module Data.Fin where
open import Data.Nat as Nat
using (ℕ; zero; suc; z≤n; s≤s)
renaming ( _+_ to _N+_; _∸_ to _N∸_
; _≤_ to _N≤_; _<_ to _N<_; _≤?_ to _N≤?_)
open import Function
open import Level hiding (lift)
open import Relation.Nullary.Decidable
open import Relation.Binary
data Fin : ℕ → Set where
zero : {n : ℕ} → Fin (suc n)
suc : {n : ℕ} (i : Fin n) → Fin (suc n)
toℕ : ∀ {n} → Fin n → ℕ
toℕ zero = 0
toℕ (suc i) = suc (toℕ i)
Fin′ : ∀ {n} → Fin n → Set
Fin′ i = Fin (toℕ i)
fromℕ : (n : ℕ) → Fin (suc n)
fromℕ zero = zero
fromℕ (suc n) = suc (fromℕ n)
fromℕ≤ : ∀ {m n} → m N< n → Fin n
fromℕ≤ (Nat.s≤s Nat.z≤n) = zero
fromℕ≤ (Nat.s≤s (Nat.s≤s m≤n)) = suc (fromℕ≤ (Nat.s≤s m≤n))
#_ : ∀ m {n} {m<n : True (suc m N≤? n)} → Fin n
#_ _ {m<n = m<n} = fromℕ≤ (toWitness m<n)
raise : ∀ {m} n → Fin m → Fin (n N+ m)
raise zero i = i
raise (suc n) i = suc (raise n i)
inject : ∀ {n} {i : Fin n} → Fin′ i → Fin n
inject {i = zero} ()
inject {i = suc i} zero = zero
inject {i = suc i} (suc j) = suc (inject j)
inject! : ∀ {n} {i : Fin (suc n)} → Fin′ i → Fin n
inject! {n = zero} {i = suc ()} _
inject! {i = zero} ()
inject! {n = suc _} {i = suc _} zero = zero
inject! {n = suc _} {i = suc _} (suc j) = suc (inject! j)
inject+ : ∀ {m} n → Fin m → Fin (m N+ n)
inject+ n zero = zero
inject+ n (suc i) = suc (inject+ n i)
inject₁ : ∀ {m} → Fin m → Fin (suc m)
inject₁ zero = zero
inject₁ (suc i) = suc (inject₁ i)
inject≤ : ∀ {m n} → Fin m → m N≤ n → Fin n
inject≤ zero (Nat.s≤s le) = zero
inject≤ (suc i) (Nat.s≤s le) = suc (inject≤ i le)
fold : ∀ (T : ℕ → Set) {m} →
(∀ {n} → T n → T (suc n)) →
(∀ {n} → T (suc n)) →
Fin m → T m
fold T f x zero = x
fold T f x (suc i) = f (fold T f x i)
lift : ∀ {m n} k → (Fin m → Fin n) → Fin (k N+ m) → Fin (k N+ n)
lift zero f i = f i
lift (suc k) f zero = zero
lift (suc k) f (suc i) = suc (lift k f i)
infixl 6 _+_
_+_ : ∀ {m n} (i : Fin m) (j : Fin n) → Fin (toℕ i N+ n)
zero + j = j
suc i + j = suc (i + j)
infixl 6 _-_
_-_ : ∀ {m} (i : Fin m) (j : Fin′ (suc i)) → Fin (m N∸ toℕ j)
i - zero = i
zero - suc ()
suc i - suc j = i - j
infixl 6 _ℕ-_
_ℕ-_ : (n : ℕ) (j : Fin (suc n)) → Fin (suc n N∸ toℕ j)
n ℕ- zero = fromℕ n
zero ℕ- suc ()
suc n ℕ- suc i = n ℕ- i
infixl 6 _ℕ-ℕ_
_ℕ-ℕ_ : (n : ℕ) → Fin (suc n) → ℕ
n ℕ-ℕ zero = n
zero ℕ-ℕ suc ()
suc n ℕ-ℕ suc i = n ℕ-ℕ i
pred : ∀ {n} → Fin n → Fin n
pred zero = zero
pred (suc i) = inject₁ i
infix 4 _≤_ _<_
_≤_ : ∀ {n} → Rel (Fin n) zero
_≤_ = _N≤_ on toℕ
_<_ : ∀ {n} → Rel (Fin n) zero
_<_ = _N<_ on toℕ
data _≺_ : ℕ → ℕ → Set where
_≻toℕ_ : ∀ n (i : Fin n) → toℕ i ≺ n
data Ordering {n : ℕ} : Fin n → Fin n → Set where
less : ∀ greatest (least : Fin′ greatest) →
Ordering (inject least) greatest
equal : ∀ i → Ordering i i
greater : ∀ greatest (least : Fin′ greatest) →
Ordering greatest (inject least)
compare : ∀ {n} (i j : Fin n) → Ordering i j
compare zero zero = equal zero
compare zero (suc j) = less (suc j) zero
compare (suc i) zero = greater (suc i) zero
compare (suc i) (suc j) with compare i j
compare (suc .(inject least)) (suc .greatest) | less greatest least =
less (suc greatest) (suc least)
compare (suc .greatest) (suc .(inject least)) | greater greatest least =
greater (suc greatest) (suc least)
compare (suc .i) (suc .i) | equal i = equal (suc i)