open import Relation.Binary
module Algebra.Structures where
import Algebra.FunctionProperties as FunctionProperties
open FunctionProperties using (Op₁; Op₂)
import Relation.Binary.EqReasoning as EqR
open import Function
open import Data.Product
import Level as L
record IsSemigroup {A} (≈ : Rel A L.zero) (∙ : Op₂ A) : Set where
open FunctionProperties ≈
field
isEquivalence : IsEquivalence ≈
assoc : Associative ∙
∙-cong : ∙ Preserves₂ ≈ ⟶ ≈ ⟶ ≈
open IsEquivalence isEquivalence public
record IsMonoid {A} (≈ : Rel A L.zero) (∙ : Op₂ A) (ε : A) : Set where
open FunctionProperties ≈
field
isSemigroup : IsSemigroup ≈ ∙
identity : Identity ε ∙
open IsSemigroup isSemigroup public
record IsCommutativeMonoid {A} (≈ : Rel A L.zero)
(∙ : Op₂ A) (ε : A) : Set where
open FunctionProperties ≈
field
isMonoid : IsMonoid ≈ ∙ ε
comm : Commutative ∙
open IsMonoid isMonoid public
record IsGroup {A} (≈ : Rel A L.zero)
(_∙_ : Op₂ A) (ε : A) (_⁻¹ : Op₁ A) : Set where
open FunctionProperties ≈
infixl 7 _-_
field
isMonoid : IsMonoid ≈ _∙_ ε
inverse : Inverse ε _⁻¹ _∙_
⁻¹-cong : _⁻¹ Preserves ≈ ⟶ ≈
open IsMonoid isMonoid public
_-_ : Op₂ A
x - y = x ∙ (y ⁻¹)
record IsAbelianGroup {A} (≈ : Rel A L.zero)
(∙ : Op₂ A) (ε : A) (⁻¹ : Op₁ A) : Set where
open FunctionProperties ≈
field
isGroup : IsGroup ≈ ∙ ε ⁻¹
comm : Commutative ∙
open IsGroup isGroup public
isCommutativeMonoid : IsCommutativeMonoid ≈ ∙ ε
isCommutativeMonoid = record
{ isMonoid = isMonoid
; comm = comm
}
record IsNearSemiring {A} (≈ : Rel A L.zero)
(+ * : Op₂ A) (0# : A) : Set where
open FunctionProperties ≈
field
+-isMonoid : IsMonoid ≈ + 0#
*-isSemigroup : IsSemigroup ≈ *
distribʳ : * DistributesOverʳ +
zeroˡ : LeftZero 0# *
open IsMonoid +-isMonoid public
renaming ( assoc to +-assoc
; ∙-cong to +-cong
; isSemigroup to +-isSemigroup
; identity to +-identity
)
open IsSemigroup *-isSemigroup public
using ()
renaming ( assoc to *-assoc
; ∙-cong to *-cong
)
record IsSemiringWithoutOne {A} (≈ : Rel A L.zero)
(+ * : Op₂ A) (0# : A) : Set where
open FunctionProperties ≈
field
+-isCommutativeMonoid : IsCommutativeMonoid ≈ + 0#
*-isSemigroup : IsSemigroup ≈ *
distrib : * DistributesOver +
zero : Zero 0# *
open IsCommutativeMonoid +-isCommutativeMonoid public
renaming ( assoc to +-assoc
; ∙-cong to +-cong
; isSemigroup to +-isSemigroup
; identity to +-identity
; isMonoid to +-isMonoid
; comm to +-comm
)
open IsSemigroup *-isSemigroup public
using ()
renaming ( assoc to *-assoc
; ∙-cong to *-cong
)
isNearSemiring : IsNearSemiring ≈ + * 0#
isNearSemiring = record
{ +-isMonoid = +-isMonoid
; *-isSemigroup = *-isSemigroup
; distribʳ = proj₂ distrib
; zeroˡ = proj₁ zero
}
record IsSemiringWithoutAnnihilatingZero
{A} (≈ : Rel A L.zero) (+ * : Op₂ A) (0# 1# : A) : Set where
open FunctionProperties ≈
field
+-isCommutativeMonoid : IsCommutativeMonoid ≈ + 0#
*-isMonoid : IsMonoid ≈ * 1#
distrib : * DistributesOver +
open IsCommutativeMonoid +-isCommutativeMonoid public
renaming ( assoc to +-assoc
; ∙-cong to +-cong
; isSemigroup to +-isSemigroup
; identity to +-identity
; isMonoid to +-isMonoid
; comm to +-comm
)
open IsMonoid *-isMonoid public
using ()
renaming ( assoc to *-assoc
; ∙-cong to *-cong
; isSemigroup to *-isSemigroup
; identity to *-identity
)
record IsSemiring {A} (≈ : Rel A L.zero)
(+ * : Op₂ A) (0# 1# : A) : Set where
open FunctionProperties ≈
field
isSemiringWithoutAnnihilatingZero :
IsSemiringWithoutAnnihilatingZero ≈ + * 0# 1#
zero : Zero 0# *
open IsSemiringWithoutAnnihilatingZero
isSemiringWithoutAnnihilatingZero public
isSemiringWithoutOne : IsSemiringWithoutOne ≈ + * 0#
isSemiringWithoutOne = record
{ +-isCommutativeMonoid = +-isCommutativeMonoid
; *-isSemigroup = *-isSemigroup
; distrib = distrib
; zero = zero
}
open IsSemiringWithoutOne isSemiringWithoutOne public
using (isNearSemiring)
record IsCommutativeSemiringWithoutOne
{A} (≈ : Rel A L.zero) (+ * : Op₂ A) (0# : A) : Set where
open FunctionProperties ≈
field
isSemiringWithoutOne : IsSemiringWithoutOne ≈ + * 0#
*-comm : Commutative *
open IsSemiringWithoutOne isSemiringWithoutOne public
record IsCommutativeSemiring
{A} (≈ : Rel A L.zero) (+ * : Op₂ A) (0# 1# : A) : Set where
open FunctionProperties ≈
field
isSemiring : IsSemiring ≈ + * 0# 1#
*-comm : Commutative *
open IsSemiring isSemiring public
*-isCommutativeMonoid : IsCommutativeMonoid ≈ * 1#
*-isCommutativeMonoid = record
{ isMonoid = *-isMonoid
; comm = *-comm
}
isCommutativeSemiringWithoutOne :
IsCommutativeSemiringWithoutOne ≈ + * 0#
isCommutativeSemiringWithoutOne = record
{ isSemiringWithoutOne = isSemiringWithoutOne
; *-comm = *-comm
}
record IsRing {A} (≈ : Rel A L.zero)
(_+_ _*_ : Op₂ A) (-_ : Op₁ A) (0# 1# : A) : Set where
open FunctionProperties ≈
field
+-isAbelianGroup : IsAbelianGroup ≈ _+_ 0# -_
*-isMonoid : IsMonoid ≈ _*_ 1#
distrib : _*_ DistributesOver _+_
open IsAbelianGroup +-isAbelianGroup public
renaming ( assoc to +-assoc
; ∙-cong to +-cong
; isSemigroup to +-isSemigroup
; identity to +-identity
; isMonoid to +-isMonoid
; inverse to -‿inverse
; ⁻¹-cong to -‿cong
; isGroup to +-isGroup
; comm to +-comm
; isCommutativeMonoid to +-isCommutativeMonoid
)
open IsMonoid *-isMonoid public
using ()
renaming ( assoc to *-assoc
; ∙-cong to *-cong
; isSemigroup to *-isSemigroup
; identity to *-identity
)
zero : Zero 0# _*_
zero = (zeroˡ , zeroʳ)
where
open EqR (record { isEquivalence = isEquivalence })
zeroˡ : LeftZero 0# _*_
zeroˡ x = begin
0# * x ≈⟨ sym $ proj₂ +-identity _ ⟩
(0# * x) + 0# ≈⟨ refl ⟨ +-cong ⟩ sym (proj₂ -‿inverse _) ⟩
(0# * x) + ((0# * x) + - (0# * x)) ≈⟨ sym $ +-assoc _ _ _ ⟩
((0# * x) + (0# * x)) + - (0# * x) ≈⟨ sym (proj₂ distrib _ _ _) ⟨ +-cong ⟩ refl ⟩
((0# + 0#) * x) + - (0# * x) ≈⟨ (proj₂ +-identity _ ⟨ *-cong ⟩ refl)
⟨ +-cong ⟩
refl ⟩
(0# * x) + - (0# * x) ≈⟨ proj₂ -‿inverse _ ⟩
0# ∎
zeroʳ : RightZero 0# _*_
zeroʳ x = begin
x * 0# ≈⟨ sym $ proj₂ +-identity _ ⟩
(x * 0#) + 0# ≈⟨ refl ⟨ +-cong ⟩ sym (proj₂ -‿inverse _) ⟩
(x * 0#) + ((x * 0#) + - (x * 0#)) ≈⟨ sym $ +-assoc _ _ _ ⟩
((x * 0#) + (x * 0#)) + - (x * 0#) ≈⟨ sym (proj₁ distrib _ _ _) ⟨ +-cong ⟩ refl ⟩
(x * (0# + 0#)) + - (x * 0#) ≈⟨ (refl ⟨ *-cong ⟩ proj₂ +-identity _)
⟨ +-cong ⟩
refl ⟩
(x * 0#) + - (x * 0#) ≈⟨ proj₂ -‿inverse _ ⟩
0# ∎
isSemiringWithoutAnnihilatingZero
: IsSemiringWithoutAnnihilatingZero ≈ _+_ _*_ 0# 1#
isSemiringWithoutAnnihilatingZero = record
{ +-isCommutativeMonoid = +-isCommutativeMonoid
; *-isMonoid = *-isMonoid
; distrib = distrib
}
isSemiring : IsSemiring ≈ _+_ _*_ 0# 1#
isSemiring = record
{ isSemiringWithoutAnnihilatingZero =
isSemiringWithoutAnnihilatingZero
; zero = zero
}
open IsSemiring isSemiring public
using (isNearSemiring; isSemiringWithoutOne)
record IsCommutativeRing {A}
(≈ : Rel A L.zero)
(+ * : Op₂ A) (- : Op₁ A) (0# 1# : A) : Set where
open FunctionProperties ≈
field
isRing : IsRing ≈ + * - 0# 1#
*-comm : Commutative *
open IsRing isRing public
isCommutativeSemiring : IsCommutativeSemiring ≈ + * 0# 1#
isCommutativeSemiring = record
{ isSemiring = isSemiring
; *-comm = *-comm
}
open IsCommutativeSemiring isCommutativeSemiring public
using (isCommutativeSemiringWithoutOne)
record IsLattice {A} (≈ : Rel A L.zero) (∨ ∧ : Op₂ A) : Set where
open FunctionProperties ≈
field
isEquivalence : IsEquivalence ≈
∨-comm : Commutative ∨
∨-assoc : Associative ∨
∨-cong : ∨ Preserves₂ ≈ ⟶ ≈ ⟶ ≈
∧-comm : Commutative ∧
∧-assoc : Associative ∧
∧-cong : ∧ Preserves₂ ≈ ⟶ ≈ ⟶ ≈
absorptive : Absorptive ∨ ∧
open IsEquivalence isEquivalence public
record IsDistributiveLattice {A} (≈ : Rel A L.zero)
(∨ ∧ : Op₂ A) : Set where
open FunctionProperties ≈
field
isLattice : IsLattice ≈ ∨ ∧
∨-∧-distribʳ : ∨ DistributesOverʳ ∧
open IsLattice isLattice public
record IsBooleanAlgebra {A}
(≈ : Rel A L.zero)
(∨ ∧ : Op₂ A) (¬ : Op₁ A) (⊤ ⊥ : A) : Set where
open FunctionProperties ≈
field
isDistributiveLattice : IsDistributiveLattice ≈ ∨ ∧
∨-complementʳ : RightInverse ⊤ ¬ ∨
∧-complementʳ : RightInverse ⊥ ¬ ∧
¬-cong : ¬ Preserves ≈ ⟶ ≈
open IsDistributiveLattice isDistributiveLattice public