns for
the student ID and
module code attributes

• Will have a foreign key to
Student for the ‘has’
relationship

• Will have a foreign key to
Module for the ‘in’
relationship

Enrolment

Student

Module

In

Has

Name

ID

Address

Year

Code

Title

Credits

ID Code

Foreign Keys

• Foreign Keys are also
defined as constraints

• You need to provide
• The columns which

make up the foreign key

• The referenced table

• The columns which are
referenced by the
foreign key

• You can optionally
provide reference
options

CONSTRAINT <name>

FOREIGN KEY

(col1, col2, ...)

REFERENCES

table-name

(col1, col2, ...)

ON UPDATE ref_opt

ON DELETE ref_opt

ref_opt: RESTRICT |

CASCADE | SET NULL

6

Example

CREATE TABLE Enrolment (

sID INT NOT NULL,

mCode CHAR(6) NOT NULL,

CONSTRAINT en_pk

PRIMARY KEY (sID, mCode)

CONSTRAINT en_fk1

FOREIGN KEY (sID)

REFERENCES Student (sID)

ON UPDATE CASCADE

CONSTRAINT en_fk2

FOREIGN KEY (mCode)

REFERENCES Module (mCode)

ON UPDATE CASCADE

);

Enrolment

Student

Module

In

Has

Name

ID

Address

Year

Code

Title

Credits

ID Code

Storage Engines

• In MySQL you can
specify the engine used
to store files onto disk

• The type of storage
engine will have a large
effect on the operation
of the database

• The engine should be
specified when a table
is created

• Some available storage
engines are:
• MyISAM – The default,

very fast. Ignores all
foreign key constraints

• InnoDB – Offers
transactions and foreign
keys

• Memory – Stored in
RAM (extremely fast)

• Blackhole – Deletes
everything you put in it!

InnoDB

• We will use InnoDB for all tables during this
module, for example:

CREATE TABLE Student (

sID INT AUTO_INCREMENT PRIMARY KEY,

sName VARCHAR(50) NOT NULL,

sAddress VARCHAR(255),

sYear INT DEFAULT 1

) ENGINE = InnoDB;

Note: All tables in a relationship must be InnoDB for FK
constraints to work

This Lecture in Exams

Give the SQL statement(s) required to create a table called Books with the
following columns

• bID, an integer that will be the Primary Key

• bTitle, a string of maximum length 64

• bPrice, a double precision value

• gCode, an integer that will be a foreign key to a gCode column in
another table Genres

Next Lecture

• More SQL

• DROP TABLE

• ALTER TABLE

• INSERT, UPDATE, and DELETE

• The Information Schema

• For more information

• Database Systems, Connolly and Begg, Chapter 6.3

• The Manga Guide to Databases, Chapter 4

