------------------------------------------------------------------------
-- Booleans
------------------------------------------------------------------------

{-# OPTIONS --universe-polymorphism #-}

module Data.Bool where

open import Function
open import Data.Unit using ()
open import Data.Empty
open import Level
open import Relation.Nullary
open import Relation.Binary
open import Relation.Binary.PropositionalEquality as PropEq
  using (_≡_; refl)

infixr 6 _∧_
infixr 5 _∨_ _xor_
infix  0 if_then_else_

------------------------------------------------------------------------
-- The boolean type

data Bool : Set where
  true  : Bool
  false : Bool

{-# BUILTIN BOOL  Bool  #-}
{-# BUILTIN TRUE  true  #-}
{-# BUILTIN FALSE false #-}

{-# COMPILED_DATA Bool Bool True False #-}

------------------------------------------------------------------------
-- Some operations

not : Bool  Bool
not true  = false
not false = true

-- A function mapping true to an inhabited type and false to an empty
-- type.

T : Bool  Set
T true  = 
T false = 

if_then_else_ :  {a} {A : Set a}  Bool  A  A  A
if true  then t else f = t
if false then t else f = f

_∧_ : Bool  Bool  Bool
true   b = b
false  b = false

_∨_ : Bool  Bool  Bool
true   b = true
false  b = b

_xor_ : Bool  Bool  Bool
true  xor b = not b
false xor b = b

------------------------------------------------------------------------
-- Queries

_≟_ : Decidable {A = Bool} _≡_
true   true  = yes refl
false  false = yes refl
true   false = no λ()
false  true  = no λ()

------------------------------------------------------------------------
-- Some properties

decSetoid : DecSetoid _ _
decSetoid = PropEq.decSetoid _≟_