
1

SQL SELECT III

Database Systems

Michael Pound

Last Lecture

• Find a list of names of
any students who are
enrolled on at least one
module alongside
‘Evans’

Enrolment

sID mCode

1 G52ADS

2 G52ADS

5 G51DBS

5 G51PRG

5 G51IAI

4 G52ADS

6 G51PRG

6 G51IAI

sID mCode sID mCode

1 G52ADS 1 G52ADS

2 G52ADS 1 G52ADS

5 G51DBS 1 G52ADS

5 G51PRG 1 G52ADS

5 G51IAI 1 G52ADS

4 G52ADS 1 G52ADS

6 G51PRG 1 G52ADS

6 G51IAI 1 G52ADS

1 G52ADS 2 G52ADS

2 G52ADS 2 G52ADS

Last Lecture

SELECT * FROM Enrolment E1, Enrolment E2

WHERE E1.mCode = E2.mCode;

Last Lecture

SELECT * FROM

Enrolment E1 INNER JOIN Enrolment E2 USING (mCode)

WHERE E2.sID = (SELECT sID FROM Student

WHERE sName = ‘Evans’);

sID mCode sID

1 G52ADS 4

2 G52ADS 4

4 G52ADS 4

Last Lecture

SELECT sID, sName FROM Student

WHERE sID IN

(SELECT DISTINCT E1.sID

FROM Enrolment E1 INNER JOIN Enrolment E2

USING (mCode)

WHERE E2.sID =

(SELECT sID FROM Student

WHERE sName = ‘Evans’))

AND sID <> (SELECT sID FROM Student

WHERE sName = ‘Evans’);

This Lecture

• More SQL SELECT

• ORDER BY

• Aggregate functions

• GROUP BY and HAVING

• UNION

• Further reading

• The Manga Guide to Databases, Chapter 4

• Database Systems, Chapter 6

2

SQL SELECT Overview

SELECT

[DISTINCT | ALL] <column-list>

FROM <table-names>

[WHERE <condition>]

[GROUP BY <column-list>]

[HAVING <condition>]

[ORDER BY <column-list>]

([] optional, | or)

ORDER BY

• The ORDER BY clause
sorts the results of a
query

• You can sort in ascending
(default) or descending
order

• Multiple columns can be
given

• You cannot order by a
column which isn’t in the
result

SELECT <columns>

FROM <tables>

WHERE <condition>

ORDER BY <cols>

[ASC | DESC]

ORDER BY

SELECT * FROM Grades

ORDER BY Mark
Grades

Name Code Mark

John DBS 56

John IAI 72

Mary DBS 60

James PR1 43

James PR2 35

Jane IAI 54

Name Code Mark

James PR2 35

James PR1 43

Jane IAI 54

John DBS 56

Mary DBS 60

John IAI 72

ORDER BY

SELECT * FROM Grades

ORDER BY Code ASC,

Mark DESC
Grades

Name Code Mark

John DBS 56

John IAI 72

Mary DBS 60

James PR1 43

James PR2 35

Jane IAI 54

Name Code Mark

Mary DBS 60

John DBS 56

John IAI 72

Jane IAI 54

James PR1 43

James PR2 35

Constants and Arithmetic

• As well as columns, a
SELECT statement can
also be used to

• Select constants

• Compute arithmetic
expressions

• Evaluate functions

• Often helpful to use an
alias when dealing with
expressions or functions

SELECT Mark / 100

FROM Grades

SELECT Salary + Bonus

FROM Employee

SELECT 1.175 * Price

AS ‘Price inc. VAT’

FROM Products

SELECT ‘Constant’ AS Text

FROM <table>

Aggregate Functions

• Aggregate functions
compute summaries of
data in a table

• Most aggregate
functions (except
COUNT (*)) work on a
single column of
numerical data

• Again, it’s best to use an
alias to name the result

• Aggregate functions

• COUNT: The number of
rows

• SUM: The sum of the
entries in the column

• AVG: The average entry
in a column

• MIN, MAX: The
minimum and maximum
entries in a column

3

COUNT

SELECT

COUNT(*) AS Count

FROM Grades

SELECT

COUNT(Code)

AS Count

FROM Grades

SELECT

COUNT(DISTINCT Code)

AS Count

FROM Grades

Grades

Name Code Mark

John DBS 56

John IAI 72

Mary DBS 60

James PR1 43

James PR2 35

Jane IAI 54

Count

6

Count

6

Count

4

SUM, MIN/MAX and AVG

SELECT

SUM(Mark) AS Total

FROM Grades

SELECT

MAX(Mark) AS Best

FROM Grades

SELECT

AVG(Mark) AS Mean

FROM Grades

Grades

Name Code Mark

John DBS 56

John IAI 72

Mary DBS 60

James PR1 43

James PR2 35

Jane IAI 54

Total

320

Best

72

Mean

53.33

Aggregate Functions

• You can combine
aggregate functions
using arithmetic

SELECT

MAX(Mark) – MIN(Mark)

AS Range

FROM Grades

Grades

Name Code Mark

John DBS 56

John IAI 72

Mary DBS 60

James PR1 43

James PR2 35

Jane IAI 54

Range

37

MAX(Mark) = 72

MIN(Mark) = 35

Example

• Find John’s average
mark, weighted by the
credits of each module

Modules

Code Title Credits

DBS Database Systems 10

GRP Group Project 20

PRG Programming 10

Grades

Name Code Mark

John DBS 56

John IAI 72

Mary DBS 60

SELECT

SUM(Mark*Credits)

/ SUM (Credits)

AS ‘Final Mark’

FROM Modules, Grades

WHERE Modules.Code=Grades.Code

AND Grades.Name = ‘John’

GROUP BY

• Sometimes we want to
apply aggregate
functions to groups of
rows

• Example, find the
average mark of each
student individually

• The GROUP BY clause
achieves this

SELECT <cols1>

FROM <tables>

GROUP BY <cols2>

GROUP BY

SELECT <cols1>

FROM <tables>

GROUP BY <cols2>

• Every entry in <cols1>
should be in <cols2>, be
a constant, or be an
aggregate function

• You can have WHERE
and ORDER BY

clauses as well as a
GROUP BY clause

4

GROUP BY

SELECT Name,

AVG(Mark) AS Average

FROM Grades

GROUP BY Name

Grades

Name Code Mark

John DBS 56

John IAI 72

Mary DBS 60

James PR1 43

James PR2 35

Jane IAI 54

Name Average

John 64

Mary 60

James 39

Jane 54

GROUP BY

• Find the total value of
the sales for each
department in each
month

• Can group by Month
then Department or
Department then Month

• Same results, but
produced in a different
order

Sales

Month Department Value

March Fiction 20

March Travel 30

March Technical 40

April Fiction 10

April Fiction 30

April Travel 25

April Fiction 20

May Fiction 20

May Travel 50

GROUP BY

SELECT Month, Department,

SUM (Value) AS Total

FROM Sales

GROUP BY Month, Department

SELECT Month, Department,

SUM (Value) AS Total

FROM Sales

GROUP BY Department, Month

Month Department Total

April Fiction 60

April Travel 25

March Fiction 20

March Technical 40

March Travel 30

May Fiction 20

May Technical 50

Month Department Total

April Fiction 60

March Fiction 20

May Fiction 20

March Technical 40

May Technical 50

April Travel 25

March Travel 30

GROUP BY Rules

• GROUP BY works
slightly differently in
MySQL than in other
DBMSs.

• Usually, every column
you name in your
SELECT statement, must
also appear in your
GROUP BY clause. Apart
from those in Aggregate
functions.

• For example:

SELECT ID, Name,

AVG(Mark)

FROM Students

GROUP BY

ID, Name

GROUP BY Rules

• In MySQL, for
convenience, you are
allowed to break this
rule.

• You are allowed to
GROUP BY a column
that won’t appear in
the output table

• Despite this, you should
follow the ISO standard
where possible

• Avoids problems if you
use a different DBMS in
the future

• Can lead to peculiar
output where multiple
values get output as one

GROUP BY Rules

• The MySQL extension means you do not need
to GROUP BY every column you’re SELECTing.
It also means you don’t have to SELECT a
column even if it’s in your GROUP BY clause:

SELECT artID, artName,

AVG(cdPrice)

FROM Artist NATURAL JOIN CD

GROUP BY artID;

5

GROUP BY Rules

• Be careful though, relaxed rules means you might
get peculiar output if you’re not careful:

SELECT cdTitle, AVG(cdPRICE)

FROM Artist NATURAL JOIN CD

GROUP BY artID;

cdTitle AVG(cdPrice)

For Lack of a Better Name 11.49

Version 9.99

The Resistance 10.99

GROUP BY Rules

• What’s the best way? Instead of:
SELECT artName, AVG(cdPrice)

FROM Artist NATURAL JOIN CD

GROUP BY artID

Try:
SELECT artName, Average

FROM (SELECT artID, artName,

AVG(cdPrice) AS Average

FROM Artist NATURAL JOIN CD

GROUP BY artID, artName) AS SubTable;

HAVING

• HAVING is like a WHERE
clause, except that it
only applies to the
results of a GROUP BY
query

• It can be used to select
groups which satisfy a
given condition

SELECT Name,

AVG(Mark) AS Average

FROM Grades

GROUP BY Name

HAVING AVG(Mark) >= 40

Name Average

John 64

Mary 60

Jane 54

WHERE and HAVING

• WHERE refers to the
rows of tables, so
cannot make use of
aggregate functions

• HAVING refers to the
groups of rows, and so
cannot use columns
which are not in the
GROUP BY or an
aggregate function

• Think of a query being
processed as follows:

• Tables are joined

• WHERE clauses

• GROUP BY clauses and
aggregates

• Column selection

• HAVING clauses
• ORDER BY

UNION

• UNION, INTERSECT and
EXCEPT

• These treat the tables as
sets and are the usual
set operators of union,
intersection and
difference

• We’ll be concentrating
on UNION

• They all combine the
results from two select
statements

• The results of the two
selects should have the
same columns and data
types

UNION

• Find, in a single query,
the average mark for
each student and the
average mark overall

Grades

Name Code Mark

Jane IAI 52

John DBS 56

John IAI 72

James PR1 43

James PR2 35

Mary DBS 60

6

UNION

• The average for each
student:

SELECT Name,

AVG(Mark) AS Average

FROM Grades

GROUP BY Name

• The average overall

SELECT

‘Total’ AS Name,

AVG(Mark) AS Average

FROM Grades

• Note - this has the same
columns as average by
student

UNION

SELECT Name,

AVG(Mark) AS Average

FROM Grades

GROUP BY Name

UNION

SELECT

‘Total’ AS Name,

AVG(Mark) AS Average

FROM Grades

Name Average

Jane 52

John 64

James 39

Mary 60

Total 53

Final SELECT Example

• Examiners’ reports

• We want a list of
students and their
average mark

• For first and second
years the average is for
that year

• For finalists it is 40% of
the second year plus
60% of the final year
average

• We want the results

• Sorted by year then
average mark (high to
low) then last name, first
name and finally ID

• To take into account of
the number of credits
each module is worth

• Produced by a single
query

Tables for the Example

Student

ID First Last Year

Module

Code Title Credits

Grade

ID Code Mark YearTaken

Getting Started

• Finalists should be
treated differently to
other years

• Write one SELECT for the
finalists

• Write a second SELECT
for the first and second
years

• Join the results using a
UNION

<QUERY FOR FINALISTS>

UNION

<QUERY FOR OTHERS>

Table Joins

• Both subqueries need
information from all the
tables

• The student ID, name
and year

• The marks for each
module and the year
taken

• The number of credits
for each module

• This is a natural join
operation

• Because we’re
practicing, we’re going
to use a standard CROSS
JOIN and WHERE clause

7

The Query So Far

SELECT <some information>

FROM Student, Module, Grade

WHERE Student.ID = Grade.ID

AND Module.Code = Grade.Code

AND <student is in third year>

UNION

SELECT <some information>

FROM Student, Module, Grade

WHERE Student.ID = Grade.ID

AND Module.Code = Grade.Code

AND <student is in first or second year>

Information for Finalists

• We must retrieve

• Computed average mark,
weighted 40-60 across
years 2 and 3

• First year marks must be
ignored

• The ID, Name and Year
are needed as they are
used for ordering

• The average is difficult

• We don’t have any
statements to separate
years 2 and 3 easily

• We can exploit the fact
that 40 = 20 * 2 and 60 =
20 * 3, so YearTaken and
the weighting have the
same relationship

Information for Finalists

SELECT Year, Student.ID, Last, First,

SUM((20*YearTaken)/100)*Mark*Credits)/120

AS AverageMark

FROM Student, Module, Grade

WHERE Student.ID = Grade.ID

AND Module.Code = Grade.Code

AND YearTaken IN (2,3)

AND Year = 3

GROUP BY Year, Student.ID, First, Last

Information for Others

• Other students are easier than finalists

• We just need their average marks where
YearTaken and Year are the same

• As before, we need ID, Name and Year for
ordering

Information for Others

SELECT Year, Student.ID, Last, First,

SUM(Mark*Credits)/120 AS AverageMark

FROM Student, Module, Grade

WHERE Student.ID = Grade.ID

AND Module.Code = Grade.Code

AND YearTaken = Year

AND Year IN (1,2)

GROUP BY Year, Student.ID, First, Last

The Final Query

SELECT Year, Student.ID, Last, First,

SUM((20*YearTaken)/100)*Mark*Credits)/120 AS AverageMark

FROM Student, Module, Grade

WHERE Student.ID = Grade.ID AND Module.Code = Grade.Code

AND YearTaken IN (2,3)

AND Year = 3

GROUP BY Year, Student.ID, Last, First

UNION

SELECT Year, Student.ID, Last, First, SUM(Mark*Credits)/120 AS AverageMark

FROM Student, Module, Grade

WHERE Student.ID = Grade.ID AND Module.Code = Grade.Code

AND YearTaken = Year

AND Year IN (1,2)

GROUP BY Year, Student.ID, Last, First

ORDER BY Year desc, AverageMark desc, Last, First, ID

8

Example Output

Year Student.ID Last First AverageMark

3 11014456 Andrews John 81

3 11013891 Smith Mary 78

3 11014012 Jones Steven 76

3 11013204 Brown Amy 76

3 11014919 Robinson Paul 74

3 11013784 Edwards Robert 73

1 11027871 Green Michael 45

1 11024298 Hall David 43

1 11024826 Wood James 40

1 11027621 Clarke Stewart 39

1 11024978 Wilson Sarah 36

1 11026563 Taylor Matthew 34

1 11027625 Williams Paul 31

...

Next Lecture

• PHP
• Variables

• Arrays

• IF...ELSE statements

• Loops

• Connecting to MySQL

• Further reading
• W3Schools online tutorials at

http://www.w3schools.com/php/

