{-# OPTIONS --universe-polymorphism #-}
module Relation.Binary.Indexed.Core where
open import Function
open import Level
import Relation.Binary.Core as B
import Relation.Binary.Core as P
REL : ∀ {i₁ i₂ a₁ a₂} {I₁ : Set i₁} {I₂ : Set i₂} →
(I₁ → Set a₁) → (I₂ → Set a₂) → (ℓ : Level) → Set _
REL A₁ A₂ ℓ = ∀ {i₁ i₂} → A₁ i₁ → A₂ i₂ → Set ℓ
Rel : ∀ {i a} {I : Set i} → (I → Set a) → (ℓ : Level) → Set _
Rel A ℓ = REL A A ℓ
Reflexive : ∀ {i a ℓ} {I : Set i} (A : I → Set a) → Rel A ℓ → Set _
Reflexive _ _∼_ = ∀ {i} → B.Reflexive (_∼_ {i})
Symmetric : ∀ {i a ℓ} {I : Set i} (A : I → Set a) → Rel A ℓ → Set _
Symmetric _ _∼_ = ∀ {i j} → B.Sym (_∼_ {i} {j}) _∼_
Transitive : ∀ {i a ℓ} {I : Set i} (A : I → Set a) → Rel A ℓ → Set _
Transitive _ _∼_ = ∀ {i j k} → B.Trans _∼_ (_∼_ {j}) (_∼_ {i} {k})
record IsEquivalence {i a ℓ} {I : Set i} (A : I → Set a)
(_≈_ : Rel A ℓ) : Set (i ⊔ a ⊔ ℓ) where
field
refl : Reflexive A _≈_
sym : Symmetric A _≈_
trans : Transitive A _≈_
reflexive : ∀ {i} → P._≡_ ⟨ B._⇒_ ⟩ _≈_ {i}
reflexive P.refl = refl
record Setoid {i} (I : Set i) c ℓ : Set (suc (i ⊔ c ⊔ ℓ)) where
infix 4 _≈_
field
Carrier : I → Set c
_≈_ : Rel Carrier ℓ
isEquivalence : IsEquivalence Carrier _≈_
open IsEquivalence isEquivalence public