
1

Revision Lecture

Database Systems

Michael Pound

Revision Lectures

• Exam Overview
• Structure

• Exam Techniques

• Transactions and Schedules

• Two-Phased Locking Protocol

• Timestamping Protocol

• E/R Diagrams from Problem Specifications

• Normalisation

The Exam Structure

• The exam will contain FIVE questions. You must 
answer ANY THREE of these

• Question 1 will be a general question. It will 
contain a number of smaller questions that can 
be about anything on the course

• The remaining questions will focus on one or two 
topics.

• If you answer more than three questions, we will 
mark the first three only! 

• If you answer more than three questions cross 
out the ones that you DON’T want us to mark

In the Exam

• Apart from a couple of exceptions, any topic from any 
lecture might be on the exam, including:

• Relational Algebra

• E/R Diagrams

• SQL Data Definition

• SQL SELECT (queries)

• NULLs

• Normalization

• Transactions and Schedules

• Locking and timestamps

• Database Security, including Privileges

Not In The Exam

• The following are definitely not in the exam:

• PHP code

• SQL Injection Attacks

• Modern Databases e.g. BigTable, OODBMSs etc.

Past Exam Papers

• Some papers (not answers unfortunately) are 
available on the University Portal

• To obtain these:
• Login to my.nottingham.ac.uk with your IS (not CS) 

username and password.

• Go to the “Library” tab, and find the link to “Exam 
Papers”

• Search for DBS

• I will be doing some questions in these 
lectures – ask if there’s a specific question 
you’d like covered



2

Exam Techniques

• Everyone approaches exams differently. Here 
are some things you might like to consider 
though:

• Pay attention to how many marks a question is 
worth. Don’t write a page for a 4 mark question

• Have a scan through the exam questions before 
you start answering them

• You are answering three questions in 2 hours, 
which means roughly 40 minutes per question

Exam Techniques

• Be concise, don’t write more than you have to. 
• For example:

Explain the lost update problem with respect to database concurrency. 
(2 Marks)

Example concise answer: The lost update problem occurs when two 
concurrent transactions update the same resource in a database. The 
actions of the first transaction are lost when the value is overwritten by 
the second transaction.

Example non-concise answer: The lost update problem is related to database 
concurrency. Sometimes two transactions may need to read and write 
from the same resource. They may also need to operate concurrently. 
When this occurs, the write action of the first transaction might be lost 
when a second transaction overwrites this value. The lost update problem 
can be prevented using a locking or timestamping protocol…

SQL Exam Techniques

• Answering SQL questions is a little different
• Try to avoid worrying about where marks are allocated 

and instead aim to write a correct query
• Try to organise your query neatly so the marker can see 

what you’ve done
• Don’t forget brackets and semi-colons!

• There are often many ways to answer each SQL SELECT 
question, so focus on correctness

• Consider concision. E.g.
• SELECT DISTINCT artName FROM Artist, CD, Track;
• Is not a concise answer (You only need select from Artist)

Marking Scheme

• The exam has a very specific marking scheme. 
This means:

• You will not get any marks for points unrelated to 
the question

• You will miss marks if you leave something out, 
even if the rest of your answer is good.

Transactions and Concurrency
Revision

Transaction

• Transactions are the 
‘logical unit of work’ in 
a database
• ACID properties

• Also the unit of recovery

• It would be helpful to 
run many transactions 
at the same time
• Many users

• Possibly very long 
transactions

• Challenges with running 
transactions 
concurrently

• Lost update

• Uncommitted update

• Inconsistent analysis

• The ACID properties are 
violated



3

ACID

• Atomicity
• Transactions are Atomic
• Conceptually they do not 

have component parts
• Transactions are either 

executed fully, or not at all

• Consistency
• Transactions take the data 

base from one consistent 
state to another

• Consistency isn’t guaranteed 
mid-way through a 
transaction

• Isolation
• All transactions execute 

independently of one another
• The effects of an incomplete 

transaction are invisible to 
other transactions

• Durability
• Once a transaction has 

completed, it is made 
permanent

• Must be durable even after a 
system crash

Schedules

• A schedule is a sequence of the operations in a 
set of concurrent transactions that preserves 
the order of operations in each of the 
individual transactions

• A serial schedule is a schedule where the 
operations of each transaction are executed 
consecutively without any interleaved 
operations from other transactions (each must 
commit before the next can begin)

Example Schedule

• Three transactions: • Example schedule

T1
Read(X)
Read(Y)
Write(X)

T2
Read(Y)
Read(Z)
Write(Y)

T3
Read(Z)
Write(Z)

T1 Read(X)
T2 Read(Y)
T2 Read(Z)
T3 Read(Z)
T1 Read(Y)
T1 Write(X)
T3 Write(Z)
T2 Write(Y)

Example Schedule

• Three transactions: • Example serial schedule

T1
Read(X)
Read(Y)
Write(X)

T2
Read(Y)
Read(Z)
Write(Y)

T3
Read(Z)
Write(Z)

T1 Read(X)
T1 Read(Y)
T1 Write(X)
T2 Read(Y)
T2 Read(Z)
T2 Write(Y)
T3 Read(Z)
T3 Write(Z)

Serialisability

• Two schedules are equivalent if they always have 
the same effect

• A schedule is serialisable if it is equivalent to 
some serial schedule

• For example:

• If two transactions only read from some data items, 
the order in which they do this is not important

• If T1 reads and then updates X, and T2 reads then 
updates Y, then again this can occur in any order

Conflict Serialisability

• Two transactions have a 
confict:

• NO If they refer to 
different resources

• NO If they only read

• YES If at least one is a 
write and they use the 
same resource

• A schedule is conflict 
serialisable if the 
transactions in the 
schedule have a 
conflict, but the 
schedule is still 
serialisable



4

Conflict Serialisability

• Conflict serialisable 
schedules are the main 
focus of concurrency 
control

• They allow for 
interleaving and at the 
same time they are 
guaranteed to behave 
as a serial schedule

• Important questions

• How do we determine 
whether or not a 
schedule is conflict 
serialisable?

• How do we construct 
conflict serialisable 
schedules

Locking

• Locking is a procedure used to control 
concurrent access to data (to ensure 
serialisability of concurrent transactions)

• There are two types of lock
• Shared lock (often called a read lock)

• Exclusive lock (often called a write lock)

• Locks might be released during execution 
when no longer needed, or upon COMMIT or 
ROLLBACK

Two-Phase Locking

• A transaction follows 
two-phase locking 
protocol (2PL) if all 
locking operations 
precede all unlocking 
operations

• Other operations can 
happen at any time 
throughout the 
transaction

• Two phases:

• Growing phase where 
locks are acquired

• Shrinking phase where 
locks are released

• Any schedule of two-
phase locking 
transactions is conflict 
serialisable

2PL Exam Question

• Show the schedule that 
results from using two-
phase locking protocol 
on the following 
schedule containing 
transactions T1 and T2. 
You can assume that all 
locks are only released 
upon COMMIT or 
ROLLBACK

T1

Read(X)
X = X – 5
Write(X)
Read(Y)
Y = Y + 5
Write(Y)

COMMIT

T2

Read(X)
Read(Y)
Sum = X + Y
Write(Z)

COMMIT

2PL Exam Question

Write-lock (X)

Write-lock (Y)

Unlock (X, Y)

T1

Read(X)
X = X – 5
Write(X)
Read(Y)
Y = Y + 5
Write(Y)
COMMIT

T2

Read(X)
WAIT
WAIT
WAIT
WAIT
Read(Y)
Sum = X + Y
Write(Z)
COMMIT

Read-lock (X)

Read-lock (Y)

Write-lock (Z)
Unlock (X, Y, Z)

Timestamping

• Each transaction has a 
timestamp, TS, and if T1 
starts before T2 then 
TS(T1) < TS(T2)

• Each resource has two 
timestamps
• R(X), the largest timestamp 

of any transaction that has 
read X

• W(X), the largest 
timestamp of any 
transaction that has 
written X

• T tries to read X
• If TS(T) < W(X) T is rolled back 

and restarted with a later 
timestamp

• If TS(T)  W(X) then the read 
succeeds and we set R(X) to 
be max(R(X), TS(T))

• T tries to write X
• If TS(T) < W(X) or TS(T) < R(X) 

then T is rolled back and 
restarted with a later 
timestamp

• Otherwise the write succeeds 
and we set W(X) to TS(T)



5

Timestamping Exam Question

2008-2009 Paper
5. (g)

Trace the timestamping protocol for the following two transactions T1 and T2,
assuming that the statements are executed in a strictly alternating way (First
statement of T1 followed by the first statement of T2 followed by the second
statement of T1, and so on) and there are no other transactions. At each step,
indicate what the time stamps of T1 and T2 are, and what the read and write
timestamps of resources X, Y are. Assume that before T1 and T2 are executed
the timestamps of resources are 0. Trace until both transactions can commit.

(5 Marks)

Transaction 1

Write(X)
Write(Y)

Transaction 2

Read(Y)
Write(X)

Timestamp Example

T1 T2
Write(X) Read(Y)
Write(Y) Write(X)

X Y Z

R 0 0 0

W 0 0 0

T1 T2

TS 1 2 Start

Timestamp Example

T1 T2
Write(X) Read(Y)
Write(Y) Write(X)

X Y Z

R 0 0 0

W 0 0 0

T1 T2

TS 1 2 Start

T1 T2
Write(X) Read(Y)
Write(Y) Write(X)

X Y Z

R 0 0 0

W 1 0 0

T1 T2

TS 1 2

Timestamp Example

T1 T2
Write(X) Read(Y)
Write(Y) Write(X)

X Y Z

R 0 0 0

W 0 0 0

T1 T2

TS 1 2 Start

T1 T2
Write(X) Read(Y)
Write(Y) Write(X)

X Y Z

R 0 0 0

W 1 0 0

T1 T2

TS 1 2

T1 T2
Write(X) Read(Y)
Write(Y) Write(X)

X Y Z

R 0 2 0

W 1 0 0

T1 T2

TS 1 2

Timestamp Example

T1 T2
Write(X) Read(Y)
Write(Y) Write(X)

X Y Z

R 0 0 0

W 0 0 0

T1 T2

TS 1 2 Start

T1 T2
Write(X) Read(Y)
Write(Y) Write(X)

X Y Z

R 0 0 0

W 1 0 0

T1 T2

TS 1 2

T1 T2
Write(X) Read(Y)
Write(Y) Write(X)

X Y Z

R 0 2 0

W 1 0 0

T1 T2

TS 1 2

T1 T2
Write(X) Read(Y)
Write(Y) Write(X)

X Y Z

R 0 2 0

W 1 0 0

T1 T2

TS 3 2 T1 Restarted

Timestamp Example

T1 T2
Write(X) Read(Y)
Write(Y) Write(X)

X Y Z

R 0 2 0

W 2 0 0

T1 T2

TS 3 2

Answer Continued...

T2 Completed



6

Timestamp Example

T1 T2
Write(X) Read(Y)
Write(Y) Write(X)

X Y Z

R 0 2 0

W 2 0 0

T1 T2

TS 3 2

T1 T2
Write(X) Read(Y)
Write(Y) Write(X)

X Y Z

R 0 2 0

W 3 0 0

T1 T2

TS 3 2

Answer Continued...

T2 Completed

Timestamp Example

T1 T2
Write(X) Read(Y)
Write(Y) Write(X)

X Y Z

R 0 2 0

W 2 0 0

T1 T2

TS 3 2

T1 T2
Write(X) Read(Y)
Write(Y) Write(X)

X Y Z

R 0 2 0

W 3 0 0

T1 T2

TS 3 2

T1 T2
Write(X) Read(Y)
Write(Y) Write(X)

X Y Z

R 0 2 0

W 3 3 0

T1 T2

TS 3 2

Answer Continued...

T2 Completed

T1 Completed

E/R Diagrams

• You might be asked to draw an E/R diagram 
based on a problem specification. If you are, you 
should identify and draw:

• Entities

• Often nouns, things with component parts that will become 
tables in your database

• Attributes

• All the component parts of the entities you've identified

• Relationships

• Remember to include a name and cardinality ratio, and 
remove M:M relationships with an intermediate entity

E/R Diagram Exam Question

2009-2010 Paper
Question 2

E/R Diagram Exam Question

The completed diagram with M:M relationships removed

Papers

Authors

Contributors

Is

Has

Writes

ID
Name Address

ID FileNameaID pID

Reviewers

ID

Name Address

Reviews

Review
Accepted

Has

pID

rIDID

E/R Diagram Exam Question

A better answer would probably be to have a single entity for 
authors and reviewers – their attributes are the same

Papers

People

Contributors

Is

Has

Writes

ID
Name Address

ID FileNameaID pID

Reviews

Review
Accepted

Has

pID

rIDID



7

E/R Diagram Exam Question

(c) Write an SQL query which returns the list of 
IDs of accepted papers, without repetitions.

• There are many ways to answer this question

• Two possibilities are subqueries to find lists of 
either accepted or rejected papers, and use ALL, 
IN, NOT IN etc.

E/R Diagram Exam Question

SELECT pID FROM Papers

WHERE 'Yes' = ALL

(SELECT Accept FROM Review

WHERE Review.pID = Papers.pID);

SELECT pID FROM Papers

WHERE pID NOT IN

(SELECT DISTINCT Review.PID

FROM Review

WHERE Accept = 'No');

Normalisation Revision

Functional Dependencies

• Normalisation is the 
process of removing 
redundancy in a 
database

• Redundancy is often 
caused by functional 
dependencies

• If some set of attributes 
A functionally 
determine some set B 
(A  B), then for every 
combination of values 
in A, we will always 
have the same 
combination of values 
in B.

FD Diagrams

• FDs can be represented simply using the 
attribute names:

Module Dept Lecturer Text

• {Module , Text} is a candidate key, so we put a double box around them
• {Lecturer}  {Dept}, so we have an arrow from Lecturer to Dept
• {Module}  {Dept} and {Module}  {Lecturer} , so we have

{Module}  {Dept, Lecturer}

Note: Trivial FDs and FDs dependent on an entire candidate key are not included

1NF

• 1NF – Removes all non-atomic values

• E.g. CustomerID OrderDate OrderNumber

321 11/03/11, 12/03/11 1101225,1101229

135 14/03/11 1101331

947 14/03/11, 15/03/11 1101303, 1101541

CustomerID OrderDate OrderNumber

321 11/03/11 1101225

321 12/03/11 1101229

135 14/03/11 1101331

947 14/03/11 1101303

947 15/03/11 1101541



8

2NF

• 2NF – Removes partial 
FDs e.g.

• For some FD A  B 
where

• A is the set of attributes 
on the left of the FD

• B is the set of attributes 
on the right of the FD

• C is all other attributes

• Create two new 
relations

• A  B and A  C

Module Dept Lecturer Text

Module Dept Lecturer Module Text

3NF

• 3NF – Removes 
transitive FDs e.g.

• For some FD A  B  C 
where
• A is the set of attributes 

on the left of the FD

• B is the intermediate 
attributes

• C is the right hand side

• D is all other attributes

• Create two new 
relations
• B  C and A  B  D

Module Dept Lecturer

Module DeptLecturerLecturer

BCNF

• BCNF – Removes partial 
FDs where the 
dependant attributes 
can also be keys e.g.

• For some FD that 
violates BCNF A  B 
where

• A is the set of attributes 
on the left of the FD

• B is the right hand side

• C is the right hand side

• Create two new 
relations

• A  B and A  C

studentID tutorIDmCode

studentID tutorID tutorID mCode

Normalisation Exam Question

2009-2010 Paper
4.
(b)
List all non-trivial functional dependencies in the relation Person (ID,
FirstName, LastName, Nationality, EU) where ID is unique, and EU has a value
yes or no depending on whether the person's nationality is in a country
belonging to the EU.

(5 Marks)

(c)
Is the table in part (b) in BCNF? Explain your answer. If the table is not in 
BCNF, decompose it to BCNF

(10 Marks)

Normalisation Exam Question

(b)

• You might like to begin by drawing out an FD 
diagram, although this has not specifically 
been asked for

• These are the attributes identified in the 
question:

ID FirstName LastName Nationality EU

Normalisation Exam Question

(b)

• ID is unique, so is a candidate key. It's unlikely 
any other combination of attributes are also 
unique and minimal

ID FirstName LastName Nationality EU



9

Normalisation Exam Question

(b)

• Non-trivial FDs are those A  B where B is not a subset of A. 
This question asks for all non-trivial FDs, do not omit those 
that are dependent on an entire candidate key

• This question is a bit confusing with regard to dependencies 
on an entire candidate key. They're basically implied, but 
aren't strictly speaking a trivial FD. We should probably 
include them

ID FirstName LastName Nationality EU

Normalisation Exam Question

(b)

• Non-trivial FDs:
• {ID}  {FirstName, LastName, Nationality, EU}

• {ID}  ... All combinations

• {ID}  {Nationality}

• {Nationality}  {EU}

ID FirstName LastName Nationality EU

Normalisation Exam Question

(c)

• We need to determine if the relation below is 
in BCNF. Remember that each normal form 
has the previous as a prerequisite.

ID FirstName LastName Nationality EU

Normalisation Exam Question

(c)

• We will assume the relation is in 1NF, since it 
seems to have no non-atomic values

• Is the relation in 2NF?

ID FirstName LastName Nationality EU

Normalisation Exam Question

(c)

• A relation is in 2NF if there are no non-key 
attributes partially dependent on a candidate key

• In this case, {ID} is the only member of a 
candidate key, so there are no partial 
dependencies. This means the relation is in 2NF

ID FirstName LastName Nationality EU

Normalisation Exam Question

(c)

• Is the relation in 3NF?

ID FirstName LastName Nationality EU



10

Normalisation Exam Question

(c)

• A relation is in 3NF if there are no non-key 
attributes transitively dependent on a primary 
key

• In this case, {ID}  {Nationality}  {EU} 
breaches 3NF

ID FirstName LastName Nationality EU

Normalisation Exam Question

(c)

• To normalise, we split into B  C and A  B  D

ID FirstName LastName Nationality EU

ID FirstName LastName Nationality Nationality EU

Normalisation Exam Question

(c)

• A relation is in BCNF if there are no non-trivial 
functional dependencies where a set of attributes B 
is dependent on a non-superkey. This is the same as 
3NF, but B can be a key attribute

• These relations are already in BCNF

ID FirstName LastName Nationality Nationality EU

SQL SELECT Revision

Answering SELECT Questions

• Focus mainly on correctness, then clarity, then 
conciseness

• Split a difficult question into smaller parts, 
which could be sub queries

• Avoid excessive use of joins, although note 
that there’s nothing wrong with using joins in 
general

• Give the question a go, you may pick up some 
marks for good syntax etc.

SELECT Exam Question

2008-2009 Paper
3.

This question refers to the following tables: Children, Playgroups, Activities. The 
Children table contains data about children (names, ages and addresses of parents) –
we assume for simplicity that names are unique. Playgroups says which child is in 
which playgroup and Activities says what children in the playgroup did on a certain 
date (for example, went to a zoo).

Activities

PlaygroupID ADate Description

Children

Name Age Address

Playgroups

PlaygroupID Name



11

SELECT Exam Question

SELECT Name from Children;

(a) Find a list of names of all children.

Activities

PlaygroupID ADate Description

Children

Name Age Address

Playgroups

PlaygroupID Name

(1 mark)

SELECT Exam Question

SELECT Name from Children

WHERE Age = 4;

(b) Find a list of names of all children aged 4.

Activities

PlaygroupID ADate Description

Children

Name Age Address

Playgroups

PlaygroupID Name

(2 marks)

SELECT Exam Question

• This question requires either a join, I’ll use an INNER JOIN

• Or a subquery to first find the names of the children. 
Either approach would be worth the same amount of 
marks

• This is made easier because we’ve been told names are 
unique

(c) Return a list of names and addresses for all
children in the playgroup with ID equal to 1

Activities

PlaygroupID ADate Description

Children

Name Age Address

Playgroups

PlaygroupID Name

(3 marks)

SELECT Exam Question

SELECT Name, Address

FROM Children INNER JOIN Playgroups USING (Name)

WHERE PlaygroupID = 1;

SELECT Name, Address FROM Children

WHERE Name IN (SELECT Name FROM Playgroups

WHERE PlaygroupID = 1);

(c) Return a list of names and addresses for all
children in the playgroup with ID equal to 1

Activities

PlaygroupID ADate Description

Children

Name Age Address

Playgroups

PlaygroupID Name

(3 marks)

SELECT Exam Question

• This question is much easier using a subquery, do the 
question in two parts

• First you find the PlaygroupID in the Activities table

• Then we obtain the children’s names and ages using 
a join or another subquery as with the last question.

(d) Find a list of names and ages of children in a playgroup
which went to the zoo on the 21st of February 2009 (check for
Activities.Description value zoo).

Activities

PlaygroupID ADate Description

Children

Name Age Address

Playgroups

PlaygroupID Name

(5 marks)

SELECT Exam Question

• Subquery to find the correct PlaygroupID:

SELECT PlaygroupID FROM Activities

WHERE ADate = ‘2009-02-21’

AND Description = ‘zoo’;

(d) Find a list of names and ages of children in a playgroup
which went to the zoo on the 21st of February 2009 (check for
Activities.Description value zoo).

Activities

PlaygroupID ADate Description

Children

Name Age Address

Playgroups

PlaygroupID Name

(5 marks)



12

SELECT Exam Question

SELECT Name, Age

FROM Children INNER JOIN Playgroups

WHERE PlaygroupID =

(SELECT PlaygroupID FROM Activities

WHERE ADate = ‘2009-02-21’

AND Description = ‘zoo’);

(d) Find a list of names and ages of children in a playgroup
which went to the zoo on the 21st of February 2009 (check for
Activities.Description value zoo).

Activities

PlaygroupID ADate Description

Children

Name Age Address

Playgroups

PlaygroupID Name

(5 marks)

SELECT Exam Question

• This is easier with a join than with subqueries

• We’ll also need to use AVG() and GROUP BY

(e) Return a list of playgroup IDs and the average age of
children for each playgroup.

Activities

PlaygroupID ADate Description

Children

Name Age Address

Playgroups

PlaygroupID Name

(5 marks)

SELECT Exam Question

SELECT PlaygroupID, AVG(Age) AS Average

FROM Playgroups

INNER JOIN Children USING (Name)

GROUP BY PlaygroupID;

(e) Return a list of playgroup IDs and the average age of
children for each playgroup.

Activities

PlaygroupID ADate Description

Children

Name Age Address

Playgroups

PlaygroupID Name

(5 marks)

SELECT Exam Question

• This is really the same question as (d)

• For maximum marks we must be sure Amy 
Jones isn’t in the result

(f) Find the names and addresses of all children who are in the
same playgroup as a child called ‘Amy Jones’

Activities

PlaygroupID ADate Description

Children

Name Age Address

Playgroups

PlaygroupID Name

(5 marks)

SELECT Exam Question

SELECT Name, Addresses

FROM Children

INNER JOIN Playgroups USING (Name)

WHERE PlaygroupID =

(Subquery to find Amy Jones here)

AND Name <> 'Amy Jones';

(f) Find the names and addresses of all children who are in the
same playgroup as a child called ‘Amy Jones’

Activities

PlaygroupID ADate Description

Children

Name Age Address

Playgroups

PlaygroupID Name

(5 marks)

SELECT Exam Question

SELECT Name, Addresses

FROM Children

INNER JOIN Playgroups USING (Name)

WHERE PlaygroupID =

(SELECT PlaygroupID FROM Playgroups

WHERE Name = 'Amy Jones')

AND Name <> 'Amy Jones';

(f) Find the names and addresses of all children who are in the
same playgroup as a child called ‘Amy Jones’

Activities

PlaygroupID ADate Description

Children

Name Age Address

Playgroups

PlaygroupID Name

(5 marks)


