
1

SQL SELECT II

Database Systems

Michael Pound

This Lecture

• More SQL SELECT
• Aliases

• ‘Self-Joins’

• Subqueries

• IN, EXISTS, ANY, ALL

• LIKE

• Further reading
• The Manga Guide to Databases, Chapter 4

• Database Systems, Chapter 6

Last Lecture

• WHERE Clauses

• SELECT from multiple tables

SELECT * FROM TA, TB;

• JOINs

• CROSS JOIN (Cartesian Product)
SELECT * FROM TA CROSS JOIN TB;

• INNER JOIN (Specifies a column or condition)
SELECT * FROM TA INNER JOIN TB USING (Col1);

SELECT * FROM TA INNER JOIN TB ON (α);

• NATURAL JOIN (Compares columns with identical names)
SELECT * FROM TA NATURAL JOIN TB;

SQL SELECT Overview

SELECT

[DISTINCT | ALL] <column-list>

FROM <table-names>

[WHERE <condition>]

[ORDER BY <column-list>]

[GROUP BY <column-list>]

[HAVING <condition>]

([] optional, | or)

Aliases

• Aliases rename columns
or tables

• Can make names more
meaningful

• Can shorten names,
making them easier to
use

• Can resolve ambiguous
names

• Two forms:

• Column alias
SELECT column [AS]

newName

• Table alias
SELECT table [AS]

newName

([] optional)

Alias Example

Employee

ID First

123 John

124 Mary

WorksIn

ID Department

123 Marketing

124 Sales

124 Marketing

SELECT

E.ID AS empID,

E.Name, W.Dept

FROM

Employee E,

WorksIn W,

WHERE

E.ID = W.ID

Note: You cannot use a column alias in a WHERE clause

2

Alias Example

SELECT

E.ID AS empID,

E.Name, W.Dept

FROM

Employee E,

WorksIn W,

WHERE

E.ID = W.ID

empID Name Department

123 John Marketing

124 Mary Sales

124 Mary Marketing

Note: You normally cannot use a column
alias in a WHERE clause

Aliases and ‘Self-Joins’

• Aliases can be used to
copy a table, so that it can
be combined with itself:

SELECT A.Name FROM

Employee A,

Employee B

WHERE A.Dept = B.Dept

AND B.Name = „Andy‟

Employee

Name Dept

John Marketing

Mary Sales

Peter Sales

Andy Marketing

Anne Marketing

Aliases and ‘Self-Joins’

A

Name Dept

John Marketing

Mary Sales

Peter Sales

Andy Marketing

Anne Marketing

B

Name Dept

John Marketing

Mary Sales

Peter Sales

Andy Marketing

Anne Marketing

Employee A Employee B

A.Name A.Dept B.Name B.Dept

John Marketing John Marketing

Mary Sales John Marketing

Peter Sales John Marketing

Andy Marketing John Marketing

Anne Marketing John Marketing

John Marketing Mary Sales

Mary Sales Mary Sales

Peter Sales Mary Sales

Andy Marketing Mary Sales

Anne Marketing Mary Sales

Aliases and ‘Self-Joins’

SELECT ... FROM Employee A, Employee B ...

Aliases and ‘Self-Joins’

SELECT ... FROM Employee A, Employee B

WHERE A.Dept = B.Dept

A.Name A.Dept B.Name B.Dept

John Marketing John Marketing

Andy Marketing John Marketing

Anne Marketing John Marketing

Mary Sales Mary Sales

Peter Sales Mary Sales

Mary Sales Peter Sales

Peter Sales Peter Sales

John Marketing Andy Marketing

Andy Marketing Andy Marketing

Anne Marketing Andy Marketing

Aliases and ‘Self-Joins’

SELECT ... FROM Employee A, Employee B

WHERE A.Dept = B.Dept AND B.Name = „Andy‟

A.Name A.Dept B.Name B.Dept

John Marketing Andy Marketing

Andy Marketing Andy Marketing

Anne Marketing Andy Marketing

3

Aliases and ‘Self-Joins’

SELECT A.Name FROM Employee A, Employee B

WHERE A.Dept = B.Dept AND B.Name = „Andy‟

• The result is the names of all employees who work in the
same department as Andy.

A.Name

John

Andy

Anne

Subqueries

• A SELECT statement can
be nested inside
another query to form a
subquery

• The results of the
subquery are passed
back to the containing
query

• For example, retrieve a
list of names of people
who are in Andy’s
department:

SELECT Name

FROM Employee

WHERE Dept =

(SELECT Dept

FROM Employee

WHERE Name = „Andy‟)

Subqueries

SELECT Name

FROM Employee

WHERE Dept =

(SELECT Dept

FROM Employee

WHERE

Name = „Andy‟)

• First the subquery is
evaluated, returning
‘Marketing’

• This value is passed to
the main query

SELECT Name

FROM Employee

WHERE Dept =

„Marketing‟

Subqueries

• Often a subquery will
return a set of values
rather than a single
value

• We cannot directly
compare a single value
to a set. Doing so will
result in an error

• Options for handling
sets
• IN – checks to see if a

value is in a set

• EXISTS – checks to see if
a set is empty

• ALL/ANY – checks to see
if a relationship holds for
every/one member of a
set

• NOT can be used with
any of the above

IN

• Using IN we can see if a
given value is in a set of
values

• NOT IN checks to see if
a given value is not in
the set

• The set can be given
explicitly or can be
produced in a subquery

SELECT <columns>

FROM <tables>

WHERE <value>

IN <set>

SELECT <columns>

FROM <tables>

WHERE <value>

NOT IN <set>

IN

SELECT *

FROM Employee

WHERE Department IN

(„Marketing‟,

„Sales‟)

Employee

Name Dept Manager

John Marketing Chris

Mary Marketing Chris

Chris Marketing Jane

Peter Sales Jane

Jane Management

Employee

Name Dept Manager

John Marketing Chris

Mary Marketing Chris

Chris Marketing Jane

Peter Sales Jane

4

(NOT) IN

SELECT *

FROM Employee

WHERE Name NOT IN

(SELECT Manager

FROM Employee)

Employee

Name Department Manager

John Marketing Chris

Mary Marketing Chris

Chris Marketing Jane

Peter Sales Jane

Jane Management

(NOT) IN

• First the subquery

SELECT Manager

FROM Employee

• is evaluated giving

• This gives
SELECT *

FROM Employee

WHERE Name NOT

IN („Chris‟,

„Jane)Manager

Chris

Chris

Jane

Jane

Name Deptartment Manager

John Marketing Chris

Mary Marketing Chris

Peter Sales Jane

EXISTS

• Using EXISTS we see
that there is at least
one element in a set

• NOT EXISTS is true if the
set is empty

• The set is always given
by a subquery

SELECT <columns>

FROM <tables>

WHERE EXISTS <set>

SELECT <columns>

FROM <tables>

WHERE NOT EXISTS

<set>

EXISTS

SELECT *

FROM Employee AS E1

WHERE EXISTS (

SELECT * FROM

Employee AS E2

WHERE E2.Name =

E1.Manager)

Employee

Name Dept Manager

John Marketing Chris

Mary Marketing Chris

Chris Marketing Jane

Peter Sales Jane

Jane Management

Name Dept Manager

Chris Marketing Jane

Jane Management

ANY and ALL

• ANY and ALL compare a
single value to a set of
values

• They are used with
comparison operators
like = , >, <, <>, >=, <=

• val = ANY (set) is
true if there is at least
one member of the set
equal to value

• val = ALL (set) is
true if all members of
the set are equal to the
value

ALL

• Find the names of the
employee(s) who earn
the highest salary

SELECT Name

FROM Employee

WHERE Salary >=

ALL (

SELECT Salary

FROM Employee)

Name Salary

Mary 20,000

John 15,000

Jane 25,000

Paul 30,000

Name

Paul

5

ANY

• Find the names of the
employee(s) who earn
more than someone else

SELECT Name

FROM Employee

WHERE Salary >

ANY (

SELECT Salary

FROM Employee)

Name Salary

Mary 20,000

John 15,000

Jane 25,000

Paul 30,000

Name

Mary

Jane

Paul

Word Searches

• Word Searches

• Commonly used for
searching product
catalogues etc.

• Need to search by
keywords

• Might need to use
partial keywords

• For example: Given a
database of books,
searching for “crypt”
might return

• “Cryptonomicon” by Neil
Stephenson

• “Applied Cryptographer”
by Bruce Schneier

LIKE

• We can use the LIKE keyword to perform
string comparisons in queries

• Like is not the same as ‘=’ because it allows
wildcard characters

• It is not normally case sensitive

SELECT * FROM books

WHERE bookName LIKE “%crypt%”;

LIKE

• The ‘%’ character can
represent any number of
characters, including
none

bookName LIKE “crypt%”

• Will return “Cryptography
Engineering” and
“Cryptonomicon” but not
“Applied Cryptography”

• The ‘_’ character
represents exactly one
character

bookName LIKE “cloud_”

• Will return “Clouds” but
not “Cloud” or “Cloud
Computing”

LIKE

• Sometimes you might
need to search for a set
of words

• To find entries with all
words you can link
conditions with AND

• To find entries with any
words use OR

SELECT * FROM

books

WHERE bookName

LIKE “%crypt%”;

OR bookName LIKE

“%cloud%”;

Examples

Module

mCode mCredits mTitle

G51DBS 10 Database Systems

G51PRG 20 Programming

G51IAI 10 Artificial Intelligence

G52ADS 10 Algorithms

Student

sID sName sAddress sYear

1 Smith 5 Arnold Close 2

2 Brooks 7 Holly Avenue 2

3 Anderson 15 Main Street 3

4 Evans Flat 1a, High Street 2

5 Harrison Newark Hall 1

6 Jones Southwell Hall 1

Enrolment

sID mCode

1 G52ADS

2 G52ADS

5 G51DBS

5 G51PRG

5 G51IAI

4 G52ADS

6 G51PRG

6 G51IAI

6

Examples

• Write SQL statements to do the following:

• Find a list of students in the 2nd or 3rd year

• Find a list of student IDs and Names for students
studying G52ADS, but without using a JOIN

• Find a list of names of any students who are
enrolled on at least one module alongside ‘Evans’

Next Lecture

• More SQL SELECT

• ORDER BY

• Aggregate functions

• GROUP BY and HAVING

• UNION

• Further reading

• The Manga Guide to Databases, Chapter 4

• Database Systems, Chapter 6

