
1

SQL SELECT

Database Systems

Michael Pound

This Lecture

• SQL SELECT

• WHERE Clauses

• SELECT from multiple tables

• JOINs

• Further reading

• The Manga Guide to Databases, Chapter 4

• Database Systems, Chapter 6

SQL SELECT Overview

SELECT

[DISTINCT | ALL] <column-list>

FROM <table-names>

[WHERE <condition>]

[ORDER BY <column-list>]

[GROUP BY <column-list>]

[HAVING <condition>]

([] optional, | or)

Example Tables

Student

ID First Last

S103 John Smith

S104 Mary Jones

S105 Jane Brown

S106 Mark Jones

S107 John Brown

Course

Code Title

DBS Database Systems

PR1 Programming 1

PR2 Programming 2

IAI Introduction to AI

Grade

ID Code Mark

S103 DBS 72

S103 IAI 58

S104 PR1 68

S104 IAI 65

S106 PR2 43

S107 PR1 76

S107 PR2 60

S107 IAI 35

DISTINCT and ALL

• Sometimes you end up 
with duplicate entries

• Using DISTINCT 
removes duplicates

• Using ALL retains 
duplicates

• ALL is used as a default 
if neither is supplied

• These will work over 
multiple columns

SELECT ALL Last 

From Student

SELECT DISTINCT Last

FROM Student

Last

Smith

Jones

Brown

Jones

Brown

Last

Smith

Jones

Brown

WHERE Clauses

• In most cases returning 
all the rows is not 
necessary

• A WHERE clause restricts 
rows that are returned

• It takes the form of a 
condition – only rows 
that satisfy the condition 
are returned

• Example conditions:
• Mark < 40

• First = ‘John’

• First <> ‘John’

• First = Last

• (First = ‘John’) 

AND (Last = 

‘Smith’)

• (Mark < 40) OR 

(Mark > 70)



2

WHERE Examples

SELECT * FROM Grade

WHERE Mark >= 60

SELECT DISTINCT ID

FROM Grade

WHERE Mark >= 60

ID

S103

S104

S107

ID Code Mark

S103 DBS 72

S104 PR1 68

S104 IAI 65

S107 PR1 76

S107 PR2 60

WHERE Examples

• Given the table: • Write an SQL query to 
find a list of the ID 
numbers and Marks for 
students who have 
passed (scored 40% or 
more) in IAI

Grade

ID Code Mark

S103 DBS 72

S103 IAI 58

S104 PR1 68

S104 IAI 65

S106 PR2 43

S107 PR1 76

S107 PR2 60

S107 IAI 35

ID Mark

S103 58

S104 65

Solution

SELECT ID, Mark FROM Grade

WHERE (Code = ‘IAI’)

AND (Mark >= 40)

SELECT from Multiple Tables

• Often you need to 
combine information 
from two or more 
tables

• You can produce the 
effect of a Cartesian 
product using:

SELECT * FROM Table1, 

Table2

• If the tables have 
columns with the same 
name, ambiguity will 
result

• This can be resolved by 
referencing columns 
with the table name:

TableName.ColumnName

Student

ID First Last

S103 John Smith

S104 Mary Jones

S105 Jane Brown

S106 Mark Jones

S107 John Brown

SELECT from Multiple Tables

SELECT

First, Last, Mark

FROM

Student, Grade

WHERE

(Student.ID = 

(Grade.ID) AND 

(Mark >= 40)

Grade

ID Code Mark

S103 DBS 72

S103 IAI 58

S104 PR1 68

S104 IAI 65

S106 PR2 43

S107 PR1 76

S107 PR2 60

S107 IAI 35

ID First Last ID Code Mark

S103 John Smith S103 DBS 72

S103 John Smith S103 IAI 58

S103 John Smith S104 PR1 68

S103 John Smith S104 IAI 65

S103 John Smith S106 PR2 43

S103 John Smith S107 PR1 76

S103 John Smith S107 PR2 60

S103 John Smith S107 IAI 35

S104 Mary Jones S103 DBS 72

S104 Mary Jones S103 IAI 58

S104 Mary Jones S104 PR1 68

S104 Mary Jones S104 IAI 65

SELECT from Multiple Tables
SELECT ... FROM Student, Grade WHERE ...



3

SELECT from Multiple Tables
SELECT ... FROM Student, Grade

WHERE (Student.ID = Grade.ID) AND ...

ID First Last ID Code Mark

S103 John Smith S103 DBS 72

S103 John Smith S103 IAI 58

S104 Mary Jones S104 PR1 68

S104 Mary Jones S104 IAI 65

S106 Mark Jones S106 PR2 43

S107 John Brown S107 PR1 76

S107 John Brown S107 PR2 60

S107 John Brown S107 IAI 35

SELECT from Multiple Tables
SELECT ... FROM Student, Grade

WHERE (Student.ID = Grade.ID)AND(Mark >= 40)

ID First Last ID Code Mark

S103 John Smith S103 DBS 72

S103 John Smith S103 IAI 58

S104 Mary Jones S104 PR1 68

S104 Mary Jones S104 IAI 65

S106 Mark Jones S106 PR2 43

S107 John Brown S107 PR1 76

S107 John Brown S107 PR2 60

SELECT from Multiple Tables
SELECT First, Last, Mark FROM Student, Grade

WHERE (Student.ID = Grade.ID)AND(Mark >= 40)

First Last Mark

John Smith 72

John Smith 58

Mary Jones 68

Mary Jones 65

Mark Jones 43

John Brown 76

John Brown 60

SELECT from Multiple Tables

• When selecting from 
multiple tables, it is 
almost always best to 
use a WHERE clause to 
find common values

SELECT *

From

Student, Grade, 

Course

WHERE

Student.ID = 

Grade.ID

AND

Course.Code = 

Grade.Code

SELECT from Multiple Tables

Student Grade Course

ID First Last ID Code Mark Code Title

S103 John Smith S103 DBS 72 DBS Database Systems

S103 John Smith S103 IAI 58 IAI Introduction to AI

S104 Mary Jones S104 PR1 68 PR1 Programming 1

S104 Mary Jones S104 IAI 65 IAI Introduction to AI

S106 Mark Jones S106 PR2 43 PR2 Programming 2

S107 John Brown S107 PR1 76 PR1 Programming 1

S107 John Brown S107 PR2 60 PR2 Programming 2

Student.ID = Grade.ID Course.Code = Grade.Code

Joins

• JOINs can be used to 
combine tables in a 
SELECT query
• There are numerous types 

of JOIN
• CROSS JOIN

• INNER JOIN

• NATURAL JOIN

• OUTER JOIN

• OUTER JOIN will be 
discussed later – they are 
linked with NULLs

A CROSS JOIN B

• Returns all pairs of rows 
from A and B

A INNER JOIN B

• Returns pairs of rows 
satisfying a condition

A NATURAL JOIN B

• Returns pairs of rows with 
common values in 
identically named columns



4

CROSS JOIN

SELECT * FROM

A CROSS JOIN B

• Is the same as

SELECT * FROM A, B

• Usually best to use a 
WHERE clause to avoid 

huge result sets
• Without a WHERE

clause, the number of 
rows produced will be 
equal to the number of 
rows in A multiplied by 
the number of rows in B.

ID Name ID Code

123 John 123 DBS

124 Mary 123 DBS

125 Mark 123 DBS

126 Jane 123 DBS

123 John 124 PRG

124 Mary 124 PRG

125 Mark 124 PRG

126 Jane 124 PRG

123 John 124 DBS

124 Mary 124 DBS

CROSS JOIN

SELECT * FROM

Student CROSS JOIN

Enrolment

Student

ID Name

123 John

124 Mary

125 Mark

126 Jane

Enrolment

ID Code

123 DBS

124 PRG

124 DBS

126 PRG

INNER JOIN

• INNER JOIN specifies 
a condition that pairs of 
rows must satisfy

SELECT *

FROM A INNER JOIN B

ON <condition>

• Can also use a USING
clause that will output 
rows with equal values 
in the specified columns

SELECT *

FROM A INNER JOIN B

USING (col1, col2)

• col1 and col2 must 
appear in both A and B

INNER JOIN

SELECT * FROM

Buyer INNER JOIN

Property ON

Price <= Budget

Buyer

Name Budget

Smith 100,000

Jones 150,000

Green 80,000

Property

Address Price

15 High Street 85,000

12 Queen Street 125,000

87 Oak Lane 175,000

Name Budget Address Price

Smith 100,000 15 High Street 85,000

Jones 150,000 15 High Street 85,000

Jones 150,000 12 Queen Street 125,000

INNER JOIN

SELECT * FROM

Student INNER JOIN

Enrolment USING (ID)

• A single ID row will be output 
representing the equal values 
from both Student.ID and 
Enrolment.ID

Student

ID Name

123 John

124 Mary

125 Mark

126 Jane

Enrolment

ID Code

123 DBS

124 PRG

124 DBS

126 PRG

ID Name Code

123 John DBS

124 Mary PRG

124 Mary DBS

126 Jane PRG

NATURAL JOIN

SELECT * FROM

A NATURAL JOIN B

• Is the same as

SELECT A.Col1, A.Col2, ... 

, A.Coln, [and columns 

from B with names 

distinct from those in 

A]

FROM A, B

WHERE A.Col1 = B.Col1

AND ...

AND A.Coln = B.Coln

• A NATURAL JOIN is 
effectively a special case 
of an INNER JOIN
where the USING clause 
has specified all 
identically named 
columns



5

NATURAL JOIN

SELECT * FROM

Student NATURAL JOIN

Enrolment

Student

ID Name

123 John

124 Mary

125 Mark

126 Jane

Enrolment

ID Code

123 DBS

124 PRG

124 DBS

126 PRG

ID Name Code

123 John DBS

124 Mary PRG

124 Mary DBS

126 Jane PRG

JOINs vs WHERE Clauses

• JOINs are not absolutely 
necessary
• You can obtain the same 

results by selecting from 
multiple tables and using 
appropriate WHERE 
clauses

• Should you use JOINs?

• Yes
• The often lead to concise 

and elegant queries

• NATURAL JOINs are 
extremely common

• No
• Support for JOINs can 

vary between DBMSs

• Might be easier with 
sub-queries (next 
lecture)

Examples

Module

mCode mCredits mTitle

G51DBS 10 Database Systems

G51PRG 20 Programming

G51IAI 10 Artificial Intelligence

G52ADS 10 Algorithms

Student

sID sName sAddress sYear

1 Smith 5 Arnold Close 2

2 Brooks 7 Holly Avenue 2

3 Anderson 15 Main Street 3

4 Evans Flat 1a, High Street 2

5 Harrison Newark Hall 1

6 Jones Southwell Hall 1

Enrolment

sID mCode

1 G52ADS

2 G52ADS

5 G51DBS

5 G51PRG

5 G51IAI

4 G52ADS

6 G51PRG

6 G51IAI

Examples

• Write SQL statements to do the following:
• Produce a list of all student names and all their 

enrolments (module codes)

• Find a list of students who are enrolled on the 
G52ADS module

• Find a list of module titles being taken by the 
student named “Harrison”

• Find a list of module codes and titles for all 
modules currently being taken by first year 
students

Writing Queries

• When writing queries

• There are often many 
ways to accomplish the 
same query

• Be concerned with 
correctness, clarity and 
conciseness, in that 
order

• Do not worry hugely 
about being clever or 
efficient

• Most DBMSs have 
query optimisers

• Will optimise your query 
to improve efficiency

• Simpler queries are 
easier to optimise

• A later lecture will cover 
ways to improve 
efficiency

Next Lecture

• More SQL SELECT
• Aliases

• ‘Self-Joins’

• Subqueries

• IN, EXISTS, ANY, ALL

• LIKE

• Further reading
• The Manga Guide to Databases, Chapter 4

• Database Systems, Chapter 6


